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Abstract

Data buyers compete in a game of incomplete information about which a single

data seller owns some payoff-relevant information. The seller faces a joint information-

and mechanism-design problem: deciding which information to sell, while eliciting the

buyers’ types and imposing payments. We derive the welfare- and revenue-optimal

mechanisms for a class of games with binary actions and states. Our results highlight the

critical properties of selling information in competitive environments: (i) the negative

externalities arising from buyer competition increase the profitability of recommending

the correct action to one buyer exclusively; (ii) for the buyers to follow the seller’s

recommendations, the degree of exclusivity must be limited; (iii) the buyers’ obedience

constraints also reduce the distortions in the allocation of information introduced by a

monopolist; (iv) as competition becomes fiercer, these limitations become more severe,

weakening the impact of market power on the allocation of information.
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1 Introduction

Markets for information shape a growing fraction of the economy. Information is sold directly

(e.g., credit bureaus sell consumer scores to lenders, and research institutions sell data to

financial traders) but also indirectly (e.g., digital platforms offer advertisers access to a

targeted audience, and hedge funds sell shares of the portfolios they build based on superior

information).1 The allocation of information affects the distribution of market power in the

downstream markets where that information is used, thereby critically impacting consumer

and social surplus. Understanding how these markets work, and what is special about them,

is then a first-order economic and social issue.

In this paper, we study how private information and buyer competition interact in

determining the optimal allocation and price of information. Our objective is threefold: (i) to

provide qualitative insights into the structure of the revenue-maximizing mechanisms for

the sale of information, (ii) to determine how information differs from physical goods in

this respect, and (iii) to assess the impact of market power in the information sector on

competition in downstream markets. We propose a tractable formulation of this problem

where the profitability of acquiring information for any buyer is unknown to the seller (e.g.,

buyers have private cost, asset holdings, risk preferences), and buyers of information compete

with one another (e.g., financial traders, advertisers, lenders). We cast the monopolist seller’s

choice of a mechanism for the sale of information as an information design problem with

elicitation (Bergemann and Morris, 2019). We consider finitely many data buyers and a

data seller. The data buyers compete in a simultaneous-moves, finite game of incomplete

information (the “downstream game”). The monopolist is informed about a payoff-relevant

state variable and sells informative signals to the buyers. Each buyer also has a payoff type in

the downstream game, i.e., their willingness to pay for any signal is their private information.

Thus, the seller must first elicit the buyers’ private payoff types and then sell them informative

signals. As these signals can be viewed as action recommendations, the seller faces a joint

mechanism and information design problem, wherein their choice of information structure is

subject to the buyers’ obedience and truthful reporting constraints.

More specifically, a direct mechanism maps the state of the world and the buyers’ reported

types into a distribution over informative signals and payments. An important property of

our setting is that the seller can design any statistical experiment but lacks complete control

over the buyers’ actions. This is because information is only valuable insofar as it affects

behavior (Blackwell, 1953), and the buyers retain control over their downstream actions.

1We describe the targeted advertising example at length below. See Admati and Pfleiderer (1990) and
Bergemann and Bonatti (2019) for a discussion of direct vs. indirect sales of information.
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Likewise, the seller can design the information revealed to any buyer when one or more buyers

do not participate in the mechanism. However, the seller cannot prevent any buyer from

playing in the downstream game under their prior information only. Therefore, the designer

has partial but not full control over each buyer’s outside options, which partially relaxes the

buyers’ participation constraints.

Main Results We begin with a characterization of the seller’s constraints in Section 3.

This characterization holds whenever the buyers’ payoffs are linear in their private type. For

such payoff structures, we show that incentive compatibility of the mechanism is equivalent

to separately incentivizing truthful reporting and obedience of the buyers. In other words,

double deviations—wherein a buyer both misreports their type and deviates from the seller’s

action recommendation—are no more profitable to the buyers than one-shot deviations.

Next, we focus on the simplest instance of this complex problem—a binary-action down-

stream game of incomplete information where the state identifies which action is dominant

for each data buyer. In this game, acquiring information imposes negative externalities on

the other buyers: the better informed a buyer is about the state, the lower the resulting

payoff for the other buyers. In other words, the seller designs a mechanism in the presence of

externalities stemming from the competition among buyers (Jehiel and Moldovanu, 2006).

We then turn to the welfare-optimal mechanism for the allocation of information and the

revenue-maximizing mechanism for a monopolist seller. Our results highlight two defining

features of selling information to competing buyers and show how information and competition

interact in shaping the optimal mechanism. Both features distinguish the sale of information

to competing firms from the sale of physical goods with externalities across buyers (e.g.,

network goods).

First, any buyer can always ignore (or indeed reverse) the seller’s recommendation. The

resulting obedience constraint limits the social planner’s ability to reveal information to one

buyer exclusively. Likewise, obedience disciplines the monopolist seller’s ability to distort the

allocation of information to maximize revenue at the expense of social welfare. Intuitively,

the seller wants to distort the allocation of any buyer type with a negative Myersonian virtual

value to minimize her payoff and reduce the information rents of higher types.

In our setting, this distortion corresponds to recommending the wrong action in every

state. However, the buyer would not follow such a recommendation in any mechanism that

does so too often. Therefore, the seller can do no better than to reveal “zero net information”

to a low-value buyer, i.e., to probabilistically send the right and the wrong recommendation

in a way that leaves the buyer indifferent over any course of action.

There are, of course, many such information structures (including entirely uninformative
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ones). However, the seller is not indifferent among them. Indeed, she can tailor the

joint distribution of recommendations to maximize welfare while maintaining obedience on

aggregate. The seller then prefers to reveal the correct state to all buyers when their types are

sufficiently low. This approach relaxes obedience constraints and allows the seller to issue the

correct recommendation to one or more buyers exclusively (and the wrong recommendation

to the remaining buyers) when their types are sufficiently larger than their competitors’.

Second, providing information to a firm naturally imposes a negative externality on its

competitors. In our setting, these negative externalities expand the profitability of selling

information. Each buyer is willing to pay a positive price if either (a) she is strictly better

off following the seller’s recommendation or (b) her opponents do not receive the correct

recommendation with probability one. As a result, the seller can charge a strictly positive

price to some types with negative Myersonian virtual values, including some types whose

obedience constraint binds, i.e., those who do not receive any valuable information themselves.

Leading Example Large digital platforms (e.g., Amazon, Facebook, and Google in the US,

Alibaba and JD in China) collect an ever-increasing amount of information on their users’

online behavior (e.g., browsing, shopping, social media interactions), which allows them to

precisely estimate individual consumers’ tastes for various products. Our leading application

(fleshed out in Example 2) considers the interaction between a digital platform (information

seller) and two or more merchants (information buyers). The merchants wish to leverage the

platform’s information advantage to offer a personalized product to each individual consumer.

The platform monetizes its proprietary information by selling targeted advertising slots

(e.g., Facebook, Google) or sponsored marketplace listings (e.g., Amazon) to advertisers and

retailers. Such practices amount to indirect sales of information: while the platform does

not trade its consumers’ data for payment (direct sales), it nonetheless creates value for

merchants by allowing them to condition their strategies (in particular, which product to

offer) on the consumers’ information (e.g., their browsing or shopping history and third-party

cookies). For the purposes of our model, direct transfers of information and indirect sales of

information are, in fact, equivalent.2

Each merchant’s expected volume of sales depends on two critical factors: (i) the degree

of targeting, i.e., the precision of its advertising campaign, as measured by the ability to

show the right product to each consumer; and (ii) the exclusivity of its campaign, i.e., the

mismatch between its competitors’ offers and the consumer’s tastes. Merchants are willing to

pay more for targeted campaigns and even more for exclusive access to targeted campaigns.

2In our approach, we further assume a platform such as Amazon has full commitment power to set
information structures. Recent work by Koessler and Skreta (2022) analyzes the problem of information
disclosure to multiple agents by a designer without commitment power.
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However, the merchants’ willingness to pay for an advertising campaign also depends on the

profitability of making each sale, i.e., on their cost structure. As the latter is privately known

to the merchant, the platform must elicit it through its choice of mechanism. Abstracting

from the details and dynamics of online advertising auctions, the platform’s problem reduces

to designing a menu of (information structure, payment) pairs, each corresponding to an

advertising campaign.

Related Literature This paper is primarily related to the literature on markets for

information. In seminal work, Admati and Pfleiderer (1986, 1990) study the sale of information

to traders who compete in financial markets. More recently, Babaioff et al. (2012) and

Bergemann et al. (2018) study settings where a single buyer has private information about

her beliefs over a payoff-relevant state. This problem is similar to ours insofar as the optimal

mechanism can be represented through menus of information structures and associated prices,

but there is a single buyer only.

Closer to our model, Rodŕıguez Olivera (2021) studies fully general mechanisms in a

model with binary actions, states, and types. However, the buyers’ types correspond to the

realizations of a privately observed, exogenous signal about the state. Bimpikis et al. (2019)

also study a setting similar to ours but consider mechanisms with a single option only—selling

the true state distorted by Gaussian noise. Their problem then consists of finding the optimal

covariance matrix of the noise and the associated prices. In particular, the covariance matrix

is not designed as a function of the buyers’ private types.3

Our work is also related to the recent literature on Bayesian persuasion and information

design, e.g., Bergemann and Morris (2016), Kamenica (2019), Taneva (2019), and the

references therein. Most papers in this literature view the the problem as a pure information

design question as opposed to a mechanism design problem with transfers. In particular,

these papers do not study the information structures that maximize the designer’s revenue.

In a seminal paper, Jehiel et al. (1996) study an auction setting with multidimensional

and interdependent valuations. Each buyer is privately informed about her valuation for a

good and about the externality that she imposes on others. They show that the revenue-

maximizing mechanism may involve not selling the good at all (when this is socially optimal)

while charging positive payments to the buyers.4 In further work, Jehiel and Moldovanu

3Xiang and Sarvary (2013) study information sellers who offer selling exogenous information structures
about a binary state to buyers with known types who compete in a game with binary actions. Kastl et al.
(2018) study the sale of cost information to a large number of perfectly competitive firms, each one facing
a privately informed manager. Bounie et al. (2021) consider two sellers who acquire information about a
consumer’s location along a Hotelling line.

4Jehiel et al. (1999) study the simpler problem where each buyer knows the externality imposed on
her by others receiving an object. Under appropriate symmetry assumptions, the problem reduces to a
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(2000) restrict attention to the second-price auction and study more general externalities in

the game played by the buyers. See Jehiel and Moldovanu (2006) for an exhaustive survey of

the literature on mechanism design with externalities.

Our analysis is also very closely related to the model of data auctions with externalities

in Agarwal et al. (2020). In their paper, the externalities resulting from the allocation of

information are intrinsic to the buyers—the negative marginal effect of a competing buyer

acquiring information is part of each buyer’s private type. Finally, recent work by Kang

(2022) and Pai and Strack (2022) explores a mechanism-design approach to the taxation of

goods with externalities.

Relative to all these papers, our analysis highlights the differences between selling in-

formation and traditional goods in markets with endogenous downstream externalities. In

contrast to the sale of physical goods, the allocation of information is both more flexible and

more constrained. On the one hand, the seller has the flexibility to design any statistical

experiment for each profile of buyer types. On the other hand, information is an input into

the buyers’ strategic decision problem (the “downstream game”) that the seller does not

control. As such, the sale of information introduces both obedience constraints, which are

new to this literature, and tighter participation constraints.

2 Model

We consider n data buyers who compete in a downstream game of incomplete information. A

monopolist data seller observes a payoff-relevant state variable and sells informative signals

to the data buyers.

Notation For a tuple of sets (Si)i∈[n], we write S =
∏n

i=1 Si and S−i =
∏

j ̸=i Sj. Similarly

for s ∈ S, si (resp. s−i) denotes the projection of s on Si (resp. S−i). Finally ∆(S) denotes
the set of probability distributions over S.

Downstream Game We consider a downstream game of incomplete information between

n buyers parametrized by an unknown parameter θ (the state of the world). We denote by Θ

the set of all possible states. Each buyer i ∈ [n] is described by a set of types Vi, a set of

one-dimensional mechanism-design problem. In this vein, Ostrizek and Sartori (2021) study a screening
model with externalities where each buyer’s type affects both her valuation (e.g., for a network good) and the
influence her actions (e.g., consumption) impose on other buyers. Their analysis focuses on the countervailing
impact of payoff-types and influence functions.
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actions Ai, and a utility function

ui : A×Θ× V → R.

