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Data-driven control of COVID-19 in
buildings:

a reinforcement-learning approach
Ashkan Haji Hosseinloo, Saleh Nabi, Anette Hosoi, and Munther A. Dahleh Fellow, IEEE

Abstract—In addition to its public health crisis, COVID-
19 pandemic has led to the shutdown and closure of
workplaces with an estimated total cost of more than
$16 trillion. Given the long hours an average person
spends in buildings and indoor environments, this re-
search article proposes data-driven control strategies to
design optimal indoor airflow to minimize the exposure
of occupants to viral pathogens in built environments. A
general control framework is put forward for designing
an optimal velocity field and proximal policy optimization,
a reinforcement learning algorithm is employed to solve
the control problem in a data-driven fashion. The same
framework is used for optimal placement of disinfectants
to neutralize the viral pathogens as an alternative to the
airflow design when the latter is practically infeasible
or hard to implement. We show, via computational
simulations, that the control agent learns the optimal
policy in both scenarios within a reasonable time. The
proposed data-driven control framework in this study
will have significant societal and economic benefits by
setting the foundation for an improved methodology in
designing case-specific infection control guidelines that
can be realized by affordable ventilation devices and
disinfectants.

Note to Practitioners—This paper is motivated by the
problem of COVID-19 infection spread in enclosed spaces
but it also applies to other airborne pathogens. Airborne
disease contagion often takes place in indoor environ-
ments; however, ventilation systems are almost never
designed to take this into account so as to contain the
spread of the pathogens. This is mainly because air-
flow design requires solving high-dimensional nonlinear
partial differential equations known as Navier Stokes
equations in fluid dynamics. In this paper, we propose a
data-driven approach for solving the control problem of
pathogen containment without solving the fluid dynamics
equations. To this end, we first mathematically formulate
the problem as an optimal control problem and then cast
it as a reinforcement learning (RL) task. Reinforcement
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learning is the data-driven science of sequential decision-
making and control in which the controller finds an
optimal solution by systematic trial and error and without
access to the system dynamics, i.e. fluid and pathogen
dynamics in this paper. We employ an state-of-the-art
RL algorithm, called PPO, to solve for optimal airflow in
a room so as to minimize the exposure risk of occupants.
Once it is calculated, the optimal airflow could be realized,
via reverse engineering, by proper placement of the
ventilation equipment, e.g. inlets, outlets, and fans. As an
alternative to the airflow design, we use the same proposed
data-driven techniques to find an optimal placement
for pathogen disinfectants if there exists one, such as,
hydrogen peroxide for COVID-19. Our results show the
efficacy of our data-driven approach in designing an
steady-state controller with full access to the system states.
In future research, we will address the controller design
with sparse measurements of the system states.

Index Terms—Disease control, COVID-19, reinforcement
learning, data-driven control, HVAC system

I. INTRODUCTION

In addition to its public health crisis, COVID-19 pan-
demic led to the shutdown and closure of workplaces,
retail and commercial spaces, schools, and restau-
rants among many others. The lockdown has severely
impacted the US economy and caused millions of
temporary and permanent job losses in the US alone.
The US unemployment rose higher in the first three
months of COVID-19 than it did in two years of the
Great Recession: 14.4% in April 2020 versus 10.6% in
January 2010. Safe reopening and containing the spread
of COVID-19 in indoor spaces is an important step
towards economy recovery without risking people’s
health. This requires a good understanding of the dis-
ease transmission and designing effective engineering
controls that is the purpose of this research article.

Although WHO and CDC ignored, in the beginning,
the importance of airborne transmission for the disease,
observational studies and computational models [1]–
[5] show that COVID-19 can remain aloft in air for
a few hours and pose a risk of exposure at distances
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beyond the commonly adopted 6-feet social distancing.
Hence, indoor ventilation and airflow play a big role in
containment or spread of COVID-19 pathogens, espe-
cially knowing that people in industrialized countries
spend more than 90% of their lifetime indoors [6].
This is not specific to COVID-19 and the ventilation
potential for preventing airborne disease transmission
has been highlighted in the past [7]–[9]. Despite their
importance, indoor ventilation and airflow are usually
not designed for disease preventive purposes. Negative
pressurized isolation rooms for patients with airborne
diseases in hospitals are the only widely-adopted use
of airflow design for preventive purposes. Personalized
ventilation (PV) which delivers fresh air directly to the
occupant’s breathing zone is another design concept
that can be leveraged for airborne infection control
[10]–[14]. PVs are not well explored and can be costly
to design and implement.

