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An Efficient and Incentive-Compatible Mechanism
for Energy Storage Markets

Bharadwaj Satchidanandan and Munther A. Dahleh

Abstract—A key obstacle to increasing renewable energy pen-
etration in the power grid is the lack of utility-scale storage
capacity. Transportation electrification has the potential to over-
come this obstacle since Electric Vehicles (EVs) that are not in
transit can provide battery storage as a service to the grid.
This is referred to as EV-Power grid integration, and could
potentially be a key milestone in the pathway to decarbonize the
electricity and the transportation sectors. We first show that if
EV-Power grid integration is not done carefully, then contrary to
improving the cost efficiency of operating the grid, it could in fact
be counterproductive to it. This occurs due to two phenomena
operating in tandem — the randomness of EV usage patterns
and the possibility of strategic behavior by EV users. We present
a market-based solution to address this issue. Specifically, we
develop a mechanism for energy storage markets using which
the system operator can efficiently integrate a fleet of strategic
EVs with random usage patterns into the grid, utilize them for
storage, and satisfy the demand at the minimum possible cost.

Index Terms—Energy storage markets, Electric Vehicles,
Stochastic valuations, Incentive compatible mechanism.

I. INTRODUCTION

A major impediment to high renewable energy penetration
in the power grid is the scarcity of energy storage capacity in
the grid. Utility-scale battery storage is expensive at current
technology, and so any energy that is generated must be con-
sumed immediately. This paradigm could change substantially
with increased Electric Vehicle (EV) penetration since EVs
that are not in transit can provide battery storage as a service
to the grid. Prior studies estimate that on an average, a car
is parked for more than 95% of the time [1], indicating the
huge potential for EVs to double as energy storage resources
in the grid. To illustrate the potential of EV energy storage,
take the example of the state of Massachusetts. It consumes
an average of 146GWh of electric energy per day [2]. On the
other hand, the battery capacity of a Tesla Model S EV is about
100kWh. This implies that about 1.4 million EVs possess
enough battery capacity to power Massachusetts for an entire
day. This amounts to less than 64% of the vehicles registered
in Massachusetts today [3]. The situation is similar in most
other parts of the US and the world, indicating that even
moderate levels of EV penetration could provide significant
storage capacity.

The time periods during which an EV can lease its battery to
the grid are private knowledge of the EV user and is unknown
to the Independent System Operator (ISO). However, the ISO
requires this information to optimally operate the grid, or
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more precisely, to determine the optimal power dispatch of
the generators and the optimal storage schedule of the EVs.
Consequently, the ISO requests the EV users to report in the
day-ahead market the time periods during which they can lease
their battery the following day. However, this brings forth two
challenges that need to be addressed.

The first challenge is that the travel times of people are in
general random, and so the EV users may not precisely know
in the day-ahead market the time periods during which they
can lease their EV batteries the following day. Rather, they
may know these time periods only with some uncertainty. To
account for this, we model the time periods during which an
EV can lease its battery as a random quantity, and require
that the EV users only report the probability distribution of
this quantity in the day-ahead market.

The second challenge is that the EV users could be strategic,
and so they may not report the aforementioned probability
distribution truthfully. As we elaborate in Section III, each
EV user has associated with it a utility function, and the EV
users may bid strategically to maximize their own respective
utilities. Moreover, having bid some probability distribution in
the day-ahead market, an EV may misreport its usage pattern
in real time if there is possibility for it to obtain a higher utility
by doing so than by reporting it truthfully. Such behavior
could potentially be counterproductive to the cost- and energy-
efficient operation of the grid as illustrated by the following
example.

Example 1. Suppose that a day consists of two time periods,
and suppose that the demand sequence d of the load in these
time periods is d = {0, 1}. Let the production function cg of
the generator be such that cg({1, 0}) = 0 and cg({0, 1}) = 2.
That is, it costs the generator 0 to produce 1J of energy at
time period 1 and 0J of energy at time period 2, and so on.
The cost cg for all other 2-tuples is infinite. We suppose that
this generator has a low ramping rate – a characteristic that
is typical of high-efficiency generators – and so its power
dispatch must be scheduled well in advance of the time
of power delivery. Specifically, its power dispatch must be
scheduled in the day-ahead market.

The system also consists of a reserve generator which
has a high ramping rate which can produce energy in the
spot market to balance real-time demand-supply mismatches.
Let the production function cs of the reserves be such that
cs({0, 0}) = 0 and cs({0, 1}) = 11. The cost cs for all other
2-tuples is infinite.

Suppose that there is only one EV in the system with a
battery capacity of 1J. As we elaborate in Section III, the
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usage pattern of an EV on any given day is specified by
a quantity known as its “deadline” on that day. An EV’s
deadline on a given day is defined as the time period until
which the EV can lease its battery to the grid on that day. Then,
the usage pattern of an EV being random is equivalent to its
deadline being random. Suppose that the EV’s deadline takes
the value 1 with probability p and the value 2 with probability
1− p.

As elaborated in Section III, each EV has a cost function
associated with it. Suppose that the cost incurred by an EV is
equal to the negative of the net energy injected into it during
the time that it is connected to the grid.

Now, the ISO is confronted with two options to meet the
demand. The first option is for it to schedule the generator to
produce the energy sequence g = {0, 1} and use it to serve
the load. This results in a total cost of meeting the demand —
defined as the sum of the costs incurred by the generator, the
EV, and the reserves — to be equal to 2.

The second option is to schedule the generator to produce
the energy sequence g = {1, 0} and store the energy generated
in the first time step in the EV. If the EV remains connected
to the grid in the second time step, then the ISO discharges
it to satisfy the demand, resulting in a total cost of 0. On
the other hand, if the EV disconnects at time step 1, then the
ISO purchases 1J in the spot market at time step 2 at cost
cs({0, 1}) = 11 to satisfy the demand, thereby resulting in
a total cost of 10. Hence, if the EV disconnects at its true
deadline, then the total cost of meeting the demand equals
0 with probability 1 − p and equals 10 with probability p.
Hence, the total expected cost of meeting the demand if the
ISO decides on the second option is equal to 10p.

Now, the goal of the ISO, as we elaborate in Section III,
is to minimize the total expected cost of meeting the demand,
and so it must choose the first option if 2 ≤ 10p and the
second option if 2 > 10p. However, the difficulty is that the
ISO does not know the value of p, and must rely only on the
value p̂ reported by the EV in the day-ahead market in order
to make the decision. The EV bidding p̂ = p is not a dominant
strategy. To see this, suppose that p = 0.21. If the EV bids
p̂ = 0.21, then the ISO would decide on the first option, and
so the cost incurred by the EV would be equal to 0. On the
other hand, if the EV bids p̂ = 0.19, then that causes the ISO
to decide on the second option, thereby resulting in the EV
being charged with 1J in the first time step. If the EV then
disconnects at its deadline, then it would exit the system with
a charge of 1J with probability 0.21 and a charge of 0J with
probability 0.79. This would result in it incurring an average
cost of −0.21, which is lesser than the average cost of 0 that it
would incur if it bids p truthfully. However, the total expected
cost of meeting the demand as a result of the EV’s false bid
is equal to 2.1, which is greater than the total cost of 2 that
would result if the ISO simply decides to never utilize the EV
for storage.