Information Structures The monopolist information seller chooses a set of signals S,
and a message (bid) space B to design a communication rule σ : Θ×B → ∆(S) and payment

functions p = (p1, . . . , pn) ∈ (RB
≥0)

n. Given a vector of bids b ∈ B and state θ ∈ Θ, we write

σ( · ; θ, b) : S → [0, 1] for the corresponding probability distribution over S.
The buyers’ utility functions (ui)i∈[n], the mechanism (σ, p), as well as the joint distribution

of the random variables (θ, V ) ∈ Θ× V are commonly known at the onset of the game.

Timing The interaction between the information seller and the buyers, and among the

buyers in the downstream game, takes place as follows:

1. Each buyer i ∈ [n] observes their type Vi and the seller observes the state θ.

2. Each buyer reports a message Bi to the information seller, where Bi is a Vi-measurable

random variable in Bi.

3. The information seller generates signals S ∈ S distributed as σ(θ, B) and reveals Si to

each buyer i ∈ [n] in exchange for payment pi(Bi).

4. Each buyer i chooses an action Ai ∈ Ai that is (Vi, Si)-measurable and obtains a total

utility of ui(A; θ, V )− pi(Bi).

Remark 1. In the above formulation, the payment pi of buyer i only depends on their own

type report Bi. This is a departure from many mechanism design papers, where the payments

are usually defined on the entire vector of type reports B. In an information design context,

we could even consider more general payments that also depend on the state θ and the

designer’s signal Si. As it happens, all these formulations reduce without loss of generality to

the simple one above in which pi only depends on Bi as we now explain.

Consider a general payment of the form pi(B, θ,R), where R is the seller’s sampling ran-

domness, independent of all other variables. This formulation allows for randomized payments

and subsumes in particular the case of payments depending on action recommendations since

any (randomized) action recommendation can be written in the form Ai = fi(B, θ,R) for

some measurable function fi. The key observation is that, because utilities are quasilinear,

the seller’s constraints (truthfulness, obedience, and individual rationality, cf. Section 3.1)

only depend on pi through the interim payment p̃i(vi) = E[pi(B, θ,R) |Bi]. In other words,

given any feasible mechanism with a general payment of the form pi(B, θ,R), the mechanism
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in which we replace the payment with p′i(Bi) = E[pi(B, θ,R) | Bi] is equivalent from the

perspective of player i. It will thus satisfy the same constraints and lead to the same expected

revenue. We therefore adopt the simpler form pi(Bi) in the rest of the paper for ease of

notation.

The above formulation reduces the problem of information sale to a joint mechanism and

information design problem. In order to obtain closed-form characterizations of the welfare-

and revenue-optimal mechanisms in Section 4, we will restrict our attention to a specific case

of this problem that we describe next. However, the characterizations of the constraints faced

by the seller, which we study in Section 3, hold fore more general games.

Binary Game with Symmetric Additive Payoffs We consider a downstream game

with n buyers, two states of the world, Θ = {0, 1} and two actions for each buyer, Ai = {0, 1}
for i ∈ [n]. The utility of buyer i ∈ [n] is given by

ui(a; θ, v) = vi · πi(a; θ).

In other words, the buyers have private payoff types that capture their marginal valuation

for the downstream outcomes and reveal nothing about the state of the world. We further

assume that the random variables (θ, v1, . . . , vn) are drawn from a mutually independent

prior. In this class of games, we assume the downstream payoff πi of buyer i ∈ [n] is given by

πi(a; θ) = 1{ai = θ} − α

n− 1

∑
j ̸=i

1{aj = θ} . (1)

Thus, in each state of the world, it is a dominant strategy for each buyer to play the action

matching that state, resulting in a payoff gain of 1. A buyer additionally incurs a payoff loss

of α/(n− 1) whenever one of their competitors plays the action matching the state.5 The

externalities are thus normalized in such a way that α parametrizes the maximum externality

that can be induced on a given buyer by the other buyers. Finally, given our focus on

competitive environments, we assume that α ≥ 0.6

Example 2 (Binary Product Choice). The binary game described above can be seen as a

stylized formulation of the motivating example presented in the introduction, with the state

5In the binary game, “choosing the correct action” is analogous to “being awarded the object” in an
auction with externalities. In that case, the function πi corresponds to the value of a given allocation for any
buyer i, which is then scaled by the buyer’s type vi. Throughout the paper, and especially in Section 5, we
will discuss significant differences between the allocation of physical and information goods.

6The case of positive externalities (α < 0) is a straightforward extension of our analysis and is discussed
in Section 6.1.

8



Θ = {0, 1} representing an individual consumer’s preferences (unknown to the merchants).

In this context, the merchants’ goal is to match their product to the consumer’s preferences.

Each merchant is privately informed of its marginal profitability vi in the downstream market.

When there are only two merchants, we can write the payoffs (1) for each action profile

a ∈ {0, 1}2 in each state of the world θ as

0 1

0 1− α, 1− α 1,−α

1 − α, 1 0, 0

θ = 0

0 1

0 0, 0 − α, 1

1 1,−α 1− α, 1− α

θ = 1

The parameter α ≥ 0 captures the intensity of the competition between the merchants. A

special case of this game occurs when α = 1 in which case we have a zero-sum game. For

α > 1, the negative externalities outweigh the direct effect of choosing the correct action: the

game turns into a prisoners’ dilemma. Finally, each merchant is privately informed about

its unit profit margin, i.e., merchant i’s total payoff (gross of any payments to the seller) is

given by vi · πi.

3 Incentive Compatibility and Participation

3.1 Definitions

Incentive Compatibility In the game described in Section 2, each data buyer makes two

strategic decisions: (i) report a message Bi ∈ Bi after observing their private type Vi, and (ii)

take an action Ai in the downstream game after receiving signal Si ∈ Si from the seller.

By the revelation principle for dynamic games, see Myerson (1991, Section 6.3), it is

without loss of generality to assume that the seller’s set of signals Si is equal to the set of

actions Ai, and that the buyers’ reports lie in their own type space Vi instead of a general

message space Bi, as long as we consider incentive compatible mechanisms.

In any such mechanism, the seller recommends to the buyer an action to take in the

downstream game. Henceforth, we therefore denote the seller’s recommendation by Ai, and

then buyer’s choice of action by ai. Incentive compatibility (below) requires each buyer to

both report her true type and to follow the seller’s recommendation.

Definition 1 (Incentive Compatibility). A mechanism (σ, p) is incentive compatible if, for
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each (vi, v
′
i) ∈ V2

i and for each deviation function δ : Ai → Ai,

E
[
ui(Ai, A−i; θ, V )− pi(vi) | Vi = vi, Bi = vi] ≥

E
[
ui(δ(Ai), A−i; θ, V )− pi(v

′
i) | Vi = vi, Bi = v′i],

whereA is distributed as σ(θ, Bi, V−i). The deviation function δ maps the seller’s recommended

action into the buyer’s chosen action.

This definition of incentive compatibility is closely related to the one of Bergemann

and Morris (2019, Section 3.1) in the context of information design with elicitation (but

no transfers). In particular, Definition 1 requires the mechanism to be robust to double

deviations in which the data buyer both misreports their private type and deviate from the

seller’s recommendation. This implies that the mechanism is both truthful and obedient as

defined next.

Definition 2 (Obedience). A mechanism (σ, p) is obedient if buyers have no incentive to

deviate from the action recommendation of the seller assuming everyone reports their type

truthfully. Formally, for each δ : Ai → Ai and vi ∈ Vi,

E
[
ui(Ai, A−i; θ, V ) | Vi = vi] ≥ E

[
ui(δ(Ai), A−i; θ, V ) | Vi = vi]

where A is distributed as σ(θ, V )—in particular, data buyer i’s report is truthful.

Equivalently one can write obedience as: for each (ai, a
′
i) ∈ A2

i and vi ∈ Vi,

E
[
ui(ai, A−i; θ, V ) | Vi = vi, Ai = ai] ≥ E

[
ui(a

′
i, A−i; θ, V ) | Vi = vi, Ai = ai] ,

where A is distributed as σ(θ, V ).

The first expression shows data buyer i’s strategic behavior before receiving the action

recommendation when she intends to report her type in the first stage of the game. At this

stage, the buyer’s strategy specifies a course of action following any action recommendation

from the seller. Obedience requires that no deviations δ : Ai → Ai are more profitable than

obedience, i.e., the identity mapping id : Ai → Ai.

The second expression shows data buyer i’s strategic behavior after receiving the action

recommendation at the second stage, and expresses that no other action results in a better

expected utility. As mentioned before, these two are equivalent.

The second expression (which assumes every buyer reports her type truthfully) shows

that obedience is only a property of the downstream game and of the recommendation rule σ,

which thus correlates the actions of the data buyers. The distribution of actions resulting from
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an obedient recommendation rule in a game of incomplete information is a Bayes correlated

equilibrium as defined and studied in Bergemann and Morris (2016, 2019).

Definition 3 (Truthfulness). A mechanism is truthful if buyers have no incentive to misreport

their type, assuming that everyone follows the seller’s recommendations in the downstream

game. Formally, for each (vi, v
′
i) ∈ V2

i ,

E
[
ui(A; θ, V )− pi(vi) | Vi = vi, Bi = vi] ≥ E

[
ui(A; θ, V )− pi(v

′
i) | Vi = vi, Bi = v′i]

where A is distributed as σ(θ, Bi, V−i).

Incentive compatibility implies both obedience and truthfulness, but the converse is not

true in general. In Section 3.2, however, we show that with independent, private payoff types

and linear valuations, incentive compatibility is equivalent to obedience and truthfulness.

Participation The data buyers engage in downstream competition even when they acquire

no information from the seller. Thus, a complete description of the mechanism must specify

the recommendations sent to the participating buyers when one ore more buyers choose not

to participate in the mechanism. In that case, the data seller’s recommendations to their

competitors affect the non-participating buyers’ utilities.

We define each buyer’s bid space to be their type space Vi augmented with the special

symbol ‘⊥’, representing the decision not to participate. Writing Bi := Vi ∪ {⊥} for the

bid space of buyer i ∈ [n] and B :=
∏n

i=1 Bi, the communication rule is now a function

σ : Θ × B → ∆(A) with the constraint that it only sends a recommendation to the

participating buyers. In other words,

∀θ ∈ Θ, ∀b ∈ B, σ(θ, b) ∈ ∆(
∏

i:bi ̸=⊥Ai).

Similarly, the payment function pi : Θ × B → R≥0 of buyer i ∈ [n] satisfies the constraint

that pi(θ, b) = 0 whenever bi =⊥.

For each buyer i ∈ [n], σ induces a communication rule σo
i : Θ× V−i → ∆(A−i) on the

remaining buyers when buyer i chooses not to participate. This induced communication rule

is given by,

∀θ ∈ Θ, ∀v−i ∈ V−i, σ
o
i (θ, v−i) := σ(θ,⊥, v−i).

This communication rule determines the outside option available to non-participating buyers:

in any equilibrium where every buyer participates, any deviating buyer i chooses her action
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in the downstream game to be the best response to σo
i , resulting in the reservation utility

max
ai∈Ai

E
[
ui(ai, A−i; θ, V ) | Vi = vi] ,

where A−i is distributed according to σo
i (θ, V−i). This is in marked contrast with a monopoly

without externalities, in which a non-participating buyer simply receives no allocation,

resulting in a vanishing reservation utility. It is also richer than in markets for physical goods

with externalities, where a non-participating buyer has no available actions to choose from.

We can now state the participation constraint.

Definition 4 (Individual Rationality). The mechanism (σ, p) is individually rational each

for each buyer i ∈ [n],

E
[
ui(A; θ, V )− pi(Vi) | Vi = vi] ≥ max

ai∈Ai

E
[
ui(ai, A−i; θ, V ) | Vi = vi] , (2)

where A−i is distributed according to σo
i (θ, V−i).

Intuitively, it is always in the seller’s interest to relax this constraint as much as possible by

selecting the outside communication rule σo
i that minimizes the right hand side in (2). In other

words, the seller “punishes” a non-participating buyer by sending optimal recommendations

to the remaining buyers so as to maximize the externalities induced on the deviating buyer.