Designing an effective preventive airflow requires a
good transmission model for the disease. Most infec-
tion control strategies are mainly based on overly-
simplified models of disease transmission developed
in the 1930s [15] which can limit the effectiveness
of the resulting guidelines. The COVID-19 pandemic,
however, gave rise to many studies exploring the host-
to-host transmission of the disease with a wide spec-
trum of model complexity, from analytical well-mixed
models to fully-blown 3D Navier-Stokes simulations.
Burridge et. al. [16] and Luhar [17] used a well-
mixed model to calculate the pathogen concentration
and assess the infection risk in built environments.
Balachandar et. al. [18] developed a simple model
for the time evolution of droplet/aerosol concentration
based on a theoretical analysis of the relevant physical
processes. Their model ignores ambient mean flow
and, hence, is not suitable for ventilation and airflow
design. On the other end of the spectrum of the model
complexity, computational fluid dynamics (CFD) sim-
ulations were adopted to solve Navier-Stokes equations
coupled with pathogen transport equation to solve for
spatiotemporal pathogen concentration in supermarkets
[19], urban buses [20], [21], and a music classroom
[22]. Such detailed models are computationally too
expensive for optimization and controller design. This
is even more problematic for online control and opti-
mization where computational burden can easily make
the real-time design impossible. In the middle range
of the model complexity, Lau et. el. [23], [24] mod-
eled pathogen concentration evolution as an advection-
diffusion equation with uniform velocity field. Using
the concentration, different risk measures, such as, time
to infection were calculated.

As discussed above, transmission models of airborne

diseases are either too simplistic for an effective con-
troller design or too complex for a computationally-
feasible model-based controller design. Furthermore,
much is still unknown about bio- and fluid-physics
of COVID-19 pathogens, and hence, physics-based
models may ignore some important aspects of the
transmission dynamics. Also, in addition to the com-
plex and not-fully-understood transmission dynamics,
airflow design depends very much on the interior layout
of the space that is often subject to continuous change,
e.g., by changing seating layout in a restaurant or
classroom. This warrants building a new model for the
space and redesigning its controller every time there is
a change in the space layout. For the above-mentioned
reasons, a model-free and data-driven approach for
airflow design is a better alternative. That is why
we take a data-driven approach, namely, reinforcement
learning for the controller design in this article.

The efforts for applying reinforcement learning (RL),
and deep reinforcement learning (DRL) to fluid me-
chanics started only a few years ago in 2016 [25], [26]
and are still at an early stage, with only a handful of
pioneering studies. In terms of the specific applications
within the fluid mechanics, majority of these studies
focus on drag reduction on a two-dimensional cylinder
submerged in a fluid flow [27]–[31]. For instance in
[27] DRL with proximal policy optimization (PPO)
algorithm is employed to reduce the drag by 8%
via controlling mass flow rates of two small jets on
the sides of the cylinder. The second most-explored
fluid mechanics application is fish swimming [26],
[32]–[35]. For example in [33], the authors study the
collective swimming of fishes and use DRL to find
their optimal swimming strategy which turns out to be
placing themselves in appropriate locations in the wake
of other swimmers and intercepting judiciously their
shed vortices.

In this study, we employ data-driven and RL techniques
to design effective indoor airflow in order to reduce the
disease exposure risk for the occupants. We also apply
the said techniques to optimally place pathogen neutral-
izers (disinfectants) in a room for a given airflow. To
the best of our knowledge, this is the first application
of RL in airborne disease transmission control. To this
end, we first formulate the control problem in section
II after which the RL framework and methodology are
discussed in section III. Then we present and discuss
the results in section IV before we conclude the paper
with some remarks and future directions in section V.

The main contribution of this paper is introducing
the application of RL for controlling the airborne
disease transmission in indoor environments for which
we formulate the problem in a control set-up and
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cast it into an RL framework for the very first time.
Other contributions of this paper include making use
of the domain knowledge as an inductive bias (e.g.
parameterizing the airflow as a double-vortex flow) to
reduce the amount of required data for training.