The above example illustrates a scenario wherein the EV
can lower its average cost by misreporting only its deadline
distribution. However, the EV could also misreport its deadline
realization to lower its cost. To see this, consider the case when
p = 0.19 and suppose that the EV reports p̂ = p truthfully

in the day-ahead market. It follows from the above discussion
that the ISO would decide on the second option. Now, if the EV
reports its deadline truthfully in real time, then the expected
cost that it would incur is equal to −0.19. On the other hand,
by misreporting its deadline realization to be equal to time
step 1, the EV can exit the system with 1J of charge, thereby
resulting in it incurring a lower cost of −1. Since the ISO is
not privy to the EV’s deadline realization, it cannot ascertain
if the EV disconnects at the first time step due to its deadline
arriving at that time or due to strategic behavior. The total
expected cost of meeting the demand as a result of the EV’s
false report would equal 10, which is greater than both the
total expected cost of 1.9 that would result if the EV reports
its deadline realization truthfully, and also the total cost of 2
that would result if the ISO simply decides to never utilize the
EV for storage.

The above example illustrates how strategic EV behavior not
only defeats the purpose of utilizing EVs as energy storage
units, but could also be counterproductive to the cost- and
energy-efficient operation of the grid since it could potentially
result in real-time supply shortages which in turn increases
the ISO’s dependence on the expensive and energy-inefficient
reserves. Therefore, if EVs are to be efficiently integrated for
storage, it is imperative to devise incentive structures that drive
EV users towards truthful behaviors.

At first look, it may appear that simply compensating EVs
in the day-ahead market based on the expected duration that
they would remain connected to the grid the following day
and penalizing them for real-time shortfalls might suffice.
However, the problem with such an approach is that an EV
may commit some amount in the day-ahead market in good
faith but due to the inherent uncertainties in its usage pattern,
it may genuinely be unable to meet its commitment in real-
time, and thereby get penalized. If the uncertainties are not
properly accounted for by the mechanism and the penalties are
not carefully designed, then even honest EV users may incur
large penalties, thereby discouraging them from voluntarily
participating in the market. Hence, it is necessary to devise
mechanisms that (i) incentivize the EVs report the probability
distribution of their usage patterns truthfully in the day-ahead
market, so that the ISO can optimally plan the power dispatch
and storage schedules, (ii) incentivize the EVs to remain
plugged into the grid until their actual deadlines, so that
there are no untoward supply shortages in real time, and (iii)
incentivize honest EVs to voluntarily participate in the market.
In this paper, we develop a mechanism that achieves all of
these objectives.

At a high level, the mechanism consists of a decision
rule that specifies an optimal power dispatch sequence of
the generator and an optimal energy storage policy for each
EV as a function of the deadline distributions that the EVs
report in the day-ahead market, and a payment rule that
incentivizes EVs to report their deadline distributions and their
deadline realizations truthfully. The payment rule consists of
two components — (i) a “day-ahead payment” that reflects the
expected cost savings in operating the grid due to the storage
opportunity that the EVs are expected to provide as per their
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reported deadline distributions, and (ii) a carefully designed
“end-of-the-day settlement” that adjusts the transfers meted
out to each EV based on a fairly detailed comparison of what it
had reported in the day-ahead market and the actual departure
profiles of the EVs in real time. One of the functionalities of
the end-of-the-day settlement is to penalize EVs for deviations
of their empirically observed behavioral patterns from what is
expected as per the probability distributions that they report in
the day-ahead market. This is made precise in Section IV. We
show how the composite payment rule renders truthful bidding
in both the day-ahead market and in real time a dominant
strategy for every EV, thereby enabling the ISO to satisfy
the demand at minimum possible cost. To the best of our
knowledge, we are unaware of any other work that addresses
the problem of integrating a fleet of strategic EVs with random
usage patterns into the grid and utilizing them optimally for
ancillary services.

The rest of the paper is organized as follows. Section II
presents an overview of related work and summarizes the novel
aspects of the paper. Section III formulates the mechanism
design problem. Section IV describes the proposed mechanism
for energy storage markets and establishes the incentive and
the efficiency properties guaranteed by it. Section V presents
some numerical results that illustrate the cost benefits that EV
battery storage service – unreliable though it may be – offers
the system. Section VI outlines some potential extensions and
concludes the paper.
Notation: Given a vector x, we denote by x(i) the ith

component of x. Given a vector x(θ) which is a function of
the variable θ, we denote its ith component by x(i;θ). Given a
vector x, we denote by x−i the vector x with its ith component
removed, and by [y,x−i] the vector whose ith component
is y and the other components are x−i. Given a sequence
{x(1),x(2), . . .}, we use xl to denote the l−length sequence
{x(1), . . . ,x(l)} and x∞ to denote the entire sequence.

II. RELATED WORK

Technologies that utilize EVs as energy storage resources
are broadly referred to as vehicle-to-grid technologies, and a
large body of literature exists on this topic. A feasibility study
of vehicle-to-grid systems is presented in [4], a framework
for vehicle-to-grid implementation is described in [5]. Among
other aspects, [5] recognizes the need for incentive mecha-
nisms to ensure adequate participation of EV users.

Reference [6] considers a setting where different EVs have
to be charged within a known deadline and they have different
private valuations per unit energy. A mechanism to elicit the
valuations truthfully is presented. Reference [7] addresses a
problem where a charging network operator owns a network
of charging stations and EV users have different travel routes
and charging rate preferences that are private to them. The
network operator assigns EVs to charging stations that are
on their travel routes based on their reported preferences. A
pricing-cum-routing policy to incentivize EVs to reveal their
true preferences is presented. Reference [8] views the problem
of charging strategic EVs with privately known deadlines and
energy valuations as one of designing incentive-compatible

mechanisms for multi-unit demand in an online fashion, and
develops a mechanism that incentivizes the EVs to report
their private parameters truthfully. Reference [9] considers the
problem of scheduling the charging of a fleet of EVs which
possess certain privately-known valuation functions, identifies
certain drawbacks of the VCG mechanism, and proposes two
extensions thereof to promote truth-telling. Reference [10]
models the interaction between an energy provider and EVs
as a Stackelberg game and presents a distributed algorithm for
the players to reach a Nash equilibrium.

All of the aforementioned papers view an EV only as a
deferrable load whose energy demand can be satisfied at
any time within a stipulated duration. On the other hand,
the viewpoint that we adopt is to view EVs not only as
deferrable loads, but also as energy storage resources that can
help reduce the operational cost of the grid. Consequently,
a mechanism that is developed within this paradigm rewards
EVs not only for the flexibility that they provide in satisfying
their energy demand, but also the cost reductions that they
afford the ISO by providing energy storage service. Our prior
works [11], [12] also adopt this paradigm but [11] restricts
attention to a setting where there is no stochasticity in EV
deadlines and [12] restricts attention to a scenario where there
is no strategic behavior by EV users.

More importantly, most of the existing papers in the litera-
ture, including our own prior works [11], [12], fail to model at
least one of the following aspects of EVs: (i) the stochasticity
of EV deadlines, (ii) the storage opportunity provided by EVs,
and (iii) the possibility of strategic behavior by EV users.
As mentioned in Section I, the combination of these aspects
provides EVs significant leeway for strategic behavior — so
much so that the problem of designing an incentive compatible
mechanism for this setting appears to be outside the purview
of existing results in mechanism design theory. In this paper,
we model all of these aspects and address them in a holistic
manner.