The specific way to achieve this depends on the downstream game and will be made explicit

in Section 4.2.

Remark 3. The restriction to individually rational mechanisms is without loss of generality.

Indeed, consider a mechanism for which some types do not participate at equilibrium. If we

modify this mechanism to send the uninformative recommendation—matching the most likely

state under the prior—to all non-participating types, we obtain a new mechanism in which

the agents now (weakly) prefer to participate and play the same actions as in the original

mechanism. In other words, any equilibrium can also be obtained as an equilibrium of a

different mechanism in which everyone participates. In fact, the mechanisms we construct in

Section 4 show that the seller can take advantage of agents’ participation by inducing them

to be correct when it hurts their competitors the least, thereby resulting in outcomes that

could not be achieved without full participation.

3.2 Characterizations

In Section 4, we shall focus on the binary game with symmetric additive payoffs described in

Section 2 and solve for the welfare- and revenue optimal mechanisms subject to the incentive
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compatibility and participation constraints defined in the previous section. To this end, this

section provides characterizations of these two constraints.

Incentive Compatibility We begin the analysis with a characterization of incentive

compatibility (Definition 1). We first restrict the buyers’ utility to be multiplicatively

separable in their independent private types and the outcome of the downstream game. In

other words, the utility of buyer i depends linearly on their own type vi, which is a buyer’s

marginal valuation for their downstream payoffs πi.

Assumption 1 (Linear Payoffs). The random variables (θ, V1, . . . , Vn) are mutually indepen-

dent. For each i ∈ [n], Vi is supported on the non-negative reals and the utility of buyer i is

given by

ui(a; θ, v) = vi · πi(a; θ)

for some downstream payoff function πi : A×Θ → R.

As discussed above, incentive compatibility rules out double deviations and implies both

truthfulness and obedience. Proposition 1 shows that, under Assumption 1, the converse is

true and incentive compatibility reduces to requiring truthfulness and obedience separately.

In other words, double deviations are not profitable whenever a mechanism is immune to

single deviations.

Proposition 1 (Incentive Compatibility Characterization). Under Assumption 1, a mecha-

nism is incentive compatible whenever it is truthful and obedient.

Proof. See Section A.

Truthfulness In order to characterize truthful mechanisms, we follow the classical result of

Myerson (1981), which we restate in Proposition 2 below using our notation. Let (σ, p) be a

mechanism and define for buyer i ∈ [n], the interim downstream payoff π̃i(Vi) := E[πi(A; θ) |
Vi]. We then have the following familiar characterization result.

Proposition 2 (Truthfulness Characterization). The mechanism (σ, p) is truthful if and only

if for each buyer i:

1. The interim downstream payoff π̃i is non-decreasing.

2. The payment pi is given for vi ∈ Vi by

pi(vi) = vi · π̃i(vi)− v · π̃i(v) + pi(v)−
∫ vi

v

π̃i(s)ds . (3)

Proof. See Section A.
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Obedience Next, we turn to a characterization of obedience for the binary game with

symmetric additive payoffs (1).7 In this game, the dominant strategy for each buyer in the

absence of any signal about θ is to play the action corresponding to the most likely state

under the prior. By construction, this is the correct action with probability

P[Ai = θ | Vi] = max
k∈Θ

P[θ = k] =: Pmax. (4)

The characterization of obedience in Proposition 3 below requires that following the recom-

mended action makes a buyer more likely to be correct than if choosing an action under the

common prior.

Proposition 3 (Obedience Characterization). In the binary game with additive payoffs (1)

under Assumption 1, a recommendation rule is obedient if and only if for each i ∈ [n], it

holds almost surely that

P[Ai = θ | Vi] ≥ Pmax.

Proof. See Section A.

In our characterization of optimal mechanisms below, we exploit the strength of this

result, i.e., that obedience is a property of the marginal distribution of actions recommended

to buyer i. In other words, the designer can flexibly correlate the buyers’ actions and state,

provided each buyer is recommended the right action often enough on average.

4 Optimal Mechanisms

We now turn social welfare and revenue maximization. We show below that, for the binary

downstream game with additive payoffs in Eq. (1), both objectives can be written as a

weighted sum of the probabilities that the mechanism recommends the dominant strategy to

each buyer (see Eq. (5) below). Hence, we first describe in Section 4.1 an optimal mechanism

for a general class of objective functions of this form, which we then instantiate in Section 4.2

and Section 4.3 to derive mechanisms maximizing social welfare and revenue, respectively.

7Our characterization does not in fact require externalities to be additively decomposable and holds
more generally for all models in which the externality incurred by a player is independent of their own
action. Formally, this is the class of models for which the downstream payoff of player i can be written
πi(a; θ) = 1{ai = θ} − Ei(a−i; θ) for some function Ei.
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4.1 Optimal Mechanisms

We consider a general objective function of the form

W := E

[
n∑

i=1

wi(V )1{Ai = θ}

]
=

n∑
i=1

E
[
wi(V )P[Ai = θ | V ]

]
(5)

for weight functions wi : V → R.
Expression 5 and the characterization of obedience obtained in Proposition 3 suggest a

convenient parametrization of the seller’s problem in terms of the functions hi : V → [0, 1]

given by hi(V ) := P[Ai = θ |V ] for each player i ∈ [n]. These functions can easily be expressed

in terms of the recommendation rule σ. Indeed, we have almost surely

P[Ai = θ | V ] = E[1{Ai = θ} | V ]

=
∑
a∈A
ai=θ

E[1{A1 = a1, . . . , An = an} | V ] =
∑
a∈A
ai=θ

E[σ(a; θ, V ) | V ].

Conversely, Lemma 4 below shows that it is possible to construct a recommendation rule

which has hi as its marginals. In other words, any choice of the marginal functions hi can

be “realized” by a recommendation rule. Hence, as long as designer’s objective and the

constraints on the recommendation rule can be expressed in terms of hi(V ), we will directly

optimize over these quantities. An optimal information structure σ in this class can then be

obtained using Lemma 4.

Lemma 4 (Recommendation Rule from Marginals). Let hi be measurable functions from

V to [0, 1] for i ∈ [n], then there exists a recommendation rule σ : Θ× V → ∆(A) such that

almost surely, P[Ai = θ | V ] = hi(V ) for i ∈ [n].

Proof. See Section A

We now describe a general recommendation rule that optimizes criteria of the form (5),

which include social welfare and seller revenue, subject to the obedience constraints. Recall

the definition of Pmax given in (4).

Proposition 5 (Optimal Mechanism). For the binary game with symmetric additive payoffs,

consider an objective W of the form (5) where for i ∈ [n], wi : V → R is a measurable

function such that the random variable wi(vi, V−i) is non-atomic for each vi ∈ Vi. For i ∈ [n]

let t⋆i : Vi → R be such that for all vi ∈ Vi,

P
[
wi(vi, V−i) ≥ t∗i (vi)

]
= Pmax.
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Then the deterministic recommendation rule given by

Ai = θ if and only if wi(v) ≥ min{0, t⋆i (vi)}

for i ∈ [n], maximizes W subject to obedience.

Proof. See Section A.

In order to gain intuition into the characterization of optimal mechanisms, note that the

objective function W in (5) and the obedience constraints are separable. In other words, the

optimization problem reduces to solving separately for each i ∈ [n] and vi ∈ Vi:

max E
[
wi(vi, V−i)hi(vi, V−i)

]
s.t. E[hi(vi, V−i)] ≥ Pmax,

where, as above, hi(v) = P[Ai = θ | V ] is the “allocation of correct information” to buyer i

and takes values in [0, 1] by definition. In the absence of the obedience constraint, the optimal

solution would simply be to choose hi(v) = 1{wi(v) ≥ 0}. If this violates the obedience

constraint, we must also allocate information to some types where wi(v) < 0, but we want

to do so where the weight function wi is as large as possible. Hence we should consider the

smallest possible superlevel set of wi that guarantees that the constraint is satisfied. This set

corresponds to the level t⋆i (vi) defined in the proposition statement.

4.2 Welfare Maximization

We now leverage Proposition 5 to characterize the welfare-optimal mechanism in our environ-

ment. For the binary game with additive payoffs (1) under Assumption 1, we can write the

expected social welfare as

W =
n∑

i=1

E
[
Vi

(
1{Ai = θ} − α

n− 1

∑
j ̸=i

1{Aj = θ}
)]

=
n∑

i=1

E
[(

Vi −
α

n− 1

∑
j ̸=i

Vj

)
1{Ai = θ}

]
.

(6)
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Using the characterization of obedience from Proposition 3, the problem of maximizing social

welfare subject to obedience can be written

max
n∑

i=1

E
[(

Vi −
α

n− 1

∑
j ̸=i

Vj

)
1{Ai = θ}

]
s.t. P[Ai = θ | Vi] ≥ Pmax, for i ∈ [n] and a.s.

which is of the form (5). We can thus apply Proposition 5 and obtain the following charac-

terization of the welfare-maximizing (second best) mechanism.

Proposition 6 (Welfare Optimal Mechanism). Consider the binary game with additive

payoffs (1) under Assumption 1. Further, assume that the buyers’ types are identically

distributed with absolutely continuous c.d.f. F and denote by F (k) the c.d.f. of the sum of k

i.i.d. variables8 distributed according to F .

Define v⋆ ∈ R such that

F (n−1)(v⋆) := P
[∑

j ̸=i

Vj ≤ v⋆
]
= Pmax.

and α := α
n−1

. Then, the recommendation rule maximizing social welfare subject to obedience

is the deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

vj ≤ max{v⋆, vi/α}.

Proof. See Section A.

Figure 1 gives a representation of the welfare-optimal recommendation rule from Proposi-

tion 6 in the two-buyer case. This recommendation can be conceptualized as the “superposi-

tion” of two recommendation rules, which we describe separately in Figure 2.

1. The first rule (Figure 2, left) recommends the correct action to buyer i if and only

if buyer j’s type satisfies vj ≤ v⋆. For this rule, the recommendation to buyer i

is independent or their type and satisfies P[Ai = θ | Vi] = F (v⋆) = Pmax. In other

words, the recommendation is correct as often as buyer i would be by deterministically

playing the action matching the most likely state under the prior. This implies by

the characterization of Proposition 3 that the mechanism is obedient. Consequently,

this mechanism recommends the correct action to buyer i just often enough to ensure

8F (k) can be computed recursively with F (1) = F and F (k+1) = F (k) ∗ f , where ∗ denotes the convolution
product and f is the p.d.f. associated with F .
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Figure 1: Welfare-maximizing recommendation rule from Proposition 6 with two buyers, for
α = 2/3 (left) and α = 3/2 (right). The label in each region indicates the set of buyers who are
recommended the correct action (Ai = θ)—buyers in the complement set are recommended
the wrong action (Ai = 1− θ). The two states are equally likely ex ante, so v⋆ = F−1(1/2) is
the median of the type distribution—chosen to be a standard exponential here).

obedience, and does so when buyer j’s type is lowest, thus minimizing the induced

externality αvj1{Ai = θ}. In summary, this mechanism ensures each buyer’s obedience

while minimizing the externality induced on the other buyer.9 Note that the mechanism

is obedient despite the action recommendations being deterministic in each region.

This is because from the perspective of each buyer, conditional on their type, the

recommendation they receive is still a random variable depending on the (unobserved)

realization of the other buyer’s type.

2. The second rule (Figure 2, center and right) recommends the correct action to buyer i if

and only if her type satisfies vi ≥ αvj . This is simply the welfare-maximizing allocation

(in the absence of the obedience constraint): a buyer is recommended the correct action

if her value exceeds the externality she imposes on the other buyer. In particular,

when buyer i’s type is large enough compared to buyer j’s type (vi/vj ≥ max{α, 1/α}),
she is recommended the right action exclusively, hence maximizing her utility. In the

intermediate region where types are close to each other, both buyers are recommended

the same action. When α ≤ 1, the region is defined by αvj ≤ vi ≤ vj/α and the

9This also shows that the seller strictly benefits from the agents’ participation (cf. Remark 3). Indeed, even
for agents whose participation constraint is binding and who are thus receiving an action recommendation
that is only correct with probability Pmax, the seller can control when the agent is correct over the realizations
of their competitor’s type.
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Figure 2: Building blocks for the welfare-maximizing mechanism of Proposition 6. Left:
mechanism guaranteeing obedience at all types while minimizing externalities. Center and
right: first-best mechanism (ignoring the obedience constraint) for α = 2/3 and α = 3/2.

efficient allocation recommends the correct action to both buyers. In contrast, when

α > 1, the region is defined by vj/α ≤ vi ≤ αvj and both buyers are recommended the

wrong action. Indeed, the externalities are so significant in this case that the buyers

face a prisoners’ dilemma in each state. It is thus more efficient for the data seller

to coordinate the buyers on the collaborative strategy in which both buyers pick the

“wrong” action.