II. CONTROL PROBLEM FORMULATION

Let us consider, with no loss of generality, an exem-
plary case of a restaurant where airborne pathogens
are released near a table with one or more infected
customers at that table. We would like to design
an airflow using available heating, ventilation, and
air-conditioning (HVAC) system (e.g., fans and air-
conditioners) that minimizes the exposure of the rest
of the customers to the pathogens. This is the first
of the two control problems we study in this paper
and is schematically shown in Fig.1. Here, we con-
sider the velocity field, v, as the control variable and
model transport dynamics of the virus by an advection-
diffusion equation. We model the notion of exposure
risk, that is also the control problem’s performance
metric Je, as integral of the pathogen concentration,
c, over a given time period, [0, T ], and a region of
interest, Ω. We then formulate the control problem as:

min
v

Je =

∫
Ω

∫ T

0

c(x, t) dt dx

s.t. ∇.v = 0

∂c

∂t
+ v.∇c−K∇2c = f(x, t)− λc,

(1)

where, the first and second constraints are incompress-
ibility condition and the pathogen transport dynamics,
respectively. Diffusion coefficient is denoted by K.
Similar to [23], the overall effect of air and virus
removal via the HVAC system is modeled by the
term, −λc. The coefficient λ defines strength of the
HVAC system and can be a function of time and
space. Spatial coordinate and time are denoted by x
and t, respectively, and f(x, t) is the virus source, the
location of which is assumed to be known. This is
a fair assumption for symptomatic infected occupants.
We assume Neumann boundary condition for the con-
centration, i.e. ∂c/∂n = 0 where n is the normal to
the boundary, ∂Ω.

Figure 1. Control Problem 1: schematics of a room with the pathogen
source, f(x, t) (with a Gaussian spatial distribution centered at xc)
and the region of interest, Ω. A parameterized family of velocity
field, namely, the double-vortex airflow is chosen in this study and
is schematically shown by blue rectangles with arrows. The length
of the left vortex is designated by l.

It is worth to mention that the actual control variables,
in practice, are usually the location of the air inlet
and outlet, as well as features of the inlet air, such
as, temperature and velocity. Optimal values for these
control variables can be found once we design the
optimal velocity field, though it is not a trivial problem.
Alternatively, the control problem could be formulated
such that the above-mentioned variables are set as
the control variables. In this case, airflow dynamics
should be added to the problem constraints, e.g. in the
form of Navier Stokes equations. This is beyond the
scope of this study due to its computational complexity;
however, the proposed control and RL framework in
this study will directly apply to this formulation as well.

In addition to the airflow design, an alternative solution
to control the virus spread is to neutralize them. Hy-
drogen Peroxide (HP), H2O2, particularly in its ionized
state, has been shown to be an effective disinfectant
for the COVID-19 virus [36]–[38]. As the second
control problem, we consider here another set-up where
HP is used to neutralize and disinfect the COVID-19
pathogens (see Fig.2). The general set-up is as the
first one, with the difference that we assume a fixed
uniform airflow and try to optimize the location of the
HP source so as to minimize the same performance
metric in Eq.1. The control problem is formulated as
below:

min
xhp

Je =

∫
Ω

∫ T

0

c(x, t) dt dΩ

s.t. ∇.v = 0

∂c

∂t
+ v.∇c−K∇2c = f(x, t)− λc + g1(c, chp)

∂chp
∂t

+ v.∇chp −Khp∇2chp =fhp(x, t)− λchp

+ g2(c, chp),
(2)

where, chp, Khp, and fhp(x, t) designate the con-
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centration, diffusivity, and the source of HP, respec-
tively. The chemical interaction between COVID-19
and HP particles are captured by the functions g1 and
g2. Here, we consider a simple proportional model
for these interactions as: g1(c, chp) = α1 c chp and
g2(c, chp) = α2 c chp, where α1 and α2 are constants.
We model the HP source, as well as, the COVID-
19 source in both control problems (Eqs. 1 and 2) as
time-invariant, spatially Gaussian-distributed functions:
R(.)/πϵ exp(−(x − x(.))

2/ϵ), where, the subscript
(.) = c or hp, shows whether the parameter pertains to
COVID or HP. The strength and spread of the source
are decided by the parameters R and ϵ, respectively.
We would like to emphasize that the decision variable
in the second control problem defined in Eq.2 is the
center location of the HP source, i.e., xhp.

Figure 2. Control Problem 2: Schematics of a room with the
pathogen and HP sources, f(x, t) and fhp(x, t), both with Gaussian
spatial distributions centered at xc and xhp, respectively. The
region of interest is denoted by Ω. For this control problem, a
constant uniform velocity field is considered in this study. The control
objective is to find an optimal center position (xhp) for the HP
disinfectant source.

III. REINFORCEMENT LEARNING FRAMEWORK

Reinforcement Learning is the data-driven science of
sequential decision making. It is about learning the
optimal behavior/decisions in an environment to max-
imize a notion of cumulative or average reward. This
optimal behavior is learned through interactions with
the, often unknown, environment, similar to children
exploring the world around them and learning the
actions that help them achieve a goal.