To the best of our knowledge, the works that are the closest
to the problem that we address are [13]–[15] which develop
two-stage mechanisms for selling wind power. Although the
context of this paper is different from that of [13], [14], the
mathematical abstractions of the problems appear to have cer-
tain similarities. Specifically, our setting as well as the setting
considered in [13], [14] have the property that the valuation of
the market participants is a random variable. Both mechanisms
consist of two stages over which the final decision is made,
and both mechanisms rely on having two settlements in their
payment rules. Where our formulation differs from [13], [14]
is in a key assumption regarding the realization of the players’
valuations. Specifically, while [13], [14] assume the realiza-
tions of the players’ valuations to be public knowledge, we
assume that the valuation realizations are also private to the
players and that they could bid them strategically in the second
stage. The second important departure of our formulation from
that in [13], [14] is that the latter consider a “one-shot game”
and develop a mechanism that is Incentive-Compatible (IC)
and Individually Rational (IR) in expectation whereas we
consider a repeated game and seek a mechanism that is IC
and IR in a time-averaged sense. It is not clear whether a
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“one-shot mechanism” that is IC and IR in expectation can
be directly extended to repeated games to obtain IC and IR
in a time-averaged sense. Simply instantiating the one-shot
mechanism in every repetition of the game for example may
not guarantee these properties since the players could adapt
their bids at any given instance to their observations from all
past instances, thereby introducing dependencies between the
bids, outcomes, and payments across instances. The aspect of
repeated play is a key feature of real world electricity markets,
and to the best of our knowledge, we are unaware of any other
work in the literature that addresses such a setting.

III. PROBLEM FORMULATION

The core aspects that impart flavor to the problem that we
address are the stochasticity of EV usage patterns and the
possibility of strategic behavior by EV users. It is precisely the
former aspect that precludes the use of standard results from
mechanism design theory to design energy storage markets
for EVs. Therefore, in order to examine in isolation the
complexities that arise from these two phenomena, we simplify
the problem in several other respects. Specifically, we develop
a stylized model which retains only the minimal complexity
necessary to exhibit the two aforementioned aspects. Examples
of such simplifications include the restriction to a single-bus
system, the assumption that the usage pattern of an EV is
described by a single parameter known as its “deadline,” the
assumption that the deadline of each EV is independent and
identically distributed across days, the assumption that all EVs
are plugged into the grid at the beginning of a day, etc. As
it will be apparent shortly, even for such a simplified model,
designing an efficient and incentive-compatible energy storage
market is nontrivial in that it appears to lie outside the purview
of existing results in mechanism design theory. Moreover, the
mechanism developed in the context of this simple model
contains elements that readily generalize to more complex
scenarios, and could therefore potentially guide the design of
practical energy storage markets.

Consider a single-bus power system with a single generator,
a single load, and ns storage units or EVs. In addition to EVs,
the storage units could also include devices such as Powerwalls
[16] that individual households and firms could have installed.
We divide time into days, and divide a day into T time
intervals. Denote by dl(t) the energy demand of the load on
the lth day at time t, l ∈ Z+ and t ∈ {1, . . . , T}. The demand
sequence dl :=

[
dl(1), . . . , dl(T )

]
is a random variable and

can typically be forecast in the day-ahead market to an
accuracy of within 5% [17]. However, in order to minimize
clutter and expose the main ideas clearly, we assume that it
is known exactly in the day-ahead market, and furthermore,
that it remains the same on all days. Consequently, we drop
the subscript l and denote the demand sequence simply as
d = [d(1), . . . , d(T )].

A. EV Energy Demand

In the day-ahead market corresponding to any day, every
EV has an energy demand for its transportation needs on the
following day. We model an EV i’s energy demand on day

l using an “energy valuation function” vi,l : R → R which
specifies the EV’s valuation for being charged with various
energy levels by the time it disconnects from the grid. An EV
user can express preferences such as the minimum amount
of charge required at its deadline using the energy valuation
function. Specifically, by setting the energy valuation function
to take “small” values for energy levels lower than what is
required for the EV’s upcoming trip, and “large” values for
those higher than that required for its upcoming trip, the EV
user can inform the ISO of its minimum desired charge.

Since the energy requirement of an EV could be different
on different days, its energy valuation function could vary
across days. However, for ease of exposition, we assume that
the energy valuation function of an EV remains the same on
all days. Consequently, we drop the subscript “l” and denote
simply by vi the energy valuation function of EV i on any
day l.

Every EV is required to report its energy valuation function
to the ISO in the day-ahead market, and we assume that they
do so truthfully. A subsequent paper addresses the scenario
wherein the EVs could misreport their energy valuations. We
wish to emphasize at this juncture that it is only the energy
valuation function that we assume the EVs to report truthfully;
not their valuations (or more precisely, costs). The latter, as
mentioned before and as we will see shortly, is a random
variable whose distribution as well as realizations are private
knowledge of the EVs, and they could misreport either or both
of these quantities.

B. EV Deadlines

On any day l, l ∈ Z+, the time intervals in which an
EV i can lease its battery to the grid are characterized by
a parameter δi(l) ∈ {1, . . . , T} called EV i’s “deadline” on
day l. An EV i on day l is said to have deadline δi(l) if it can
lease its battery to the grid at all times lesser than or equal
to δi(l) and incurs a large cost Jm for remaining connected
beyond time δi(l), thereby missing its deadline. During the
time that it is connected to the grid, the ISO can utilize the
EV as an energy storage device.

1) Deadline distributions: Owing to the stochasticity
of EV usage patterns, we model the deadline sequence
{δi(1), δi(2), . . . , } as Independent and Identically Distributed
(IID) random variables taking values from {1, . . . , T}. Hence,
the set of distributions that δi(1) can assume is parameterized
by the RT - dimensional probability simplex Θ. We denote
by θi ∈ Θ the parameter vector corresponding to EV i’s
deadline distribution, and by Pθi the probability distribution
of the deadline. That is, for any t ∈ {1, . . . , T}, the quantity
Pθi(t) denotes the probability that δi(1) equals t.

While in general, θi could take any value in Θ, we assume
for certain technical reasons that will become clear later that
there exists εθ > 0 such that for all i ∈ {1, . . . , ns} and
all t ∈ {1, . . . , T}, Pθi(t) ≥ εθ. Consequently, given εθ, we
define the set

Θ := {θ ∈ Θ : Pθ(t) ≥ εθ for all t ∈ {1, . . . , T}}
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so that for all i ∈ {1, . . . , ns},

θi ∈ Θ. (1)

The deadlines of different EVs are assumed to be indepen-
dent so that the joint distribution of the EVs’ deadlines on any
given day is Pθ1 × . . .× Pθns . We define θ := [θ1, . . . , θns ].

2) Deadline realizations: We suppose that for every i ∈
{1, . . . , ns} and every l ∈ Z+, the realization of δi(l) is drawn
“by nature” at the beginning of day l according to Pθi and
is revealed to EV i at the beginning of day l. In particular,
the realization of δi(l) is unknown in the day-ahead market
corresponding to day l.

C. Cost functions

The generator, the reserves, and the EVs have associated
with them certain cost functions. We describe these one by
one.

1) Cost function of the Generator: We denote by cg :
RT≥0 → R the production function of the generator so that
cg(g) is the cost incurred by the generator for producing the
energy sequence g =

[
g(1), . . . , g(T )

]
on any given day,

where g(t) denotes the amount of energy produced at time
t.