The optimal mechanism (Figure 1) combines both mechanisms by distorting the first best

mechanism to guarantee that each buyer i receives the correct action when vj ≤ v⋆. Distorting

buyer i’s recommendation is required, and hence obedience is binding, when vj ≤ v⋆ and

vi ≤ αvj.

Finally, it is easy to verify that the second best mechanism is implementable, i.e., it

satisfies the buyers’ truth-telling constraints. Indeed, by Proposition 2 it suffices to verify

that the interim downstream payoff is non-decreasing in the buyer’s type.

Proposition 7 (Implementability of Second-Best Mechanism). For the deterministic mecha-

nism of Proposition 6, and under the same assumptions, the interim expected payoff of buyer

i ∈ [n], π̃i(Vi) := E
[
πi(A; θ) | Vi

]
, satisfies almost surely

π̃i(vi) = max
{
F (n−1)(v⋆), F (n−1)(vi/α)

}
− α

∑
j ̸=i

E
[
F (n−2)

(
max{v⋆, Vj/α} − vi

)]
.

In particular, π̃i is non-decreasing and the recommendation rule is therefore implementable.

Proof. See Section A.
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Intuitively, a higher type is revealed the correct state more often by the social planner,

which makes it possible to find transfers that would induce truthful reporting of the buyers’

types. Of course these transfers do not correspond to a monopolist data seller’s optimal

choice. In the next section, we will see how a monopolist data seller modifies the second best

mechanism to maximize the associated payments.

4.3 Revenue Maximization

Throughout this section, we further assume that the type distribution F is absolutely

continuous with p.d.f. f and that the virtual value function ϕ : Vi → R defined by

ϕ(v) := v − 1− F (v)

f(v)
,

is non-decreasing, that is, F is regular in the sense of Myerson (1981).

We first show in Lemma 8 that maximizing the seller’s expected revenue reduces to

maximizing the virtual surplus, as in Myerson (1981).

Lemma 8 (Reduction to Virtual Surplus). Let σ be a communication rule for which the

interim payoff π̃i is non-decreasing for each buyer i ∈ [n]. Denote by K the interim downstream

payoff of a non-participating buyer10 and assume that π̃i(v) ≥ K. Then:

1. If pi is a payment function that truthfully implements π̃i (i.e., that satisfies (3) by

Proposition 2), then (σ, p) is individually rational if and only if it is individually rational

for the lowest type, that is, pi(v) ≤ v · (π̃i(v)−K).

2. Among the payment functions pi implementing π̃i in a truthful and individually rational

manner, the revenue-maximizing one is given by

pi(vi) = vi · π̃i(vi)− v ·K −
∫ vi

v

π̃i(s)ds . (7)

For this payment function, the seller’s revenue is R =
∑n

i=1 E
[
ϕ(Vi)π̃i(Vi)

]
− nv ·K.

Proof. See Section A.

We thus focus on maximizing the virtual surplus R† :=
∑

i∈{1,2} E
[
ϕ(Vi)π̃i(Vi)

]
subject to

10Using the notations of Definition 4, if σo
i denotes the recommendation rule used with the remaining

buyers when buyer i does not participate, then we have K = E[πi(a
∗, A−i; θ)], where A−i is distributed

according to σo
i (θ, V−i) and a∗ is the action matching the most likely state under the prior.
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obedience and truthfulness. For the binary game (1), we write the virtual surplus as

R† =
n∑

i=1

E
[(

ϕ(Vi)−
α

n− 1

∑
j ̸=i

ϕ(Vj)
)
1{Ai = θ}

]
.

This objective function is of the form (5) and we can thus apply Proposition 5 to characterize

the communication rule maximizing virtual surplus subject to obedience. Then, we verify

that the corresponding expected downstream payoff, π̃i, is non-decreasing, implying that

the mechanism is implementable in a truthful and individually rational manner using the

payments given by (7).

Proposition 9 (Revenue Optimal Mechanism). Consider the binary game with additive

payoffs (1) under Assumption 1. Further assume that the buyers’ types are identically

distributed with absolutely continuous c.d.f. F . Denote by Fϕ the c.d.f.11 of ϕ(Vi) where Vi is

distributed according to F and by F
(k)
ϕ the c.d.f. of the sum of k i.i.d. variables distributed

according to Fϕ.

Define v⋆ such that F
(n−1)
ϕ

(
ϕ(v⋆)

)
= Pmax and α := α/(n− 1). Then, the recommendation

rule maximizing virtual surplus subject to obedience is the deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

ϕ(vj) ≤ max{ϕ(v⋆), ϕ(vi)/α}.

Proof. The proof is identical to the one of Proposition 6 with ϕ(Vi) playing the role of

Vi. It follows from an application of Proposition 5 with weight function wi(v) = ϕ(vi) −
α
∑

j ̸=i ϕ(vj).

The functional form of the revenue-optimal mechanism in Proposition 9 is analogous to

that of the welfare-optimal mechanism in Proposition 6, after replacing the buyers’ types with

their virtual types. Figure 3 shows the resulting recommendation rule for n = 2 buyers both

when α < 1 and α > 1. Again, this recommendation can be understood as the superposition

of two recommendation rules:

1. The first rule recommends the correct action to buyer i if and only if the virtual type

of the other buyer satisfies ϕ(vj) ≤ ϕ(v⋆), or equivalently since F is regular, vj ≤ v⋆.

This is exactly the same mechanism as was shown in Figure 2 (left) guaranteeing the

obedience of buyer i.

11When F is a regular distribution, the virtual value function ϕ is invertible and the c.d.f. Fϕ can be
computed as F ◦ ϕ−1.
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Figure 3: Revenue-maximizing recommendation rule from Proposition 9 for α = 1/2 (left) and
α = 2 (right). Types are distributed exponentially, so that ϕ(v) = v − 1 and v0 = ϕ−1(0) = 1.
The prior on θ is symmetric (Pmax = 1/2), hence v⋆ = F−1(1/2) = ln 2 < v0.

2. The second rule recommends the correct action to buyer i if and only if ϕ(vi) ≤ ϕ(vj)/α.

In particular, when one virtual valuation is large compared to the other (ϕ(vi)/ϕ(vj) ≥
max{α, 1/α}), buyer i is recommended the correct action exclusively. However, because

the functions v 7→ ϕ−1(ϕ(v)/α) and v 7→ ϕ−1(αϕ(v)) intersect at v0 := ϕ−1(0), the

intermediate regime ϕ(vi)/ϕ(vj) < max{α, 1/α} now determines two regions in which

both buyers are recommended the same action. When virtual valuations are positive

(types greater than v0), both buyers are recommended the correct action when α < 1

and the wrong action when α > 1. Indeed, in this latter case, the buyers face a prisoners’

dilemma in which coordinating on the dominated “wrong” action results in higher

payoffs. Naturally, the situation is reversed when virtual values are negative in the

intermediate regime: both buyers receive the wrong action when α < 1 and the correct

one when α > 1. This is shown in Figure 4 below.

The revenue-optimal mechanism resulting from the superposition of these two mechanisms

depends both qualitatively and quantitatively on the relative positions of v0 and v⋆. This in

turn depends on the magnitude of the parameter Pmax and is discussed in Section 5.2 below.

Proposition 10 below gives an expression for the expected downstream payoff π̃i of each

buyer in the obedient mechanism described above. Note that due to ϕ being non-decreasing

(since we assumed that the distribution F is regular), as buyer i increases their bid vi, the

recommendation rule in Proposition 9 recommends the correct action to i more often and to

i’s competitors less often. Both of these factors contribute to increasing buyer i’s downstream
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payoff, which in turns implies that the interim payoff is non-decreasing as stated in the

proposition. Consequently, the mechanism above is also truthful (implementable) and the

payments are then given by Lemma 8. Given that these payments are decreasing as a function

on K, the downstream payoff of a non-participating buyer, we must therefore design the

outside option so as to minimize K. For the binary game with additive payoffs, the following

proposition establishes that the optimal allocation when i does not participate recommends

the correct action to the set [n] \ {i} of all participating buyers.

Proposition 10 (Implementation of Optimal Mechanism). For the mechanism of Proposi-

tion 9 and under the same assumptions, the interim downstream payoff π̃i of buyer i ∈ [n] is

the non-decreasing function

π̃i(vi) = max
{
F

(n−1)
ϕ

(
ϕ(v⋆)

)
, F

(n−1)
ϕ (ϕ(vi)/α)

}
− α

∑
j ̸=i

E
[
F

(n−2)
ϕ

(
max

{
ϕ(v⋆), ϕ(Vj)/α

}
− ϕ(vi)

)]
,

and the revenue-maximizing mechanism is therefore implementable in a truthful manner.

In case of non-participation of buyer i ∈ [n], the recommendation rule minimizing their

reservation utility recommends the correct action to the remaining buyers (Aj = θ for j ̸= i).

For this outside option, the payments maximizing revenue subject to individual rationality

and truthfulness are given by

pi(vi) = vi · π̃i(vi)−
∫ vi

v

π̃i(s)ds+ vα− v · Pmax.

Proof. See Section A.

For the outside option in Proposition 10, the optimal strategy of a non-participating

buyer is simply to play the action matching the most likely state under the prior, resulting in

the buyer being correct with probability Pmax. Furthermore, the externality incurred by a

non-participating buyer is (n− 1)α = α, because all participating buyers receive the correct

action recommendation in this case. Hence, the reservation utility of a non-participating buyer

is Pmax − α: this is precisely the offset appearing in the expression for pi, in Proposition 10

guaranteeing buyer i’s participation.

We now remark on several properties of the optimal payments, which apply whenever

v⋆ < v0, as in Figure 3.

1. Unlike in settings without externalities, merely having a negative virtual value does not

imply a buyer receives no information. Even absent obedience constraints, the seller
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knows that distorting one buyer’s recommendation increases the surplus of the other

buyer. Therefore, when α < 1 both buyers receive the wrong recommendation only if

both their virtual values are negative and they are sufficiently similar. Conversely, if

both virtual values are negative but v1 is sufficiently larger than v2, then the seller prefers

issuing the correct recommendation to buyer 1. Indeed, distorting the recommendation

to buyer 1 would increase buyer 2’s payoff, which has an even stronger negative impact

on the seller’s profits.

2. Some types of buyer i with a negative virtual valuation vi < v0, are nonetheless charged

a positive payment. This occurs because these types are sufficiently high that their

opponent j has an even lower type vj with a significant probability, F (vi). In other

words, the seller finds it optimal to reveal the correct state to buyer i with probability,

F (ϕ−1(ϕ(vi)/α)) > F (v⋆). Buyer i then has a strict incentive to follow the seller’s

recommendation, i.e., her obedience constraint is slack.

3. Some types of buyer i such that v⋆ < vi, whose obedience constraint binds, still pay a

strictly positive price. Because their obedience constraint is binding, these types derive

no net utility from following the seller’s recommendation. However, unlike types in

[0, v⋆] where the other data buyer always receives the right recommendation, these types’

opponent is revealed the correct state with probability 1−F (ϕ−1(αϕ(vi))). These types

are strictly better off participating, and they can be charged a positive payment. Thus,

the presence of negative externalities augments the profitability of selling information,

as the seller charges positive payments in exchange for limiting the information available

to each buyer’s competitors.

5 Information and Competition

In this section, we discuss the impact of the environment facing the buyers on the optimal

mechanisms presented in Section 4. This encompasses the seller’s constraints, discussed

in Section 5.1, the information structure and in particular the buyers’ prior information

discussed in Section 5.2, the competition structure in the downstream game as captured by

the externality parameter α (Section 5.3), and the number of buyers (Section 5.4).