In the RL framework, the agent, aka the controller,
takes action a at state s and observes an immediate
reward r after moving to next state s′. The goal of the
agent is to find an optimal policy π∗(s), i.e., optimal
control law that maximizes the discounted cumulative
rewards in expectation, usually referred to as the value
function V π(s). In practice, we often maximize the
value function weighted by the state distribution under
the policy ρπ(s), i.e.,

∫
s
ρ(s)V (s) ds. For the control

problem defined by Eq.1, the state is the spatially-
continuous concentration field and the action is the
continuous velocity field. We define the immediate
reward as:

r =

∫ t2

t1

∫
Ω

c(x, t) dx dt, (3)

where, t1 and t2 are timestamps at states s1 and s2,
respectively. In the second control problem defined by
Eq.2, the state is the aggregation of both COVID-19
and HP concentration fields, as well as, the velocity
field. The action is the center location of the HP source,
i.e. xhp. The reward function remains the same as that
in Eq.3. We would also like to point out the relationship
between the objective functions in Eqs.1 and 2 and the
reward function defined above: the objective functions
are, in fact, sum of immediate rewards accumulated
between t = 0 to t = T .

Reinforcement learning algorithms can, in general, be
categorized into policy-based and value-based meth-
ods. In a value-based method, the algorithm learns an
estimate of the optimal value function. Q-learning is
probably the most well-known and one of the earliest
value-based RL methods1. The policy here is implicit
and can be derived directly from the value function.

In policy-based methods, however, we explicitly build
a representation of a policy which we improve by,
e.g., a policy-gradient (PG) technique. Policy-based
methods have a few advantages over their value-based
counterparts. They can solve for both deterministic
and stochastic optimal policies. Furthermore, in many
cases the optimal policy has a simpler form than the
optimal value function, and hence, it is easier to directly
learn the optimal policy [39], [40]. They also handle
continuous action space better than their value-based
counterparts [41].

Among different policy gradient algorithms, we use
PPO [42], one of the state-of-the-art algorithms for
training our RL agent in this study. Compared to many
other policy gradient algorithms, such as, trust region
policy optimization (TRPO), PPO is mathematically
less complex, and hence, computationally faster [27].
It is also shown to be often more data-efficient. The
most important aspect of the PPO algorithm is its
clipped surrogate objective which prevents taking big
steps in potentially wrong directions when updating
the policy using the gradient decent. We would like
to point out that it is not the main objective of this
study to find the best RL algorithm among all the
available off-the-shelf algorithms, nor it is to devise a

1Q-learning is also used extensively as part of many policy-based
algorithms to learn the value or action-value function that serves as
the critic for the actor.
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Table I: Parameters description for the advection-diffusion dynamics
parameter description symbol numerical value
room length lx 8 m
room height ly 4 m
diffusion coeff. for COVID-19 K 0.022 m2/s
diffusion coeff. for HP Khp 0.022 m2/s
HVAC air-exchange coeff. (COVID-19) λ 0.0085 1/s
HVAC air-exchange coeff. (HP) λhp 0.0085 1/s
source intensity for COVID-19 R 2.5 particle/s
source intensity for HP Rhp 2.5 particle/s
interaction coeff. between COVID-19 and HP α1 0.2 m2/particle. s
interaction coeff. between HP and COVID-19 α2 0.2 m2/particle. s

new algorithm. The main objective of the simulations
is to show the feasibility and proof-of-concept of the
proposed RL framework for containing the indoor
airborne pathogens. With that said, we will compare the
PPO algorithm with two other widely-used algorithms,
namely TRPO and A2C, before deciding to pick PPO
as our main RL agent. In the next section, we delineate
the computational simulations, discuss how the PPO
algorithm is applied to the two control problems, and
present and discuss the results.