2) Cost function of the Reserves: Demand-supply mis-
matches that occur in real-time are typically compensated by
purchasing additional energy in the spot market. We denote
by cs : RT → R the production function of the reserves so
that cs(gs) is the cost incurred by the reserve generator for
producing the energy sequence gs = [gs(1), . . . , gs(T )]. We
allow for the reserves to also consume excess energy, and so
a negative value of gs(t) denotes an absorption of gs(t) units
of energy at time t. In case it is infeasible for the reserves
to absorb energy, the cost of T−tuples that contain negative
entries are set to infinity.

3) Cost function of the EVs: For any EV i, we mean by
the term “storage sequence of the EV i on day l” a T−length
sequence that specifies the energy stored in EV i at each time
of the day. Note that the storage sequence of an EV uniquely
specifies how much energy must be injected or consumed from
the EV at each time of the day — a decision that, as we will see
shortly, the ISO must make for every EV for optimal operation
of the grid. Every EV i has associated with it a cost function
cEVi : {1, . . . , T} × {1, . . . , T} × RT → R that specifies the
cost incurred by the EV on any day l as a function of (i) its
deadline δi(l) on that day, (ii) the actual time δ̂i(l) at which
it disconnects from the grid on that day, and (iii) its storage
sequence hi,l on that day, and is defined as

cEVi (δi(l), δ̂i(l),hi,l) = −vi
(
hi,l(δ̂i(l))

)
1{δ̂i(l)≤δi(l)}

+Jm1{δ̂i(l)>δi(l)}, (2)

where Jm ∈ R>0 denotes the cost incurred by the EV if it
misses its deadline. In words, if EV i has deadline δi(l) but
disconnects from the grid only after its deadline, then it incurs
a cost Jm for missing its deadline, but on the other hand, if
it disconnects from the grid before its deadline, then the cost
that it incurs is the negative of the energy valuation that it
accrues, namely, −vi

(
hi,l(δ̂i(l))

)
.

D. Storage Policy

The stochasticity of EV departure times necessitates the ISO
to devise a storage policy in order to determine the storage
sequence of each EV on each day. A storage policy π is a
collection of functions {π1, . . . , πns} where the ith function

πi : {1, . . . , T} × {1, . . . , T}ns → [0, Bi]

specifies the energy that must be stored in EV i at each time
of the day as a function of the departure profiles of the EVs
on that day. Here, Bi denotes the battery capacity of EV i.
More precisely, if δ̂(l) ∈ {1, . . . , T}ns denotes the vector of
departure times of EVs on day l, then πi(t, δ̂(l)) specifies the
State of Charge (SoC) of EV i at time t on day l. We denote
by

πi(δ̂(l)) := [πi(1, δ̂(l)), . . . , πi(T, δ̂(l))]

the storage sequence of EV i on day l.
For a storage policy π to be implementable by the ISO, it

must not charge or discharge any EV after it disconnects from
the grid. That is, the policy π must satisfy the condition that
for every i ∈ {1, . . . , ns} and every δ̂(l) ∈ {1, . . . , T}ns ,

πi(t, δ̂(l)) = πi(δ̂i(l), δ̂(l)) for all t ≥ δ̂i(l).

I.e., the State of Charge (SoC) of the EV at any time t after
its deadline is the same as the SoC of the EV at its deadline.
We denote by Π the set of all implementable storage policies.

It may be desirable to constrain the number of charge-
discharge cycles that an EV is subjected to while connected
to the grid. This can be ensured by restricting Π to contain
only those storage policies that adhere to this constraint.

E. The Independent System Operator’s Objective

Prior to each day, the ISO runs a day-ahead market in
which it must decide the energy dispatch sequence of the
generator and the storage policy of the EVs for that day. As
mentioned before, the deadlines of the EVs for any given day
realize only after the day-ahead market for that day closes,
and so the only information on which the ISO can base its
day-ahead market decisions are the deadline distributions that
the EVs bid in the day-ahead market. Suppose for a moment
that the EVs are not strategic and that they bid the deadline
distributions θ truthfully. How should the ISO compute the
energy dispatch sequence and the storage policy? Since the
ISO does not know the deadline realizations in the day-
ahead market, it chooses the energy dispatch sequence and the
storage policy so as to minimize the expected cost of meeting
the demand on the following day. To elaborate, suppose that
the ISO decides the generator’s energy dispatch sequence to
be g = [g(1), . . . , g(T )] and the storage policy to be π in the
day-ahead market. Then,

gs(t, δ(l),g,π) = d(t)−
[
g(t) +

ns∑
i=1

(
πi(t− 1, δ(l))

− πi(t, δ(l))

)]
(3)
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is the real-time demand-supply mismatch at time t on day l.
Hence, the ISO has to purchase the energy sequence

gs(δ(l),g,π) = [gs(1, δ(l),g,π), . . . , gs(T, δ(l),g,π)]

in the spot market on day l at price cs(gs(δ(l),g,π)).
Therefore, the total cost of satisfying the demand on day l
— defined as the sum of the costs incurred by the generator,
the reserves, and the EVs — is cg(g) + cs(gs(δ(l),g,π)) −∑ns
j=1 vj

(
πj(δj(l), δ(l))

)
. Since δ(l) is a random variable, the

above cost is a random variable for any (g,π). The ISO’s
objective is to minimize the total expected cost of meeting
the demand, and therefore must choose the energy dispatch
sequence g∗ and the storage policy π∗ as a solution to the
stochastic program

Minimize
g∈RT ,π∈Π

Eδ∼Pθ

[
cg(g) + cs

(
gs(δ,g,π)

)
−

ns∑
j=1

vj
(
πj(δj , δ)

)]
. (4)

The stochastic program (4) is a two-stage stochastic pro-
gram [18, Section 2.1] where g is the first-stage decision (also
referred to as the here-and-now decision) and π specifies the
optimal second-stage decision for each realization of δ (also
referred to as wait-and-see decision). While computational
aspects are beyond the scope of this paper, suffice to say
that under routine assumptions of convexity, (4) can be solved
efficiently.

To make the notation compact, define

β(δ,g,π) := cg(g) + cs(gs(δ,g,π))−
ns∑
j=1

vj(πj(δj , δ)).

(5)

The ISO’s problem (4) can then be expressed compactly as

Minimize
g∈RT ,π∈Π

Eδ∼Pθ

[
β(δ,g,π)

]
. (6)

We define three functions based on (6). First, we define
g∗ : Θns → RT as a function that maps the EV parameters to
an energy dispatch sequence that solves (6). Specifically, for
ψ ∈ Θns , g∗(ψ) denotes an optimal energy dispatch sequence
that solves (6) if the EV parameters are ψ. Similarly, we define
π∗ : Θns → Π as the function that maps the EVs’ parameters
to an optimal storage policy that solves (6). Finally, we define
q∗ : Θns → R as the function that maps the EVs’ parameters
to the optimal average cost so that q∗(ψ) denotes the optimal
value of (6) if the EV parameters are ψ. We will assume
throughout that the cost functions cg and cs are such that for
some q <∞ and for all ψ ∈ Θns ,

q∗(ψ) ≤ q. (7)

Hence, the ISO’s objective in the day-ahead market is to
compute the functions g∗ and π∗ at the point θ. However,
if the EVs are strategic, then they may not bid their deadline
distributions truthfully and so the ISO has the additional task
of eliciting θ truthfully. Our main objective is to devise a
mechanism that enables the ISO to do this.

F. The EV user’s Objective

On each day l, each EV i receives a payment pi(l) from
the ISO in return for leasing its battery to the grid. Denoting
by hi,l the storage sequence of EV i on day l, its utility on
that day is defined as

ui(δi(l), δ̂i(l),hi,l) := pi(l)− cEVi (δi(l), δ̂i(l),hi,l).