5.1 Benchmarks

In this section, we contrast our optimal mechanism to “benchmark” situations in which we

relax either or both of our constraints: obedience and truthfulness.
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1. With complete information (i.e., the seller knows v) and no obedience constraint, both

the welfare- and revenue-optimal mechanism use the first-best recommendation rule

shown in Figure 2 (center):

Ai = θ if and only if
∑
j ̸=i

vj ≤ vi/α. (8)

Since there is no constraint on the payments in this case—other than incentivizing

participation—the revenue optimal mechanism collects as a payment the difference

between (i) the interim utility under allocation (8) and (ii) the reservation utility. This

payment is given by,

pi(vi) = vi
(
π̃i(vi)− Pmax + α

)
,

where the interim payoff π̃i(vi) can be computed from (8) following the same steps as

in Proposition 7

π̃i(vi) = F (n−1)(vi/ᾱ)− ᾱ
∑
j ̸=i

E
[
F (n−2)(Vj/ᾱ− vi)

]
. (9)

2. In the case of private information and no obedience constraints, our characterization

of truthfulness in Proposition 2 requires the interim payoff to be non-decreasing. It is

easy to verify that π̃i defined in (9) is non-decreasing, hence the recommendation rule

(8) is truthful. Consequently, the welfare-optimal recommendation rule is identical in

benchmarks (1) and (2). A payment that truthfully implements this rule is given in

Proposition 2.

Equivalently, as we will also discuss in Section 5.2, ignoring the obedience constraint

amounts to formally setting Pmax = 0 in our mechanisms (in which case the obedience

constraint becomes void). Using this equivalence, we immediately obtain that the

revenue optimal recommendation with private information and no obedience is given by

Ai = θ if and only if
∑
j ̸=i

ϕ(vj) ≤ ϕ(vi)/α.

with the associated payment described in Proposition 10, where the critical type v⋆ is

now given by ϕ(v⋆) = v. This mechanism is the one depicted in Figure 6 (first row).

3. With complete information and obedience constraints, the optimal mechanisms will in

fact be identical to the optimal mechanisms derived in Sections 4.2 and 4.3 respectively.

This is because we derived these mechanisms by first ignoring the truthfulness constraint,
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and then verifying that the interim payoffs were non-decreasing (this requires regular

type distributions in the revenue case). In other words, truthfulness was obtained “for

free” and this benchmark does not differ from the optimal mechanisms that take all

the constraints into account.

5.2 Buyers’ Prior Information

The seller’s information augments the buyers’ prior information and allows them to tailor

their actions to the state of the world. But each buyer also has the option of playing the

downstream game under their prior information only. Thus, each buyer’s participation

constraint is tighter when buyers are better informed, and the seller cannot extract all the

buyers’ surplus through transfers.

Furthermore, while the seller is unconstrained in her choice of experiments, the buyers

retain the flexibility to choose their actions after observing the signals. These signals must

then be sufficiently informative relative to the buyers’ prior in order for the data buyers to

follow them. In particular, the buyers can always ignore the recommendation altogether and

choose the action that is optimal under the prior, or choose actions that respond to signals

in a different way than the seller intended. Thus, not all distributions over action profiles in

the downstream game are feasible for the seller, due to the buyers’ obedience constraints.

In our binary setting, the seller’s problem therefore depends critically on a scalar parameter:

the informativeness of the buyers’ prior beliefs, as captured by Pmax := maxk∈{0,1} P[θ = k].

Indeed, Pmax describes both novel aspects of our seller’s problem: the buyer’s reservation utility

that corresponds to foregoing participation in the mechanism (in which case the seller fully

reveals the state to the n− 1 other buyers); and the buyer’s option value of participating but

ignoring the seller’s recommendations. Formally, the obedience and participation constraints

can be written as

P[Ai = θ | Vi = vi] ≥ Pmax,

viπ̃i(vi)− pi(vi) ≥ vi (Pmax − α) .

Figure 4 illustrates the revenue-maximizing mechanism for n = 2 buyers as we vary the

parameter Pmax, for both α < 1 and α > 1. The top row describes the benchmark case where

we artificially set Pmax = 0 in the constraints above. This corresponds to a setting akin to

the sale of physical goods with externalities: there are no downstream actions for buyers to

take (hence no obedience constraints), and each buyer’s reservation utility consists of not

receiving the good while their competitors all receive it with probability 1, so that π̃ = −α

(see also Section 5.1 (2)).
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Figure 4: Revenue-maximizing recommendation rule from Proposition 9 for α = 1/2 (left) and
α = 2 (right). Types are distributed exponentially, so that ϕ(v) = v − 1 and v0 = ϕ−1(0) = 1.
The first row shows the first best mechanism. The second row is the second-best mechanism
(subject to obedience) with a symmetric prior on θ, for which v⋆ = F−1(1/2) = ln 2 < v0.
The third row is the second-best mechanism with an asymmetric prior (pmax = 3/4), for
which v⋆ = ln 4 > v0.
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Figure 5: Payment as a function of a buyer’s type, for different values of Pmax with exponen-
tially distributed types. Left panel: α = 1/2. Right panel: α = 2.

As Pmax increases, as in the second row, the revenue-maximizing mechanism must assign

the correct action to both buyers whenever their competitor’s type is below the critical level

v⋆ := F−1(Pmax). When v⋆ ≥ v0 (as in the third row), the square where v1, v2 ≤ v⋆, in which

obedience requires recommending the optimal action to both buyers, fully contains the region

with negative virtual valuations and the situation looks qualitatively the same as Figure 1.12

In all cases obedience binds for buyer i for all types such that ϕ(vi) ≤ αϕ(v⋆), or equivalently

vi ≤ ṽ := ϕ−1(αϕ(v⋆)).

Finally, Figure 5 shows the payments under the revenue-optimal mechanism for several

values of Pmax. As previewed in Section 4.3, the model without obedience constraints

(Pmax = 0) has positive payments for almost all types. In contrast, the precision of the buyers’

prior information (captured by Pmax ≥ 1/2) prevents the seller from charging any payments

to a positive measure of types, despite the presence negative externalities. This is in sharp

contrast with the sale of final goods with externalities, e.g., Jehiel et al. (1996).

5.3 Externality Parameter α

We now investigate the effect of the intensity of downstream competition on the revenue-

optimal mechanism. Figure 6 compares two settings, where competition is fiercer in the left

panel (α = 1/2) than in the right panel (α = 1/4).

12Depending on the type distribution, we may have v⋆ ≥ v0 for any prior on the unknown state. For
example, for types uniformly distributed over [0, 1], ϕ(v) = v − 1 and v0 = ϕ−1(0) = 1/2 ≤ Pmax = v⋆.
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Figure 6: Comparison of the revenue-maximizing recommendation rules from Proposition 9
for two different values of α. The mechanism recommends the wrong action (1− θ) to both
buyers in the gray regions. As in Figure 4, types are exponentially distributed and states are
equally likely: the larger the value of α, the more competitive the downstream game.

Reducing the intensity of competition reduces the value of exclusive sales of information

(i.e., recommending the right action to one buyer only) in the first best: at one extreme, if

buyers imposed no externalities on each other, the seller would recommend the right action to

any buyer with a positive virtual value. In particular, in an unconstrained revenue problem,

the seller would recommend the wrong action to both buyers more often when competition is

weaker. However, this recommendation profile would violate obedience, which requires the

seller to recommend the right action to both buyers when both their types are smaller than

v⋆. As v⋆ is independent of α, the right panel shows how the seller uses exclusive sales as a

second-best policy under obedience constraints more often as the competition weakens.

In Figure 7, v⋆ < v0, downstream payoffs are non-decreasing as expected. When com-

petition is more intense i.e. α = 1/2 the expected downstream payoff, π̃i, is smaller while

payments are larger. This shows that the designer uses the competition between the firms as

a tool to extract more surplus in exchange for the provision of exclusive information.

In Figure 8, v0 < v⋆, the plots follow a similar pattern as Figure 7 except for types which

are less than v⋆. For these types, fiercer competition results in lower payments. The increase

in competition does not provide data buyers with exclusive information, and at the same time

their expected downstream payoff decreases. Therefore, they do not have any incentive to

pay more. However, Figure 9 suggests that the overall expected payment E
[
pi(Vi)

]
increases

with α.

Figure 9 shows that welfare decreases as competition increases. By increasing α the entries
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Figure 8: Interim downstream payoff and payment. Same parameters as Figure 7 except that
now Pmax = 3/4 so that v⋆ = ln 4 > v0.

of the payoff matrix decrease and as a result, the expected downstream payoff, π̃i(Vi), and

welfare decrease. On the other hand, revenue increases in a more competitive environment as

the data seller can threaten each data buyer to provide exclusive information to their rivals.
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5.4 Number of Buyers

Another critical factor affecting the competition that a buyer faces in the downstream game

is the total number of buyers. We now explore the impact of n on the optimal mechanisms.

In contrast to previous sections where we focused on the case n = 2 to visualize the

impact of other factors, this requires considering the full generality of an n-dimensional type

space, which is inherently hard to visualize. For this reason, we adopt the perspective of

a single buyer i ∈ [n] and study a two-dimensional slice of the type space parametrized

by buyer i’s type vi, and the sum s−i =
∑

j ̸=i vj of the other buyers’ types. Conveniently,

the recommendation to buyer i in the welfare-optimal mechanism (Proposition 6) remains

deterministic with this parametrization:

Ai = θ if and only if s−i ≤ max{v⋆, (n− 1)vi/α}.

Similarly, buyer i’s recommendation in the revenue-optimal mechanism (Proposition 9) is

deterministic in ϕ(vi) and sϕ−i :=
∑

j ̸=i ϕ(vj). In contrast, the externality induced by the

recommendation to a buyer j ≠ i on buyer i remains random even after conditioning on vi

and s−i and depends on the conditional distribution of vj given s−i.

Focusing on exponentially distributed type, s−i follows an Erlang distribution, for which

the conditional distribution vj |s−i can be computed in closed-form. This allows us to visualize

the externality induced by buyer j on buyer i by plotting the quantity P[Aj = θ | Vi, S−i] as a
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function of the two parameters (Vi, S−i). Figure 10 shows a heatmap of this function in the

revenue-optimal mechanism for two different values of n.

Finally, we turn to the impact of the number n of buyers on revenue and welfare.

Specifically, we consider these objectives after normalization by n: by symmetry these

correspond respectively to the utility (gross of any payments to the seller) and payment of a

single buyer. As a way to assess the efficiency loss induced by the seller, we also consider

the utility of a single buyer in the revenue-optimal mechanism. Figure 11 shows how these

quantities vary with n for two different values of α. As we see, all three quantities converge

to a constant as n grows to infinity. This can be heuristically explained as follows: because

the externality term is normalized by n− 1 in (1), the optimal recommendation to buyer i,

absent obedience constraints, is obtained by comparing their type vi to the average of the

other buyers’ types. The law of large numbers then implies that in the large n limit, the

situation that buyer i faces is identical to a competition with a single buyer whose type is

concentrated on the mean of the type distribution. Consistent with our findings from the

previous section, we also see that as α increases—competition becomes fiercer—the payments

increase while buyers’ utilities decrease.

6 Extensions

In this section, we present some extensions and variants of our model (Section 2) and show

how to adapt our results to these. First, we explore the case of positive externalities in
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Section 6.1. Next, we consider two variants of the information structure: one in which the

type of a buyer can be dependent on the state (Section 6.2) and one in which the buyers

have the option to observe a private signal about the state after entering the mechanism

(Section 6.3). Finally, we study the case where the seller is vertically integrated with one of

the buyer in Section 6.4.

6.1 Strategic Complementarities

Although the class of games studied in the paper does not present complementarities strictly

speaking, making the externality parameter α negative (resulting in positive externalities)

could be interpreted as a form of strategic complementarities. Indeed in this case, if player i

succeeds in matching their action to the state, they also benefit from player j matching the

state and hence their own action. We have found that the optimal mechanisms can also be

obtained with α < 0 with only minor changes to our current analysis. Propositions 1 to 3,

which pertain to characterizations of incentive compatibility, truthfulness, and obedience

respectively, as well as Proposition 5 remain unchanged. Hence, the only necessary adjustments

are in Proposition 6 (for welfare) and Proposition 9 (for revenue), which require dividing by α

(now negative) in the inequality resulting from Proposition 5. To ensure the implementability

of the mechanism, we need to verify that the induced interim payoff π̃i is non-decreasing.