IV. RESULTS AND DISCUSSION

We use a Python library called FEniCSx to solve the
advection-diffusion dynamics in Eqs.1 and 2. FEniCSx
is a popular open-source computing platform for solv-
ing partial differential equations (PDEs) that is based
on finite element (FE) methods [43]. As a FE-based
solver, FEniCSx requires PDEs in variational form, aka
the weak form. The variational reformulation of the
boundary-value problems in Eqs.1 and 2 are presented
in the appendix. A linear Lagrange element is used for
both test and trial functions in the variational formula-
tion. As discussed in section III, PPO, as well as TRPO
and A2C are policy-gradient methods for which we
need a parameterized policy. For the control problem
in Eq.1, the policy to optimize is the velocity field v
which we parameterize by the parameter vector θ and
denote it as vθ. For this control problem, we focus
on a specific family of velocity field, often known as
double-vortex velocity (schematically shown in Fig.1).
We chose this particular family of velocity field for a
number of reasons. First, it is relatively easy to realize
this velocity field, e.g., by adjusting the location of
inlets and outlets or the direction of the inflow air.
Second, it can significantly reduce the dimension of the
action space, or equivalently the size of the parameter
vector θ, by expressing the vortex dynamics using
its geometric center (or vortex length) and strength.
In our case we consider the former only (fixing the

strength) resulting in θ = {l}, where l is the length
of the left vortex. And last but not least, stemming
from domain knowledge, the double- and multiple-
vortex fields can potentially create a notion of air
distancing by isolating the infected region from a non-
infected region in the room quite easily. The vortices in
double-vortex flow are reminiscent of convection rolls
encountered in forced convection in buildings [44],
[45]. The two-dimensional double-vortex velocity field
vθ = vl is mathematically formulated as below:

vl =



(
wl

x sin(
πx
l ) cos(πyly ),

−wl
y cos(

πx
l ) sin(πyly )

)
: if x ≤ l(

wr
x sin(

π(x−l)
lx−l ) cos(πyly ),

−wr
y cos(

π(x−l)
lx−l ) sin(πyly )

)
: if x > l,

(4)

where, x and y are the spatial coordinates in the
horizontal and vertical directions, respectively, with lx
and ly denoting the room length in their respective
directions. The parameters w’s define the strength of
the velocity field. These parameters cannot be chosen
independently as the velocity field needs to satisfy the
incompressibility condition (∇.vl = 0). Enforcing this
condition yields:

wl
x/l = wl

y/ly

wr
x/(lx − l) = wr

y/ly. (5)

For all the simulations in this study we use wl
x =

wr
x = 1.0m/s. For the RL algorithm implementation

we use the open-source Stable Baselines3 (SB3) Python
library. Stable Baselines3 is a set of reliable implemen-
tations of reinforcement learning algorithms in PyTorch
[46]. For user-defined environments SB3 requires a
gym-compatible environment which we create using
the FEniCSx library in Python.

Before attempting to solve any of the control problems
outlined in section II, we do a mesh study to find an
adequately-fine mesh size for the simulations. We use
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a uniform finite element mesh over the entire domain
consisting of cells, which in 2D are triangles with
straight sides. The mesh size parameter is the tuple
(nx, ny), where, nx and ny specify the number of
rectangles (each divided into a pair of triangles) in the
x and y directions, respectively. The total number of
triangles (cells) thus becomes 2×nx×ny . For the mesh
study we run simulations with parameters in Table I,
l = 4.0m, T = 600 s, and a range of values for
nx = 2ny . Figure 3 depicts the performance metric
Je calculated over the entire room (Ω = entire room)
as a function of nx. As shown in the figure, there is not
much improvement in the results for mesh sizes finer
than nx = 80; thus, we set nx = 2ny = 80 for all the
subsequent simulations in this study.

Figure 3. The performance metric, Je as a function of the mesh size,
nx with parameters in Table I, left vortex length l = 4.0m, total sim-
ulation time T = 600 s, and the region of interest Ω = entire room.
nx = 2ny = 80 is chosen for all the subsequent simulations.

For both control problems we assume a center location
for the COVID-19 source at xc = (6, 2)m, and the
time period of interest as T = 600 s. Also, parameters
in Table I are used for all the simulations unless
otherwise specified. For the first control problem, i.e.
Eq.1, we first find the ground-truth optimal vortex
length lopt by brute-force simulations. For this problem
we consider the left quarter of the room to be the region
of interest; Ω = {x;x ≤ 2m}. Figure 4 shows how
the performance metric varies as the length of the left
vortex changes for two different values of pathogen
diffusivity. As shown in the figure, the optimal vortex
length depends on the pathogen diffusivity. A naive
guess for the optimal vortex length will be l = 2m in
the hope of isolating the left quarter from the rest of the
room. However, because of the diffusion phenomenon
some of the pathogens will still find their way to the
left quarter of the room in spite of the vortices. For this
very reason, the left vortex needs to be extended beyond
the region of interest, i.e. lopt > 2. In fact, the more
diffusive the pathogens are the longer the left vortex
should be. Simulation results in Fig.4 corroborates this;

the optimal left vortex length for K = 0.022m2/s and
K = 5×0.022m2/s is 3m and 4m, respectively. It is
also worth to note that the abrupt change in the slopes
at x = 6m is because of the pathogen source being
located at this very same x−coordinate.