Each EV i’s objective is to maximize its long-term average
utility defined as lim infL→∞

1
L

∑L
l=1 ui(δi(l), δ̂i(l),hi,l).

G. The Market Process

There are two impediments to the ISO operating the grid at
the optimal cost q∗(θ). The first is the ISO’s nescience of the
parameter vector θ, which renders it incapable of computing
the optimal decisions g∗(θ) and π∗(θ) in the day-ahead
market. As mentioned before, an EV’s deadline distribution is
its private knowledge and unknown to the ISO. Consequently,
the ISO requests each EV to report its deadline distribution
in the day-ahead market so that it can compute the optimal
energy dispatch sequence and storage policy. However, since
the objective of any EV is only to maximize its own utility, it
may misreport its deadline distribution if there is a possibility
for it to extract a higher utility by doing so than by bidding
truthfully. Consequently, we denote by θ̂i ∈ Θ the parameter
reported by EV i in the day-ahead market, which may or may
not be equal to θi.

Based on the reported parameters θ̂ := [θ̂1, . . . , θ̂ns ], the
ISO computes the energy dispatch as g∗(θ̂) and the storage
policy as π∗(θ̂). Since the deadline distributions of the EVs
are assumed to remain the same on all days, it suffices for the
EVs to report their parameters just once, and for the ISO to
run the day-ahead market just once, namely, before day 1, to
compute the above decisions. Once the ISO computes these
quantities, it reuses them on all days.

In the day-ahead market corresponding to any day l, the
ISO schedules the generator to produce the energy sequence
g∗(θ̂) on day l and decides on the storage policy π∗(θ̂) for
day l. After the day-ahead market closes, the EVs observe
their respective deadlines for that day. The ISO requests the
EVs to report their deadline realizations at the commencement
of day l. Based on the reported deadlines, the ISO computes
the storage sequence of each EV for that day using the policy
π∗(θ̂). Being strategic, the EVs may not bid their deadline
realizations truthfully, and so we denote by δ̂i(l) the deadline
reported by EV i on day l. Having bid δ̂i(l) as its deadline,
EV i is obligated to remain connected to the grid until time
δ̂i(l) on day l. The entire chronology is illustrated in Fig. 1.

H. The Mechanism Design Problem

Having fixed g∗(θ̂) and π∗(θ̂) in the day-ahead market, the
long-term average utility that EV i accrues is

uavg
i (θ̂i, δ̂

∞
i , θ̂−i, δ̂

∞
−i)

:= lim inf
L→∞

1

L

L∑
l=1

ui
(
δi(l), δ̂i(l),π

∗
i (δ̂(l); θ̂)

)
, (8)
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EVs report
θ̂

ISO computes
(g∗(θ̂),π∗(θ̂))

Generation g∗(θ̂)
scheduled for day 1

EVs observe
δ(1)

EVs report
δ̂(1)

ISO computes
storage sequence

for day 1

Day 1

Generation g∗(θ̂)
scheduled for day 2

EVs observe
δ(2)

EVs report
δ̂(2)

ISO computes
storage sequence

for day 2

Day 2

. . .

. . .

Time

Fig. 1. The market chronology: In the day-ahead market before day 1, each EV i reports a deadline distribution to the ISO, based on which the latter computes
the energy dispatch sequence and the storage policy. Then, at the commencement of any day l, l ∈ Z+, each EV i observes its deadline δi(l) for that day.
Following this, EV i reports δ̂i(l) as its deadline, which could potentially be adapted to δli, δ̂

l−1
i , δl−i, δ̂

l
−i,θ, and θ̂. Based on δ̂(l), the ISO computes the

storage schedule for each EV for that day using the storage policy. Day l then progresses, and the process repeats on day l + 1.

where π∗i (δ̂(l); θ̂) denotes the function π∗i (θ̂) evaluated at
δ̂(l). Consequently, if there exists (θ̂−i, δ̂

∞
−i) such that EV i

obtains a higher value for (8) by misreporting either or both θi
and δ∞i , then it may do so. However, unless all EVs report their
respective parameters truthfully in the day-ahead market and
report their respective deadlines truthfully “almost all days,”
the ISO cannot ensure that the long-term average cost of
meeting the demand approaches the optimal value q∗(θ). This
brings us to the central problem that is addressed in the paper,
namely, that of designing a mechanism that incentivizes EVs
to report not only their deadline distributions truthfully in the
day-ahead market, but also report their deadline realizations
truthfully almost all days. Specifically, we aim to design a
mechanism that renders truth-telling a dominant strategy so
that for every EV i, its average utility uavg

i (θ̂i, δ̂
∞
i , θ̂−i, δ̂

∞
−i) is

maximized by setting θ̂i = θi and δ̂i(l) = δi(l) for all l ∈ Z+,

regardless of what (θ̂−i, δ̂
∞
−i) is. The next section develops

the mechanism and establishes the incentive and optimality
properties guaranteed by it.

IV. MECHANISM FOR TRADING STORAGE CAPACITY OF
EVS WITH STOCHASTIC DEADLINES

In this section, we develop a mechanism that renders truth-
telling an individually rational dominant strategy for every EV.

First, the ISO, which plays the role of a social planner,
computes g∗(θ̂) and π∗(θ̂) in the day-ahead market as the
generator’s energy dispatch sequence and the storage policy.
Recall that these quantities solve the stochastic program

Min.
g,π

cg(g) + Eδ∼P
θ̂

[
cs(gs(δ,g,π))−

ns∑
j=1

vj(πj(δj , δ))
]
,

(9)

and note that the solutions of (6) and (9) coincide if θ̂ = θ.

We next describe the payment rule. The payment rule
consists of each EV receiving two payments on each day
— a “day-ahead payment” that is determined based on the
parameters reported to the ISO in the day-ahead market, and
an “end-of-the-day settlement” that is determined at the end
of each day based on a comparison of the the actual departure
profile of the EVs with the deadline distributions reported in
the day-ahead market.

A. The Day-Ahead Payment

The day-ahead payment takes the form of a VCG payment.
For each i ∈ {1, . . . , ns}, define Pθ̂−i := Pθ̂1 × . . .× Pθ̂i−1

×
Pθ̂i+1

× . . .×Pθ̂ns and let q∗(θ̂−i) be the optimal value of the
stochastic program

Min.
g,π

cg(g) + Eδ−i∼θ̂−i
[
cs(gs(δ−i,g,π))

−
∑
j 6=i

vj(πj(δj , δ−i))
]
.