Proposition 11. Consider the binary game with additive payoffs (1), under Assumption 1
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and with α < 0. The welfare-optimal mechanism sends the correct action recommendation to

every data buyer regardless of their value. This mechanism is also implementable.

Proof. By Proposition 5, the welfare-optimal recommendation subject to obedience is given

by

Ai = θ if and only if wi(v) ≥ min{ 0, t⋆i (vi) },

where here wi(v) = vi − α
∑

j ̸=i vj. Since α is negative and the types are non-negative, we

have wi(v) ≥ 0 for all v and the optimal recommendation simplifies to Ai = θ for all v. The

interim payoff of player i is constant and equal to 1− α. Therefore, the the mechanism is

implementable.

Similarly, we can find the revenue-optimal mechanism.

Proposition 12. Under the same assumptions as Proposition 11 and with the notations of

Proposition 9, define r⋆ such that F
(n−1)
ϕ

(
ϕ(r⋆)

)
= 1− Pmax. Then, the recommendation rule

maximizing revenue subject to obedience is the deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

ϕ(Vj) ≥ max

{
ϕ(r⋆),

ϕ(vi)

α

}
.

This recommendation rule is implementable as well.

Proof. By Lemma 8, finding the revenue-optimal mechanism reduces to maximizing virtual

surplus where we have wi(v) = ϕ(vi)−α
∑

j ̸=i ϕ(vj) as the weight functions. By Proposition 5,

we compute the threshold function t⋆i (vi) by solving

P[wi(vi, V−i) ≥ t⋆i (vi)] = Pmax.

We obtain t⋆i (vi) = ϕ(vi)− αϕ(r⋆). The allocation rule for the optimal revenue mechanism

then becomes

Ai = θ if and only if
∑
j ̸=i

ϕ(Vj) ≥ max

{
ϕ(r⋆),

ϕ(vi)

α

}
.

Similarly, the expression for the interim payoff π̃i(vi) can be derived as:

π̃i(vi) = 1− F
(n−1)
ϕ

(
max

{
ϕ(r⋆),

ϕ(vi)

α

})
− α

(
1− F

(n−2)
ϕ

(
max

{
ϕ(r⋆),

ϕ(vi)

α

}
− ϕ(vi)

))
,

which is non-decreasing and therefore implementable.
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6.2 State-dependent Payoff Types

We explore the case where the buyers’ payoff types are allowed to depend on the state. For

example if θ represents the consumers’ preference, the profitability of matching it could be

larger in one state compared to the other. We thus generalize Assumption 1 by writing the

utility of buyer i ∈ [n] as

ui(a; θ, vi) = vi · βθ · πi(a; θ) (10)

where βθ is a commonly known, state-dependent (positive) scaling of the buyer’s type.

The following proposition extends our characterization of obedience to utilities of the

form (10). We still assume a binary state and separable externalities.13

Proposition 13. For the binary game with additive payoffs (1) and assuming (10), a

recommendation rule is obedient if and only if the following inequality holds almost surely for

each buyer i ∈ [n],

E[βθ1{θ = Ai} | Vi] ≥ max
k∈{0,1}

βkP[θ = k].

Proof. We follow the same steps as in the proof of Proposition 3. Because externalities are

separable, they cancel out when comparing following the recommendation to deviating from

it. Obedience of player i ∈ [n] is thus equivalent to the following two inequalities

β1P[θ = 1 ∧ Ai = 1 | Vi] ≥ β0P[θ = 0 ∧ Ai = 1 | Vi]

β0P[θ = 0 ∧ Ai = 0 | Vi] ≥ β1P[θ = 1 ∧ Ai = 0 | Vi].

Adding the left-hand side of the second (resp. first) inequality to the first (resp. second), we

obtain

β0P[θ = 0 ∧ Ai = 0 | Vi] + β1P[θ = 1 ∧ Ai = 1 | Vi] ≥ β0P[θ = 0]

β0P[θ = 0 ∧ Ai = 0 | Vi] + β1P[θ = 1 ∧ Ai = 1 | Vi] ≥ β1P[θ = 1],

where we recognize the same quantity on the left-hand side of both inequalities. Hence, these

two inequalities are equivalent to

β0P[θ = 0 ∧ Ai = 0 | Vi] + β1P[θ = 1 ∧ Ai = 1 | Vi] ≥ max
k∈{0,1}

βkP[θ = k].

The characterization in Proposition 13 is similar to the one obtained in the paper. The

quantity on the right-hand side quantifies the downstream payoff (ignoring externalities) that

a buyer can guarantee themself by playing optimally with respect to the prior distribution.

13This result also holds for more general externality models, cf. Footnote 7.
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Hence, this characterization still expresses that the recommendation rule needs to be “correct

enough” to guarantee the buyer a utility at least as good as what they could get under the

prior. The main difference being that the correctness of the recommendation 1{θ = Ai} is

now scaled by the multiplier βθ. Of course, when β0 = β1 = 1, we have E[βθ1{θ = Ai} |
Vi] = P[θ = Ai | Vi] and we recover the characterization of Proposition 3 in the paper.

A measure change perspective. We can obtain an alternative proof of Proposition 13,

as well as a convenient way to derive its implications for the design of optimal mechanisms

as follows. We normalize βθ so that its expectation is 1. That is, we define

β̃θ :=
βθ

E[βθ]
=

βθ∑
k∈{0,1} βkP[θ = k]

.

Note that we could replace βθ with β̃θ in (10) since this amounts to rescaling buyers’ utilities

by a constant. Now, β̃θ can be interpreted as the probability density of a probability measure

P̃ over the state θ with respect to the original prior P. In other words, P̃ is defined by

P̃[θ = k] = β̃kP[θ = k].

If we denote by Ẽ the expectations computed according to the new prior P̃, we have in

particular

E[ui(a; θ, vi) = E[vi · β̃θ · πi(a; θ)] = Ẽ[vi · πi(a; θ)].

In other words, the generalized model Equation (10) in which utilities are scaled with βθ

reduces to the model studied in our paper with the prior P replaced with P̃.
From this, we immediately obtain as a characterization of obedience

P̃[θ = Ai | Vi] ≥ P̃max := max
k∈{0,1}

P̃[θ = k],

which is equivalent to the statement in Proposition 13 after replacing P̃ with its definition.

Similarly, the welfare-optimal mechanism keeps the exact same form as the one given in

Proposition 6, with the only difference being that the critical type v⋆ is now defined by

F (n−1)(v⋆) = P̃max,

and similarly for the revenue-optimal mechanism.14

14For a lower level argument that does not require a change of measure, the reader can verify that all
the steps in Section 4.1 in the paper still go through with the new characterization in Proposition 13, after
defining hi(V ) = E[βθ1{θ = Ai} | V ] instead of hi(V ) = P[θ = Ai | V ].
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Remark 4. As we see, the more profitable a state is (larger βθ) the more skewed the resulting

β-tilted prior P̃ is. Intuitively, if a state is so profitable as to outweigh the uncertainty,

playing the action matching this state is a good strategy for the buyer. Consequently, a

recommendation rule needs to reveal the correct action more often in order to be obedient.

This extends our discussion of the buyer’s prior information in Section 5.2.

6.3 Partially Informed Buyers

In many situations, the buyers may be able to access side information about the state θ.

In our motivating example of firms acquiring information about consumer preferences in

a downstream market, this could for example be the case if each firm has a marketing

department that conducts its own market study in addition to the information acquired from

the seller. Such situations can be coarsely classified into three categories:

1. Each buyer observes a signal about the state before entering the mechanism, and

the buyers’ signals are known to the seller. Upon receiving their signal, each buyer

performs a Bayesian update of the common prior over θ. In our setting, this amounts

to saying each buyer assigns a different (but known to the seller) probability to the

most likely state. In other words the quantity Pmax appearing our characterization of

obedience (Proposition 3) is now buyer-dependent. Our results can be easily adapted

to such situations at the cost of symmetry in the notations: the threshold type v⋆

guaranteeing obedience in our optimal mechanisms (Propositions 6 and 9) simply needs

to be defined with respect to each buyer’s individual Pmax. This setting was also studied

by Bergemann and Morris (2013, Sec. 3.3) for continuous state and action spaces.

2. Each buyer observes a private signal about the state before entering the mechanism,

but these signals are unknown to the seller who needs to elicit them. This setting was

studied in matching game similar to ours in the case of a single buyer by Bergemann

et al. (2018). With more than one buyer, this is an especially challenging problem due to

the difficulty of eliciting correlated types. This setting is studied by Rodŕıguez Olivera

(2021) in the case of a binary type space.

3. The buyers observe private signals about the state after entering the mechanism (but

before taking actions in the downstream game). Prior to entering the mechanism, each

buyer is privately informed about the quality of the signal they will receive at the

second stage. The seller can thus attempt to elicit this information and condition the

mechanism on it.
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We focus on the third of the above categories and study a variant of our model in such a

situation. To isolate the effect of the buyers’ private information about the state from their

intrinsic preference about the downstream payoffs, we make the simplifying assumption that

their payoff types (vi)i∈[n] are all identical and equal to 1. Consequently, the utility of buyer

i ∈ [n] is simply

ui(a; θ) = πi(a; θ),

where πi is the downstream payoff of buyer i as introduced in our paper. The private type

of buyer i—the quality of the private signal they will observe in the second stage of the

game—will be denoted by ti. We assume that ti ∈ [0, 1] and interpret it as the buyer’s

probability of correctly guessing the correct action after observing their private signal at the

second stage of the game. In other words, if Ai denotes the action recommendation from the

mechanism, the buyer only values it if P[Ai = θ | ti] > ti. Otherwise, the recommendation

is uniformative from the perspective of the buyer who will (weakly) prefer to ignore the

mechanism’s recommendation and play at the second stage according to their private signal.

We observe that crucially, the buyers’ types do not directly enter their utility, but only affect

how they will react to the mechanism’s recommendations.

By the revelation principle, we focus on truthful mechanisms in which each buyer makes

a type report t′i ∈ [0, 1]. Note however than in contrast to the model studied in our paper, we

cannot restrict ourselves to obedient mechanisms without loss of generality. This is because

the mechanism does not have access to the agents’ private signals and hence cannot send an

action recommendation that “simulates” what the agent would have done after observing their

signal. The following proposition characterizes such incentive compatible mechanisms. Recall

that π̃i denotes buyer i’s interim expected utility: π̃i(ti) = E[πi(A; θ) | ti] when truthfully

reporting their type ti.

Proposition 14. A mechanism is incentive compatible iff for each agent i

1. there exists a threshold type t⋆i such that the mechanism’s recommendation to buyer i is

uninformative for types ti > t⋆i .

2. there exists a constant Ci such that the payment function pi is given by

pi(ti) = π̃i(ti)−max{ti, t⋆i }+ Ci.

Proof. Let us write π̃i(t
′
i; ti) the expected interim utility of buyer i when their true type is ti
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but they report type t′i. We have15

π̃i(t
′
i; ti) = max{ti,P[Ai = θ | t′i]}+ Ẽi(t

′
i),

where we write Ẽi(t
′
i) for the interim expected externality incurred by buyer i when reporting

t′i.

Let t′i and ti be two types for which the mechanisms’ recommendation is informative, then

truthfulness implies

π̃i(ti; ti)− pi(ti) ≥ π̃i(t
′
i; ti)− pi(t

′
i) = max{ti,P[Ai = θ | t′i]}+ Ẽi(t

′
i)− pi(t

′
i)

≥ P[Ai = θ | t′i] + Ẽi(t
′
i)− pi(t

′
i)

≥ π̃i(t
′
i; t

′
i)− pi(t

′
i).

After swapping the role of t′i and ti, we get that ti 7→ π̃i(ti)− pi(ti) must be constant over

the set of all types that receive an informative recommendation. Let us denote this constant

by Di.

Similarly, by considering two types that receive an uninformative recommendation, we get

that ti 7→ Ẽi(ti)− pi(ti) = π̃i(ti)− ti − pi(ti) is constant over all such types. Let D̄i denote

this constant.

If ti is an informed type and t′i is an uniformed type, truthfulness implies

Di ≥ ti + D̄i,

and similarly if ti is uninformed while t′i is informed

ti + D̄i ≥ Di.