Figure 4. The performance metric, Je as a function of the left
vortex length for two different values of diffusion coefficients. The
optimal values minimizing the performance metric are marked by
solid circles.

We first train three RL algorithms (PPO, A2C, and
TRPO) to learn the optimal length of the left vortex (l)
of the double-vortex field. The same neural network
with ReLU activation functions (for both policy and
value functions) are used for the three agents. The main
hyper-parameters of all the three agents were optimized
via grid search (the optimized hyper-parameters for the
PPO agent are shown in table II). The system was not
sensitive to the remaining hyper-parameters, and hence,
the default values were used for them. For this and
all the other simulations pertaining to the first control
problem, we train the control agents for a total time
of 6× T = 6× 600 s. The environment is reset every
T seconds. In all the simulations, the time increment
is one second, that also means every step from the
perspective of the RL agent takes one second. Figure 5
shows the training performance of the three RL agents
in learning the length of the left vortex. The figure
shows that both PPO and TRPO algorithms outperform
the A2C in terms of both mean and variance; they learn
a left-vortex length that is closer to the optimal value
and they learn it more reliably. As discussed in section
III, PPO is computationally much faster than TRPO;
hence, given their comparable results, we pick PPO as
our RL agent for the rest of the simulations.
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Figure 5. Training performance for learning optimal length of the left
vortex (l) of the double-vortex field, averaged over 10 independent
runs for three different RL agents: PPO, A2C, and TRPO. The solid
lines and the shaded areas show the mean and the variance (one
standard deviation) of the learned vortex length, respectively, over
the 10 runs. The dashed line show the ground-truth optimal length
for diffusion coefficient of K = 1× 0.022m2/s, found via brute-
force simulations.

We would also like to test our RL agent’s performance
for different values of diffusion coefficient. Figure 6
shows the training performance of the RL agent (PPO)
in learning the length of the left vortex for two different
values of the diffusion coefficient. The figure illustrates
the agent’s performance in terms of the mean and
variance of the learned policy (left vortex length) over
10 independent runs. As shown in the figure, the agent
learns a reliable approximate of the optimal policy
in roughly 1000 s ≈ 17mins for both values of the
diffusion coefficient.

Figure 6. Training performance for learning optimal length of the left
vortex (l) of the double-vortex field, averaged over 10 independent
runs for two values of the diffusion coefficient. The solid lines and
the shaded areas show the mean and the variance (one standard
deviation) of the learned vortex length, respectively, over the 10 runs.
The dashed lines show the respective ground-truth optimal lengths
found via brute-force simulations.

Next, we would like our RL agent to learn the optimal
policy for the second control problem as stated in Eq.2.
Just like the first control problem, we first find the
ground-truth optimal policy, i.e. the optimal center po-

Table II: Hyper-parameters for the PPO algorithm
hyper-parameter numerical value
learning rate 0.005
number of steps to run per update 10
mini-batch size 10
number of epochs 10
discount factor 0.99

sition of the HP source, by brute-force simulations. For
the sake of computational simplicity, we fix the center
position in the y-direction and optimize for the position
in the x-direction; xhp = (xhp, yhp) = (xhp, 3m).
For this problem, we assume a uniform velocity field
of v(x, y) = (−0.015, 0)m/s. We also consider the
left half of the room to be the region of interest, i.e.,
Ω = {x;x ≤ 4m}.

Figure 7 depicts how the performance measure
varies by the x position of the HP source, and
that it is minimized at xopt

hp = 4.5m. As a first
guess, one may go for a position as close to the
pathogen source as possible to maximally neutralize
the pathogens. However, because of the diffusion, and
more importantly, advection in this case, the optimal
position for the HP source is not the closest to the
COVID-19 source. Figure 8 shows the performance
of the RL agent in learning this optimal position
over 10 independent runs. All the hyper-parameters of
the RL algorithm remain the same, except the total
simulation time that is extended to 8× T = 8× 600 s.
The simulation results show that the agent learns a
reliable approximate of the optimal policy in roughly
3000 s = 50mins.

Figure 7. The performance metric, Je as a function of the HP
source location in the x direction. The optimal value minimizing
the performance metric is marked by a solid circle.
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Figure 8. Training performance for learning optimal center position
of the HP source in the x direction (xopt

hp), averaged over 10
independent runs. The solid line and the shaded area show the mean
and the variance (one standard deviation) of the learned x-position
of the HP source, respectively, over the 10 runs. The dashed line
show the ground-truth optimal x-position of the HP source.