Note that this is the optimization problem that the ISO would
have had to solve in the day-ahead market if EV i were
absent from the system. The day-ahead payment of EV i,
i ∈ {1, . . . , ns}, is defined as

pDAi (θ̂i, θ̂−i) :=q∗(θ̂−i)−
[
cg(g

∗(θ̂))

+ Eδ∼θ̂
{
cs(gs(δ,g

∗(θ̂),π∗(θ̂)))

−
∑
j 6=i

vj(π
∗
j (δj , δ; θ̂))

}]
. (10)

B. The End-of-the-Day Settlement

Arbitrarily fix an EV i. One of the functionalities of the end-
of-the-day settlement is to penalize the EV for deviations of
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its empirically observed departure times from Pθ̂i . To do this,
on each day l and for each t ∈ {1, . . . , T}, the end-of-the-day
settlement function constructs a window of size r(l) centered
at Pθ̂i(t) and penalizes the EV if the empirical frequency
1
l

∑l
l′=1 1{δ̂i(l′)=t} falls outside the window. Towards this, for

i ∈ {1, . . . , ns}, t ∈ {1, . . . , T}, and l ∈ Z+, define

fi,t(l, δ̂
l
i, θ̂i) :=

[
1

l

l∑
l′=1

1{δ̂i(l′)=t}

]
− Pθ̂i(t), (11)

and define the event

Ei(l, δ̂li, θ̂i) := { max
t∈{1,...,T}

|fi,t(l, δ̂li, θ̂i)| ≥ r(l)} (12)

where r(l) is the window size on day l. The occurrence of
the event Ei(l, δ̂li, θ̂) indicates that the empirical frequency
of the reported deadlines of EV i up to day l is “significantly
different” from the deadline distribution that it had reported in
the day-ahead market. If this happens, the mechanism imposes
a penalty of Jp(l) on EV i on day l, where {Jp} is chosen as
any nonnegative sequence satisfying

lim
l→∞

Jp(l)

l
=∞. (13)

Now, the window size sequence {r(l)} must be designed
carefully so as to balance two competing objectives. On the
one hand, the window size must approach zero as l tends
to infinity. If not, the set of sequences from which the EV
can choose its real-time bids δ̂∞i without incurring a penalty
would be “large,” thereby resulting in the violation of incentive
compatibility. On the other hand, if the window size shrinks
too quickly, then the empirical frequency sequence of truthful
bidders will fall outside the window infinitely often. This
would result in truthful bidders paying a penalty infinitely
often, thereby resulting in the violation of their individual ra-
tionality. This brings us to the question of what the appropriate
rate is at which the window size should decay. Condition (14)
below provides an answer.

The window size sequence {r} is chosen such that for some
Lr ∈ N and some γ > 1

2 ,

r(l) ≥
√

ln lγ

l
(14)

for all l ≥ Lr, and

lim
l→∞

r(l) = 0. (15)

To provide some intuition for the decay rate (14), note that
the empirical frequency 1

l

∑l
l′=1 1{δi(l′)=t} of EV i’s true

deadlines is approximately normally distributed for large l
with a standard deviation that scales as 1√

l
. Hence, scaling

the window size also at the same rate would result in the
probability of empirical frequencies of truthful bids falling
outside the window to remain at some fixed value which does
not scale with l. To avoid this, the window size must scale
slower than at least 1√

l
. Lemma 1 shows that by scaling it only

“slightly” slower than this rate, namely, at the rate specified
by (14), truthful bidders are guaranteed to not incur a penalty.

The end-of-the-day settlement of EV i on day l is defined

pSi (l, θ̂, δ̂li, δ̂(l))

:=

[
Eδ∼P

θ̂
{vi(π∗i (δi, δ; θ̂))} − vi

(
π∗i (δ̂i(l), δ̂(l); θ̂)

)]
− Jp(l)1{Ei(l,δ̂li,θ̂i)}.

(16)

The total payment pi received by EV i on day l is the sum of
its day-ahead payment and its end-of-the-day settlement:

pi(l, θ̂i, θ̂−i, δ̂
l
i, δ̂(l)) = pDAi (θ̂i, θ̂−i) + pSi (l, θ̂, δ̂li, δ̂(l)).

(17)

The following theorem establishes the incentive and effi-
ciency properties of the mechanism defined by the decision
rule (9) and the payment rule (17), and is the central result of
the paper.

Theorem 1. Suppose that the ISO determines g∗(θ̂) and
π∗(θ̂) as a solution to (9) and determines the payments
according to (17). Then, for Jm sufficiently large, the following
hold.

1) For every i ∈ {1, . . . , ns} and every θi ∈ Θ, there exists
Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that for every
δ∞i /∈ Ei,

uavg
i (θi, δ

∞
i ,θ̂−i, δ̂

∞
−i) ≥ u

avg
i (θ̂i, δ̂

∞
i , θ̂−i, δ̂

∞
−i) (18)

for every (θ̂, δ̂
∞

).
I.e., for every EV i, truth-telling is P∞θi− almost surely
a dominant strategy.

2) Let i ∈ {1, . . . , ns} and suppose that θi is such that for
all θ̂i 6= θi,

q∗(θ̂i, θ̂−i) 6= q∗(θi, θ̂−i) (19)

for some θ̂−i ∈ Θns−1. If for some θ̂i ∈ Θ, there exists
Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that for every
δ∞i /∈ Ei, θ̂−i, and δ̂

∞
−i, there exists δ̂∞i such that

uavg
i (θ̂i,δ̂

∞
i , θ̂−i, δ̂

∞
−i) = uavg

i (θi, δ
∞
i , θ̂−i, δ̂

∞
−i), (20)

then,

θ̂i = θi, (21)

and

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)6=δi(l)} = 0. (22)

I.e., for every i ∈ {1, . . . , ns} such that (19) holds,
truth-telling in the day-ahead market and truth-telling
on almost all days is P∞θi− almost surely the unique
dominant strategy for EV i.

3) For every i ∈ {1, . . . , ns} and every θi ∈ Θ, there exists
Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such that for all
δ∞i /∈ Ei,

uavg
i (θi, δ

∞
i , θ̂−i, δ̂

∞
−i) ≥ 0 (23)

for all θ̂−i and δ̂
∞
−i.
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I.e., for every EV i, truth-telling is P∞θi− almost surely
individually rational.

4) If (19) and (20) hold for every i ∈ {1, . . . , ns}, then

lim sup
L→∞

1

L

L∑
l=1

β
(
δ̂(l),g∗(θ̂),π∗(θ̂)

)
= q∗(θ) (24)

P∞θ − almost surely.
I.e., if every EV employs a dominant strategy, then the
time-averaged cost at which the ISO satisfies the demand
is equal to the optimal average cost at which it satisfies
the demand if all EVs are truthful.

Proof. Arbitrarily fix i ∈ {1, . . . , ns} and θi ∈ Θ. We begin
the proof with four lemmas. The first lemma assures that
honest bidding almost surely yields zero penalty.

Lemma 1. There exists Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0
such that for all δ∞i /∈ Ei,

lim
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δli,θi)} = 0. (25)

Proof. See Appendix A.

The second lemma establishes the monotonicity of the
optimal cost function q∗ in a certain sense.

Lemma 2. Let λi, λ̃i ∈ Θ be any two parameters such that
Fλ̃i(t) ≥ Fλi(t) for all t ∈ {1, . . . , T}. Then,

q∗(λ̃i, θ̂−i) ≥ q∗(λi, θ̂−i)

for all θ̂−i ∈ Θns−1.

Proof. The proof is relatively straightforward and has been
omitted in the interest of space. See [19] for details.

Lemma 3. Suppose that θ̂i is such that

α(θi, θ̂i) := sup
t∈{1,...,T}

{Fθi(t)− Fθ̂i(t)} > 0. (26)

Then,
1) for some finite K ≥ 0,

q∗(θi, θ̂−i)− q∗(θ̂i, θ̂−i) ≤ Kα(θi, θ̂i) (27)

for all θ̂−i ∈ Θns−1.
2) There exists Ei ⊂ {1, . . . , T}∞ with P∞θi (Ei) = 0 such

that for all δ∞i /∈ Ei,

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)>δi(l)} ≥ α(θi, θ̂i) (28)

whenever δ̂∞i is such that
∑∞
l=1 1{Ei(l,δ̂li,θ̂i)}

<∞.