From which we immediately obtain the existence of the claimed threshold type t⋆i with

t⋆i = Di − D̄i and the stated expression for the payment with Ci = −D̄i

Proposition 15. Define for t ∈ [0, 1], G(t) :=
∫ 1

t
sdF (s) = 1− tF (t)−

∫ 1

t
F (s)ds, and let

t⋆ ∈ [0, 1] be such that

t⋆ ∈ argmax
t∈[0,1]

(1− t)F (t) + α
(
1− F (t)−G(t)

)
.

15Note that this expression implicitly assumes that the agent commits to only observing one signal: either
the seller’s action recommendation or their private signal, but not both. Otherwise, we would also need to
take into account the signals’ correlation and the fact that the agent could be correct more often by combining
the two signals than which each signal separately. This seems to lead to an untractable problem.
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When α < 1, the mechanism that maximizes revenue subject to truthfulness recommends

the correct action (Ai = θ) to all types ti ≤ t⋆i and gives an uninformative recommendation

otherwise. The payment collected from player i is

pi(ti) = (1− t⋆)1{ti ≤ t⋆}+ α
(
1− F (t⋆)−G(t⋆)

)
.

Proof. It follows immediately from Proposition 14 that the expected revenue R of any

incentive compatible mechanism is given by

R = W −
∑
i∈[n]

(
t⋆iF (t⋆i ) +G(t⋆i )− Ci

)
where W is the expected welfare. Furthermore, we easily get that the optimal choice of Ci

that still guarantees participation is Ci = α.

Thus for a fixed threshold type t⋆i , the problem reduces to maximizing welfare (subject

to sending uninformative recommendations for types ti ≥ t⋆i ). So we solve this optimization

problem for fixed t⋆i and optimize over t⋆i at the end. Since,

W = (1− α)
∑
i∈[n]

P[Ai = θ]

we see that when α < 1 we want to maximize the probability that the recommendation is

correct, which we achieve by always recommending the correction action when ti ≤ t⋆i . For

this mechanism the expected payment collected from buyer i is

pi(ti) = (1− t⋆i )F (t⋆i ) + α
(
1− F (t⋆i )−G(t⋆i )

)
.

The revenue-optimal is thus obtained by finding the threshold t⋆i that maximizes the previous

expression, as stated in the proposition statement.

An equivalent way to describe the revenue-optimal mechanism is that it is a combination

of a fixed fee and a posted price mechanism. The mechanism always “extorts” the fixed fee

α(1− F (t⋆)−G(t⋆)), which is exactly the amount of averted externality by having everyone

participate. In addition, the seller offers to reveal the correct state θ at the price 1− t⋆i . The

buyer only accepts the offer if the gain (1− ti) exceeds the cost, or equivalently if ti ≤ t⋆i .
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6.4 Vertical Integration

We now study two situations in which the information seller vertically integrates with one of

the buyers and describe in both how this modifies the optimal mechanisms. We focus on the

case n = 2 for simplicity, but the general case does not present any additional difficulty.

(A) In the first scenario, the information seller is one of the two firms, say, firm 1, both

observing the state θ and participating in the downstream game against firm 2 (the

data buyer). The information seller designs a payment function p2 : V2 → R≥0 and

communication rule σ : Θ× V → ∆(A2). Firm 2 pays p2(v2) to firm 1 in exchange for

an action recommendation a2 distributed according to σ(θ, v), resulting in net utility

v2π2(a; θ)−p2(v2). Firm 1’s utility is v1π1(a; θ)+p2(v2), and since it knows the state θ, it

will play the dominant strategy a1 = θ. In this scenario, the incentive compatibility and

individual rationality constraints of firm 2 remain identical to Section 3.1. In particular,

one can derive the payment p2 from the interim payoff π̃2 according to Proposition 2.

Maximizing welfare reduces to maximizing E
[
(V2 − αV1)1{A2 = θ}

]
, which we achieve

by following the same steps as in Proposition 6. The optimal recommendation is given by

A2 = θ if and only if v1 ≤ max{v⋆, v2/α},

where v⋆ is defined by F (v⋆) = P[V1 ≤ v⋆] = Pmax. This recommendation is identical

to the one firm 2 would have received in our original model without integration (Propo-

sition 6). The only difference from the perspective of firm 2 is that firm 1 now plays

the dominant action with probability one, inducing as interim downstream payoff

π̃2(v2) = max{Pmax, F (v2/α)} − α, (11)

in which the externality −α is worse than in Proposition 7. Since π̃2 is non-decreasing,

the mechanism is implementable.

If firm 1 maximizes its own utility instead of welfare, the optimization problem reduces to

maximizing E
[(
ϕ(V2)−αV1

)
1{A2 = θ}

]
. Assuming that V2’s distribution is regular, the

virtual value function ϕ is non-decreasing and the optimal recommendation is given by

A2 = θ if and only if v1 ≤ max{v⋆, ϕ(v2)/α}

where v⋆ is defined as above. The associated interim payoff is

π̃2(v2) = max{Pmax, F
(
ϕ(v2)/α

)
} − α,
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which is non-decreasing in v2 and thus implementable.

(B) In the second scenario, the information seller and firm 1 remain distinct entities: in

particular firm 1 still needs to acquire information and the seller does not engage in the

downstream game. However, the seller and firm 1 are vertically integrated in the sense

that the former wishes to maximize the sum of firm 1’s utility and his own revenue.

In this scenario, the seller’s constraints—truthfulness, obedience, and individual ratio-

nality—stay the same as in Section 3.1. The seller’s objective function becomes

E
[
V1π1(A; θ)− p1(θ, V ) + p1(θ, V ) + p2(θ, V )

]
= E

[
V1π1(A; θ) + p2(θ, V )

]
and by Lemma 8, maximizing it reduces to maximizing

E
[(
V1 − αϕ(V2)

)
1{A1 = θ}+

(
ϕ(V2)− αV1

)
1{A2 = θ}

]
.

The optimal recommendation rule is obtained using Proposition 5 and we find

A1 = θ if and only if ϕ(v2) ≤ max{ϕ(v⋆), v1/α}

A2 = θ if and only if v1 ≤ max{v⋆, ϕ(v2)/α},
(12)

where F (v⋆) = Pmax. Compared to the revenue-optimal recommendation rule of

Proposition 9 where we had

Ai = θ if and only if ϕ(vj) ≤ max{ϕ(v⋆), ϕ(vi)/α},

we see that buyer 1 receives the correction recommendation more often (since ϕ(x) ≤ x).

In contrast, buyer 2 receives the correct recommendation less often in (12) compared

to Proposition 9, due to ϕ−1(x) ≥ x. This is expected given that the seller’s objective

now favors firm 1.

We can also compute the interim payoffs from (12) and find

π̃1(v1) = max{Pmax, F ◦ ϕ−1(v1/α)} − α
[
1− 1{v1 > v⋆}F ◦ ϕ−1(αvi)

]
π̃2(v2) = max{Pmax, F

(
ϕ(v2)/α

)
} − α

[
1− 1{v2 > v⋆}F

(
αϕ(v2)

)]
,

which are both non-decreasing since F and ϕ are both non-decreasing. The recommen-

dation rule (12) is therefore implementable.
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7 Conclusions

We have explored the implications of selling information to competing buyers in a mechanism

design framework. The nature of information disciplines the optimal mechanisms for selling

data products and distinguishes them from canonical (e.g., physical) goods. In particular, the

buyers’ actions in the downstream game introduce obedience constraints into the designer’s

choice of mechanism. These constraints prevent a social planner from implementing the

efficient degree of information exclusivity : the second-best mechanism involves symmetric

allocations of information more often than optimal. At the same time, obedience also limits

the allocation distortions introduced by a monopolist seller of information: the revenue-

optimal mechanism provides the correct information to the buyers more often than the

monopolist would like.

In the present work, we characterized optimal mechanisms in the context of a linear

model with binary states and actions. Considerable work remains to be done to extend the

applicability of this framework to real-world markets. Natural next steps include introducing

asymmetric buyers and externality parameters, which could be represented, for example, by

a weighted directed graph. Both extensions can be analyzed in our linear model. Several

other extensions can be accommodated in our model but are unlikely to yield a tractable

analysis. These include the possibility of downstream resale of information, the presence of

competing information sellers, and the sequential arrival of information buyers.

Finally, in many models of downstream competition, information generates nonlinear

externalities that also depend on all buyers’ actions in the downstream game. In these settings,

the sale of information to competing buyers creates value not only by allowing buyers to

match their actions to the state but also by enabling coordination. In ongoing work (Bonatti

et al., 2022), we pursue the coordination role of selling information in a linear-quadratic

Gaussian model.
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A Appendix

Proof of Proposition 1. Consider a truthful and obedient mechanism. Then, using the nota-

tions of Definition 1, we have for each (vi, v
′
i) ∈ Vi:

E
[
ui(A; θ, V )− pi(vi)|Vi = vi, Bi = vi]

= E
[
vi · πi(A; θ)− pi(vi)|Vi = vi, Bi = vi]

≥ E
[
vi · πi(A; θ)− pi(v

′
i)|Vi = vi, Bi = v′i]

= E
[
vi · πi(A; θ)− pi(v

′
i)|Bi = v′i]

= vi · E
[
πi(A; θ) |Bi = v′i]− E[pi(v′i)|Bi = v′i],

(13)

where the first equality is by Assumption 1, the inequality is by truthfulness (Definition 3),

and the third equality is because A is independent of Vi conditioned on Bi by Assumption 1.

Let δ : Ai → Ai be a deviation function. By Assumption 1, obedience (Definition 2) is

equivalent to

E[πi(A; θ) |Bi = vi] ≥ E[πi(δ(Ai), A−i; θ) |Bi = vi]

for all vi ∈ Vi. Applying this inequality for v′i in (13) we obtain

E
[
ui(A; θ, V )− pi(vi)|Vi = vi, Bi = vi] ≥ vi · E

[
πi(δ(Ai), A−i, θ) |Bi = v′i]

− E[pi(v′i)|Bi = v′i]

≥ E
[
ui(δ(Ai), A−i; θ, V ) | Vi = vi, Bi = v′i]

− E[pi(v′i)|Vi = vi, Bi = v′i],

which is precisely the definition of incentive compatibility.

Proof of Proposition 2. Define ũi : vi 7→ vi · π̃i(vi)− pi(vi). Then truthfulness is equivalent to

ũi(vi) = vi · π̃i(vi)− pi(vi) ≥ vi · π̃i(v
′
i)− pi(v

′
i) = ũi(v

′
i) + (vi − v′i) · π̃i(v

′
i) ,

for all (vi, v
′
i) ∈ V2

i . This is equivalent to saying that π̃i(vi) ∈ ∂ũi(vi) for all vi ∈ Vi where

∂ũi(vi) ⊂ R denotes the subdifferential of ũi at vi. By a well-known characterization of

convexity, this in turn equivalent to saying that π̃i is non-decreasing and that

ũi(vi) = ũi(v) +

∫ vi

v

π̃i(s)ds .

This concludes the proof since this last expression is equivalent to (3).
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Proof of Proposition 3. Since there are two states, obedience states that for all i ∈ [n] and

all ai ∈ Θ,

E[πi(ai, A−i; θ)− πi(1− ai, A−i; θ) | Ai = ai, Vi] ≥ 0.

Using the form of πi from Equation (1), we observe that the externality terms cancel out and

the previous inequality is equivalent to

P[θ = ai | Ai = ai, Vi] ≥ P[θ = 1− ai | Ai = ai, Vi],

and by Bayes’ rule to

P[θ = ai ∧ Ai = ai | Vi] ≥ P[θ = 1− ai ∧ Ai = ai | Vi] .

Adding the quantity P[θ = 1− ai ∧ Ai = 1− ai | Vi] on both sides, we obtain

P[Ai = θ | Vi] ≥ P[θ = 1− ai | Vi] = P[θ = 1− ai] ,

where the last equality uses that θ and Vi are independent by Assumption 1. Taking a

maximum over ai ∈ Θ yields the lemma’s statement.

Proof of Lemma 4. Given functions hi satisfying the lemma’s assumptions, one can choose for

example σ such that for all (x, v) ∈ Θ× V , the distribution σ(x, v) ∈ ∆(A) has independent

coordinates with marginals given by hi. Formally, we have for (x, v) ∈ Θ× V and a ∈ A,

σ(a;x, v) =
∏

i:ai=x

hi(v)
∏

i:ai ̸=x

(
1− hi(v)

)
.