V. CONCLUSION AND FUTURE WORK

In this study we investigated data-driven control of
COVID-19 in indoor environments. We put forward the
idea of designing indoor airflow to contain spread of
viral pathogens. The control problem is formulated in a
general set-up and the PPO RL algorithm is employed
to learn the optimal control law, i.e. the optimal airflow.
Transport dynamics of the pathogens are modeled
by advection-diffusion equations and a parameterized
double-vortex field is chosen as a class of velocity
fields to be optimized by the control agent. By using
such a compactly-parameterized velocity field, we sig-
nificantly reduce the dimension of the action space,
which subsequently reduces the amount of required
data for the RL agent to learn a good policy. Simulation
results show that the agent can learn the optimal lengths
of the vortices in less than 17mins.

As a secondary control problem, we also studied the
feasibility of optimal placement of disinfectants in
a room in order to minimize the infection risk of
occupants in a sub-space of the room. We showed
that our learning-based controller can learn the optimal
location of the disinfectant in less than 50mins. Given
the computational complexity of the CFD simulations,
lack of knowledge about the fluid-physics of pathogens
transport, and frequent change of interior layout of
enclosed spaces, the data-driven nature of the proposed
ideas makes them particularly advantageous over their
model-based counterparts.

Despite its simplicity, the double-vortex velocity field
may not be a good choice for designing an effective
airflow in more complex built environments, such as,
large offices or theaters with many cubicles and seats.
In this case, one can employ more complex veloc-

ity fields, e.g., multiple-vortex or a number of point
vortices, and optimize for their geometric centers and
intensities. Also, for the second control problem, more
than one disinfectant could be used and optimized for.

Another limitation of the current study is that we
looked for time-invariant optimal solutions in both
control problems, i.e., a time-invariant optimal double-
vortex and a time-invariant optimal location for the
disinfectant. This was a good solution mainly because
we assumed a stationary source of virus, as well as, a
long enough period of interest (T ) for the pathogens
to diffuse after the initial transient. Despite referred
to as a limitation, the time-invariant nature of the
solution helps considerably with reducing the amount
of required data for training. However, if very short
transient time is of interest or the pathogen source is
moving, a time-varying solution (double-vortex with
time-varying length or disinfectant with time-varying
location) will probably be much more effective. This
will be the future work and an extension to the current
study.

In general, the proposed data-driven control framework
in this study can have significant societal and economic
benefits by setting the foundation for an improved
methodology in designing case-specific infection con-
trol guidelines that can be realized by affordable HVAC
devices and disinfectants. Implementing the proposed
design and control guidelines helps mitigate the spread
of airborne diseases, such as COVID-19, and hence,
can save tens of thousands of lives worldwide. In the
case of COVID-19 or other potential pandemic-causing
viruses, containing the indoor virus spread will also
facilitate reopening of schools, universities, offices, and
restaurants, to name a few, which in turn, speeds up the
recovery of the US and the world economy. This will
help low-income communities in particular, by allow-
ing small businesses to open up their operation to avoid
major income loss in these vulnerable communities.
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APPENDIX

In this section we present the variational form of the
PDEs in Eqs.1 and 2 required for the FEniCSx finite-
element solver. A straightforward approach to solving
time-dependent PDEs by the finite element method is to
first discretize the time derivative by a finite difference
approximation, which yields a sequence of stationary
problems, and then turn each stationary problem into
a variational formulation. We use backward Euler, aka
implicit Euler discretization:

(
∂c

∂t

)n+1

=
cn+1 − cn

∆t
, (6)

where, superscript n denotes the quantity at time tn
and ∆t is the time discretization parameter.

The basic recipe for turning a PDE into a variational
problem is to multiply the PDE by a function w,
integrate the resulting equation over the domain D, and
perform integration by parts of terms with second-order
derivatives. The function w which multiplies the PDE
is called a test function. The unknown function c to be
approximated is referred to as a trial function. The trial
and test functions belong to certain so-called function
spaces that specify the properties of the functions. An
important feature of variational formulations is that
the test function w is required to vanish on the parts
of the boundary where the solution c is known. Now
multiplying the advection-diffusion equation in Eq.1 by
the test function w, integrating it over the domain D,
performing integration by parts, and applying the test
function properties and boundary conditions, we arrive
at the variational form:∫

D

(
1

∆t

(
cn+1 − cn

)
w +

(
v.∇cn+1

)
w +K∇cn+1.∇w

)
dx

−
∫
D

fn+1w dx+

∫
D

λcn+1w dx = 0. (7)

The variational problem now is to find c from the
trial space such that Eq.7 holds true for all the test
functions, w, in the test space. This variational problem
is a continuous problem: it defines the solution c
in the infinite-dimensional function space (the trial
space). The finite element method finds an approxi-
mate solution of the continuous variational problem
by replacing the infinite-dimensional function spaces
by discrete (finite-dimensional) trial and test spaces.
FEniCS automatically solves the discrete variational
problem.