Proof. See Appendix B.

Lemma 4. If δ̂∞i is such that
∑∞
l=1 1{Ei(l,δ̂li,θ̂i)}

=∞, then,

lim sup
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,θ̂i)}
=∞. (29)

Proof. See Appendix C.

We are now ready to prove the theorem. We first have

uavg
i (θ̂i, δ̂

∞
i ,θ̂−i, δ̂

∞
−i)

= pDAi (θ̂i, θ̂−i)

+ lim inf
L→∞

1

L

L∑
l=1

[
pSi (l, θ̂, δ̂li, δ̂(l))

− cEVi
(
δi(l), δ̂i(l),π

∗
i (δ̂(l); θ̂

)]
.

Substituting (2), (10) and (16) in the above equality and
carrying out some algebra yields

uavg
i (θ̂i, δ̂

∞
i , θ̂−i, δ̂

∞
−i)

=
[
q∗(θ̂−i)− q∗(θ̂)

]
− lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δ̂li,θ̂i)}

+ Jm1{δ̂i(l)>δi(l)}

]
− lim sup

L→∞

1

L

L∑
l=1

[
vi
(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
− vi

(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
1{δ̂i(l)≤δi(l)}

]
. (30)

Using the above expression, applying Lemma 1, and carrying
out some algebra implies the existence of Ei ⊂ {1, . . . , T}∞
with P∞θi (Ei) = 0 such that for all δ∞i /∈ Ei,

uavg
i (θi, δ

∞
i , θ̂−i, δ̂

∞
−i)

− uavg
i (θ̂i, δ̂

∞
i , θ̂−i, δ̂

∞
−i)

=
[
q∗(θ̂i, θ̂−i)− q∗(θi, θ̂−i)

]
+ lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δ̂li,θ̂i)}

]
+ lim sup

L→∞

1

L

L∑
l=1

[
vi
(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
− vi

(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
1{δ̂i(l)≤δi(l)}

]
+ lim sup

L→∞

1

L

L∑
l=1

Jm1{δ̂i(l)>δi(l)}. (31)

We show that the above random variable is nonnegative,
thereby establishing (18). We do this by considering three
cases and showing that (31) is nonnegative in all the three
cases.

First consider the case when δ̂∞i is such that∑∞
l=1 1{Ei(l,δ̂li,θ̂i)}

=∞. Since
∣∣q∗(θ̂i, θ̂−i)− q∗(θi, θ̂−i)∣∣ <

∞ from (7) and all other terms in the RHS of (31) are
nonnegative, using Lemma 4 in (31) implies the nonnegativity
of (31).

Next consider the case when θ̂i is such that Fθi(t) ≤ Fθ̂i(t)
for all t ∈ {1, . . . , T}. It then follows from Lemma 2 that
q∗(θ̂i, θ̂−i) ≥ q∗(θi, θ̂−i), and so the first term in the RHS
of (31) is nonnegative. Since every other term in the RHS of
(31) is nonnegative, (31) is nonnegative.
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We are finally left with the case when δ̂∞i is such that∑∞
l=1 1{Ei(l,δ̂li,θ̂i)}

< ∞ and θ̂i is such that Fθi(t) > Fθ̂i(t)

for some t ∈ {1, . . . , T}. Lemma 3 applies, and so combining
(27) and (28) with (31) implies that P∞θi− almost surely,

uavg
i (θi, δ

∞
i , θ̂−i, δ̂

∞
−i)− u

avg
i (θ̂i, δ̂

∞
i , θ̂−i, δ̂

∞
−i)

≥(Jm −K)α(θi, θ̂i).

It follows that for Jm ≥ K, the LHS is nonnegative, thereby
completing the proof of (18).

We next prove the second statement of the theorem. Suppose
that (20) holds. Using (30) to expand both sides of (20),
invoking Lemma 1, and simplifying the result implies that
for every δ∞i /∈ Ei, θ̂−i, δ̂

∞
, there exists δ̂∞i such that

q∗(θi, θ̂−i)− q∗(θ̂i, θ̂−i)

= lim sup
L→∞

1

L

L∑
l=1

Jp(l)1Ei(l,δ̂li,θ̂i)

+ lim sup
L→∞

1

L

L∑
l=1

[
vi
(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
− vi

(
π∗i (δ̂i(l), δ̂(l); θ̂)

)
1{δ̂i(l)≤δi(l)}

]
+ Jm lim sup

L→∞

1

L

L∑
l=1

1{δ̂i(l)>δi(l)}. (32)

Since the RHS of the above equality is always nonnegative,
we have that q∗(θi, θ̂−i)− q∗(θ̂i, θ̂−i) ≥ 0 for every θ̂−i. We
show next that this inequality must hold with equality for all
θ̂−i.

Suppose for contradiction that q∗(θi, θ̂−i)−q∗(θ̂i, θ̂−i) > 0
for some θ̂−i. Lemma 2 implies that supt∈{1,...,T}{Fθi(t) −
Fθ̂i(t)} = α(θi, θ̂i) > 0, and so Lemma 3 applies. Hence,

q∗(θi, θ̂−i)− q∗(θ̂i, θ̂−i) ≤ Kα(θi, θ̂i). (33)

Since the LHS of (32) is finite following (7), the RHS must
also be finite. This implies in particular that the first term
of the RHS is finite, and so, it follows from Lemma 4
that

∑∞
l=1 1{Ei(l,δ̂li,θ̂i)}

< ∞. Consequently, (28) holds, and
substituting it in (32) implies that P∞θi− almost surely,

q∗(θi, θ̂−i)− q∗(θ̂i, θ̂−i) ≥ Jmα(θi, θ̂i). (34)

Combining (33) and (34) yields a contradiction for Jm > K.
Hence, if (20) holds, then,

q∗(θi, θ̂−i) = q∗(θ̂i, θ̂−i) (35)

for all θ̂−i.
Now, since (19) holds, combining it with (35) immediately

establishes (21), i.e., that θ̂i = θi. Consequently, the RHS
of (32) is zero, and since every term in the RHS of (32) is
nonnegative, it follows that every term is zero. Hence,

lim
L→∞

1

L

L∑
l=1

Jp(l)1Ei(l,δ̂li,θi)
= 0 (36)

and

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)>δi(l)} = 0 (37)

P∞θi− almost surely.
It follows from (13) that

lim sup
L→∞

1

L

L∑
l=1

Jp(l)1Ei(l;δ̂li,θi)
≥ lim sup

L→∞

1

L

L∑
l=1

1Ei(l;δ̂li,θi)
,

which when combined with (36) implies

lim
L→∞

1

L

L∑
l=1

1Ei(l;δ̂li,θi)
= 0.

This in turn implies, using (12), that for every t ∈ {1, . . . , T},

lim
L→∞

1

L

L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}
= 0. (38)

Since |fi,t(l, δ̂li, θi)| ≤ 1, it follows that for all t ∈ {1, . . . , T}
and all L ∈ N,

L∑
l=1

|fi,t(l, δ̂li, θi)| ≤
L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}

+

L∑
l=1

r(l)1{|fi,t(l,δ̂li,θi)|<r(l)}
.