Before we prove Proposition 5 we first state and prove a variational lemma that solves

the pointwise optimization problem that the optimal mechanism reduces to.

Lemma 16 (Variational Lemma). Let (E, µ) be a probability space and let g : E → R be

a µ-integrable function whose level sets are µ-null sets: µ({v ∈ E | g(v) = k}) = 0 for all

k ∈ R. Consider the problem

max
h∈F

L(h) :=
∫
E

h · g dµ

s.t.

∫
E

h dµ ≥ c

where the optimization is over the set F of measurable functions h : E → R with h(E) ⊆ [0, 1]

and c ∈ [0, 1] is a constant. For k ∈ R, define L+
g (k) := {v ∈ E | g(v) ≥ k} the superlevel set

of g of level k and let tc := sup{k ∈ R | µ
(
L+
g (k)

)
≥ c}. Then, an optimal solution to the
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problem is given by h⋆ : v 7→ 1{g(v) ≥ t⋆} where t⋆ = min{tc, 0}.

Proof. First, note that tc is well-defined in the extended real line by adopting the usual

convention sup ∅ = −∞ and supR = +∞. If k ≤ k′, we have L+
k′(g) ⊆ L+

k (g) showing that

the function m : k 7→ µ
(
L+
k (g)

)
is non-increasing. The identity L+

g (k) =
⋂

k′<k L
+
g (k

′) implies

m(k) = µ
(
L+
g (k)

)
= inf

k′<k
µ
(
L+
g (k

′)
)
= inf

k′<k
m(k′)

and m is thus left-continuous. Consequently, the threshold tc is characterized by the equiva-

lence

k ≤ tc ⇐⇒ µ
(
L+
g (k)

)
≥ c.

Furthermore, the identity {v ∈ E | g(v) > k} =
⋃

k′>k L
+
k′(g) implies

µ
(
{v ∈ E | g(v) > k}

)
= sup

k<k′
µ
(
L+
g (k

′)
)
= sup

k<k′
m(k′).

But because the level sets of g are µ-null sets, we also have m(k) = µ
(
{v ∈ E | g(v) > k}

)
,

hence the function m is continuous, and the threshold tc further satisfies µ
(
L+
g (tc)

)
= c. This

implies that h⋆ is a feasible solution, indeed since t⋆ ≤ tc we have∫
E

h⋆ dµ = µ
(
L+
g (t

⋆)
)
≥ µ

(
L+
g (tc)

)
= c.

Next, for a feasible h ∈ F we have

L(h⋆)− L(h) =
∫
L+
g (t⋆)

(1− h)g dµ+

∫
E\L+

g (t⋆)

(−h)g dµ

≥ t⋆
∫
L+
g (t⋆)

(1− h) dµ+ t⋆
∫
E\L+

g (t⋆)

(−h) dµ

= t⋆µ
(
L+
g (t

⋆)
)
− t⋆

∫
E

h dµ ≥ t∗
[
µ
(
L+
g (t

⋆)
)
− c

]
,

(14)

where the first equality is by definition of h⋆, the subsequent equality uses that h takes values

in [0, 1] and the fact that g(v) ≥ t⋆ iff v ∈ L+
g (t

⋆), and the last inequality uses that t⋆ ≤ 0 by

definition and that
∫
E
h dµ ≥ c by feasibility.

Either t⋆ = 0, or t⋆ = tc in which case µ
(
L+
g (t

⋆)
)
= c. In both cases, the last expression

in (14) vanishes, hence L(h⋆) ≥ L(h) for all feasible h ∈ F which concludes the proof.

We can now describe the optimal mechanism.

Proof of Proposition 5. First note that since wi(vi, V−i) is non-atomic, its c.d.f. is continuous
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for all vi ∈ Vi. Hence, defining c := maxk∈{0,1} P[θ = k], a suitable threshold function t⋆i can

be obtained by choosing for vi ∈ Vi,

t⋆i (vi) := sup
{
k ∈ R | P[wi(vi, V−i) ≥ k] ≥ c

}
.

Define hi : V → [0, 1] by hi(V ) = P[Ai = θ | V ]. By Proposition 3 and using the law of

iterated expectations, the obedience constraint for buyer i ∈ [n] states that

P[Ai = θ | Vi] = E[1{Ai = θ} | Vi] = E
[
E[1{Ai = θ} | V ] | Vi

]
= E[hi(V ) | Vi] ≥ c

almost surely for Vi. Similarly we can rewrite the objective (5) in terms of the functions hi

and the optimization problem we need to solve can thus be written

max
n∑

i=1

E
[
wi(V )hi(V )

]
s.t. E[hi(V ) | Vi] ≥ c, for i ∈ [n].

Because both the objective function and the constraints are separable in i, this problem

decomposes as n separate optimization problem, one for each hi, i ∈ [n]:

max E
[
E[wi(Vi, V−i)hi(Vi, V−i) | Vi]

]
s.t. E[hi(vi, V−i)] ≥ c, for all vi ∈ Vi

where we used the law of total expectation and the independence of (V1, . . . , Vn). Finally, since

the constraint is a pointwise constraint for vi ∈ Vi, the optimal hi is obtained by choosing the

partial function hi(vi, ·) so as to maximize the integrand in the objective function for each vi.

That is, hi(vi, ·) should solve

max E
[
wi(vi, V−i)hi(vi, V−i)

]
s.t. E[hi(vi, V−i)] ≥ c.

This problem is exactly of the form solved in Lemma 16, with µ being the probability

distribution of V−i and with g = wi(vi, ·) and E = Rn−1. By construction, the threshold t⋆i (vi)

plays the role of tc in Lemma 16 for this choice of function g. Hence, the optimal policy is

given by

hi(vi, v−i) = 1
{
wi(vi, v−i) ≥ min{0, t⋆i (vi)}

}
for each vi ∈ Vi ,

which is the deterministic rule in the proposition statement.
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Then, the recommendation rule maximizing social welfare subject to obedience is the

deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

vj ≤ max{v⋆, vi/α}.

Proof of Proposition 6. For the binary game with additive payoffs (1) under Assumption 1,

the expected welfare (6) is of the form (5) covered by Proposition 5, with weight function

wi(v) = vi − α
∑

j ̸=i vj. Furthermore, the level sets of the partial function wi(vi, ·) are

hyperplanes in dimension n and since the distribution of V−i is absolutely continuous by

assumption (with c.d.f. F (n−1)), the random variable wi(vi, V−i) is non-atomic for each vi ∈ Vi.

Hence, Proposition 5 applies and the recommendation rule maximizing welfare subject to

obedience is determined by

Ai = θ if and only if wi(v) ≥ min{0, t⋆i (vi)}.

All that remains is to compute the threshold function t⋆i (vi). By definition we must have

P
[
wi(vi, V−i) ≥ t⋆i (vi)

]
= Pr

[∑
j ̸=i

Vj ≤
vi − t⋆i (vi)

α

]
= F (n−1)

(
vi − t⋆i (vi)

α

)
= Pmax,

which by definition of v⋆ is equivalent to

vi − t⋆i (vi)

α
= v⋆.

The result in the statement follows after observing that wi(v) ≥ min{0, t⋆i (vi)} is equivalent

to
∑

j ̸=i vj ≤ max{v⋆, vi/α}.

Proof of Proposition 7. Using the definition of the optimal recommendation rule and linearity

of conditional expectations we have

π̃i(Vi) = E
[
1{Ai = θ} − α

∑
j ̸=i

1{Aj = θ}
∣∣∣ Vi

]
= E

[
1

{∑
j ̸=i

Vj ≤ max{v⋆, Vi/α}
} ∣∣∣∣ Vi

]
− α

∑
j ̸=i

E
[
1

{∑
k ̸=j

Vk ≤ max{v⋆, Vj/α}
} ∣∣∣∣ Vi

]
.

The first expectation on the right-hand side can be computed as

E
[
1

{∑
j ̸=i

Vj ≤ max{v⋆, Vi/α}
} ∣∣∣∣ Vi

]
= max

{
F (n−1)(v⋆), F (n−1)(Vi/α)

}
.
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For j ̸= i, the summand expectation can be computed using the law of total expectations as

E
[
1

{∑
k ̸=j

Vk ≤ max{v⋆, Vj/α}
} ∣∣∣∣ Vi

]
= E

[
E
[
1

{∑
k ̸=j

Vk ≤ max{v⋆, Vj/α}
} ∣∣∣∣ Vi, Vj

] ∣∣∣∣ Vi

]
= E

[
F (n−2)

(
max{v⋆, Vj/α} − Vi

) ∣∣∣ Vi

]
.

The claim that π̃i is a non-decreasing function easily follows from the observation that

v 7→ max
{
F (n−1)(v⋆), F (n−1)(v/α)

}
is non-decreasing (because F (n−1) is non-decreasing as a

c.d.f.) and that for all j ̸= i, the quantity E
[
F (n−2)

(
max{v⋆, Vj/α} − v

)]
, is non-increasing

as a function of v because the integrand is non-increasing in v pointwise.

Proof of Lemma 8. 1. Assume that pi truthfully implements π̃i, so that the interim utility

ũi is convex by Proposition 2. If (σ, p) is individually rational, then it is obviously

individually rational at the lowest type. For the converse direction, assume that

ũi(v) ≥ v ·K, then we have for all vi ∈ Vi

ũi(vi) ≥ ũi(v) + (vi − v) · π̃i(v) ≥ vi ·K ,

where the first inequality uses convexity of ũi and the second inequality uses that

π̃i(v) ≥ K and individual rationality at the lowest type.

2. If pi implements π̃i truthfully, then we already know by Proposition 2 that it satisfies

(3), in which the only undetermined quantity is the payment at the lowest type pi(v).

By 1., individual rationality further constrains pi(v) ≤ v · (π̃i(v)−K), so the revenue-

maximizing choice makes this constraint bind and we get (7).

For this payment function, we write the seller’s revenue as

R = E
[ n∑

i=1

pi(Vi)
]
=

n∑
i=1

E
[
Vi · π̃i(Vi)− v ·K −

∫ Vi

v

π̃i(s)ds

]
=

∑
i

E
[
Vi · π̃i(Vi)−

∫ Vi

v

π̃i(s)ds

]
− nv ·K. (15)
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The expectation in the first summand is computed as follows

E
[
Vi · π̃i(Vi)−

∫ Vi

v

π̃i(s)ds
]
=

∫ v

v

vi · π̃i(vi)f(vi)dvi −
∫ v

v

∫ vi

v

π̃i(s)f(vi)dsdvi

=

∫ v

v

vi · π̃i(vi)f(vi)dvi −
∫ v

v

∫ v

s

π̃i(s)f(vi)dvids

=

∫ v

v

(
vi −

1− F (vi)

f(vi)

)
· π̃i(vi)f(vi)dvi

= E
[
ϕ(Vi)π̃i(Vi)

]
,

where the second equality uses Fubini’s theorem and the last equality is the definition

of the virtual value function.

Proof of Proposition 10. The computation of the interim payoff π̃i is identical to the one in

the proof of Proposition 7 after replacing the types with their virtual counterparts. We obtain

for the interim downstream payoff

π̃i(vi) = max
{
F

(n−1)
ϕ (ϕ(v⋆)) , F

(n−1)
ϕ (ϕ(vi)/α)

}
− α

∑
j ̸=i

E
[
F

(n−2)
ϕ (max {ϕ(v⋆), ϕ(Vj)/α} − ϕ(vi))

]
,

which is non-decreasing assuming that F is regular (i.e., ϕ non-decreasing). This guarantees

truthfulness of the mechanism.

It is immediate from this expression that for all vi ∈ Vi,

π̃i(vi) ≥ F
(n−1)
ϕ

(
ϕ(v⋆)

)
− α = Pmax − α,

where the inequality is obtained by upper-bounding F
(n−2)
ϕ by 1 and the equality is by definition

of v⋆. Furthermore, for the outside allocation described in the proposition statement, the

best response of buyer i in case of non-participation is to play the action matching the most

likely state under the prior, resulting in an expected payoff K := Pmax − α.

Indeed, the non-participating buyer will be correct with probability Pmax while incurring

an externality of −α from all the participating buyers (who then receive the correct action

recommendation). The previous two equations combined show that π̃i(vi) ≥ K and the

conditions of Lemma 8 are thus satisfied. The revenue-maximizing payments subject to

truthfulness and individual rationality are then given by Equation (7).
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