With the same procedure, we derive the variational
form of the coupled advection-diffusion equations in

Eq.2 as:

∫
D

(
1

∆t

(
cn+1 − cn

)
w1 +

(
v.∇cn+1

)
w1

+K∇cn+1.∇w1

)
dx

+

∫
D

(
1

∆t

(
cn+1
hp − cnhp

)
w2 +

(
v.∇cn+1

hp

)
w2

+Khp∇cn+1
hp .∇w2

)
dx

−
∫
D

(
fn+1w1 + fn+1

hp w2

)
dx

+

∫
D

(
λcn+1w1 + λhpc

n+1
hp w2

)
dx

+

∫
D

(
α1c

n+1cn+1
hp w1 + α2c

n+1cn+1
hp w2

)
dx = 0,

(8)

where, w1 and w2 are test functions for the unknown
variables c and chp, respectively.

Ashkan Haji Hosseinloo received the
B.Sc. from Amirkabir University of Tech-
nology, Tehran, Iran, in 2009, the M.Eng.
from Nanyang Technological University,
Singapore, in 2013, and the Ph.D. from
the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2018, all in Me-
chanical Engineering. Ashkan is a post-
doctoral scholar at MIT Laboratory for
Information and Decision Systems (LIDS)
and MIT Institute for Data, Systems, and

Society (IDSS). His research lies at the intersection of machine
learning and system dynamics & control, and is motivated by the
urgent need to address the pressing issues of energy and environ-
mental sustainability and social equity. Ashkan’s work has addressed
fundamental challenges in the control of complex dynamical systems
with applications in structural dynamics, energy harvesting, and smart
cities.

Saleh Nabi received the B.Sc. from K.
N. Toosi University of Technology, Tehran,
Iran, in 2005, the M.Sc. from Isfahan Uni-
versity of Technology, Isfahan, Iran, in
2008, and the Ph.D. from University of
Alberta, Canada, in 2013, all in Mechanical
Engineering. Saleh is a Principal Research
Scientist at Mitsubishi Electric Research
Labs (MERL). His research interests are
at the intersection of fluid mechanics, sci-
entific machine learning, dynamical sys-

tems, and optimal control in complex systems. His current research
involves hybrid methods using traditional tools along with deep
learning-based methods for efficient and robust control and estima-
tion of PDEs with applications to HVACs and atmospheric LiDARs.



11

Anette (Peko) Hosoi received the B.A.
degree from Princeton University, Prince-
ton, NJ, USA, in 1992, and the M.Sc.
and the Ph.D. degrees from the University
of Chicago, Chicago, IL, USA, in 1994
and 1997, respectively, and all three de-
grees in physics. She is the Neil and Jane
Pappalardo Professor of Mechanical Engi-
neering and associate dean of engineering
at the Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA. She is the co-

founder of the MIT Sports Lab which connects the MIT community
with pro-teams and industry partners to address data and engineering
challenges in the sports domain. Hosoi’s research interests include
fluid dynamics, unconventional robotics, and bio-inspired design. She
has received numerous awards including the APS Stanley Corrsin
Award, the Bose Award for Excellence in Teaching, and the Jacob
P. Den Hartog Distinguished Educator Award.

Munther A. Dahleh received the B.S. de-
gree from Texas A&M University, College
Station, TX, USA, in 1983, and the Ph.D.
degree from Rice University, Houston, TX,
USA, in 1987, both in electrical engineer-
ing. He is the William A. Coolidge Pro-
fessor with the Massachusetts Institute of
Technology, Cambridge, MA, USA, where
he is also the Director of the Institute
for Data, Systems and Society. Dahleh is
a co-recipient of four George S. Axelby

Outstanding Paper Awards. He is internationally known for his
fundamental contributions to robust control theory, computational
methods for controller design, the interplay between information
and control, the fundamental limits of learning and decision in
networked systems, and the detection and mitigation of systemic risk
in interconnected and networked systems.