Dividing this inequality by L and taking the limit as L→∞
implies that for all t ∈ {1, . . . , T},

lim sup
L→∞

1

L

L∑
l=1

|fi,t(l, δ̂li, θi)|

≤ lim sup
L→∞

1

L

L∑
l=1

1{|fi,t(l,δ̂li,θi)|≥r(l)}

+ lim sup
L→∞

1

L

L∑
l=1

r(l)1{|fi,t(l,δ̂li,θi)|<r(l)}
.

We have using (15) that the last term of the RHS of the
above inequality equals zero, and using (38) that its first
term is zero. Hence, for all t ∈ {1, . . . , T}, we have
limL→∞

1
L

∑L
l=1 |fi,t(l, δ̂li, θi)| = 0. This implies using (11)

that for all t ∈ {1, . . . , T},

lim
L→∞

1

L

L∑
l=1

[
1

l

l∑
l′=1

1{δ̂i(l′)=t}

]
= Pθi(t).

Multiplying this equality by t, summing both sides over t, and
simplifying yields

lim
L→∞

1

L

L∑
l=1

[
1

l

l∑
l′=1

δ̂i(l
′)

]
= µ(θi), (39)

where µ(θi) :=
∑T
t=1 tPθi(t) is the expected value of the dis-

tribution corresponding to the parameter θi. I.e., the empirical
mean of the reported deadlines converges to the expected value
of the true deadline in a Cesàro sense.
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Suppose for contradiction that for some ε > 0,

lim sup
L→∞

1

L

L∑
l=1

1{δ̂i(l)<δi(l)} = ε. (40)

Note that

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)

]

= lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)=δi(l)}

]

+ lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]

+ lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)>δi(l)}

]
. (41)

Now,

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]

< lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)1{δ̂i(l)<δi(l)}

]
+ ε

= lim sup
L→∞

[
1

L

L∑
l=1

(
δ̂i(l) + 1

)
1{δ̂i(l)<δi(l)}

]

≤ lim sup
L→∞

[
1

L

L∑
l=1

δi(l)1{δ̂i(l)<δi(l)}

]
,

where the equality follows from (40). It follows from (37)
that the last term in the RHS of (41) is P∞θi− almost surely
zero, and so substituting this and the above inequality in (41)
implies that P∞θi− almost surely,

lim sup
L→∞

[
1

L

L∑
l=1

δ̂i(l)

]
< lim sup

L→∞

[
1

L

L∑
l=1

δi(l)1{δ̂i(l)≤δi(l)}

]
.

It follows from (37) and SLLN that the RHS of
the above inequality P∞θi− almost surely equals µ(θi),
and so, lim supL→∞

1
L

∑L
l=1 δ̂i(l) < µ(θi). Combining

this inequality with (39) yields a contradiction. Hence,
limL→∞

1
L

∑L
l=1 1{δ̂i(l)<δi(l)} = 0, and combining this equal-

ity with (37) establishes (22).
We now prove the third part of the theorem. Using (30), we

have

uavg
i (θi, δ

∞
i ,θ̂−i, δ̂

∞
−i) =

[
q∗(θ̂−i)− q∗(θi, θ̂−i)

]
− lim sup

L→∞

1

L

L∑
l=1

[
Jp(l)1{Ei(l,δli,θi)}

]
.

Substituting Lemma 1 in the above equality and noting that
[q∗(θ̂−i)− q∗(θi, θ̂−i)] ≥ 0 establishes (23).

Finally, (24) follows by substituting (21) in the LHS of (24)
and using (22) and SLLN to simplify the result.
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Fig. 2. The total expected cost of satisfying the demand is plotted as a
function of varying levels of EV penetration for five different profiles of EV
deadline distributions. The solid curve corresponds to the scenario where all
EVs can lease their battery to the grid for the entire day, and denotes the
minimum possible cost at which the ISO can satisfy the demand.

V. NUMERICAL RESULTS

In our simulations, we have divided a day into a total of
five time intervals. The simulation parameters are specified
in Table I. In order to obtain conservative estimates of the
cost reduction, we have assumed all EVs to have a capacity
of 10kWh, which is an order of magnitude lesser than the
battery capacity of many EVs that are commercially available
today. With the view of rendering the stochastic program
(9) have modest complexity (see [19] for details), we have
quantized the energy levels to which the EVs can be charged
to {0, 10kWh}. We have also quantized the generator’s energy
output so that at any time, the generator can only produce an
integer multiple of 10 kWh.

The production functions used in the simulations are

cg(g) =

5∑
t=1

cg(t)g(t)

and

cs(gs) =

5∑
t=1

[
cs(t)gs(t)1{gs(t)≥0} + cs(t)g2

s(t)1{gs(t)<0}
]

where the numerical values for [cg(1) . . . cg(5)] and
[cs(1) . . . cs(5)] are specified in Table I. The function cs
can be thought of as indicating that it is in some sense easier
for the reserves to produce energy in real time than to consume
it. We have assumed the energy valuation functions of all EVs
to be the identity function so that vi(h) = h for all h ∈ R.

Fig. 2 plots the total cost q∗(θ) at which the ISO satisfies
the demand for five different deadline distribution profiles of
the EVs. The distribution θ4 corresponds to later deadlines
than the distribution θ3 in that Fθ4(t) ≤ Fθ3(t) for all t.
Similarly, Fθ4(t) ≤ Fθ2(t) ≤ Fθ1(t) for all t. Hence, in
addition to showing the reduction in costs due to increased
EV penetration, Fig. 2 also illustrates the value that later EV
deadlines provide in reducing the operating cost.
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TABLE I
SIMULATION PARAMETERS

Variable Value Units
d [36.7387 38.5138 56.6975 73.9188 57.6061] kWh
cg [12.4198 18.8367 19.1754 31.0088 33.3978] $

/
MWh

cs [27.8936 28.2861 29.3702 30.5788 34.3765] $
/

MWh
θA [0.2000 0.2000 0.2000 0.2000 0.2000]

θB [0.0770 0.2442 0.0783 0.0716 0.5290]

θC [0.0378 0.2430 0.1449 0.5683 0.0059]

θD [0.0212 0.0462 0.1019 0.2061 0.6245]

θE [0 0 0 0 1]

θ1 [θA θA θA θA]

θ2 [θB θB θB θB ]

θ3 [θC θC θC θC ]

θ4 [θD θD θD θD]

θ5 [θE θE θE θE ]

Finally and most importantly, these cost reductions can be
attained only if the EVs bid their deadline distributions and
deadline realizations truthfully, which in turn is guaranteed
only in the presence of a mechanism that renders truth-telling
a dominant strategy both in the day-ahead market and in real
time. As illustrated in the example in Section I, in the absence
of such a mechanism, strategic behavior of EVs could result
in total costs in Fig. 2 that are in excess of 6.5 for all EV
penetration levels and deadline distributions, implying that
the ISO would be better off not utilizing the EVs at all for
storage. The magnitude of the cost excess depends on the
specifics of each EV’s bidding strategy, which in turn could
be unpredictable in the absence of a unique dominant strategy.

VI. EXTENSIONS AND CONCLUSION

We have considered the problem of integrating a fleet of
strategic EVs with random deadlines into the grid and utiliz-
ing them for energy storage. Without appropriate incentive
structures, EV-power grid integration could potentially be
counterproductive to the cost- and energy-efficient operation
of the grid. This fundamentally arises because of two phe-
nomena operating in tandem — the randomness of EV usage
patterns and the possibility of their strategic behavior. We
have shown how this problem can be addressed by means
of a carefully-designed energy storage market. Specifically,
we have designed a mechanism for energy storage markets
that guarantees certain incentive and optimality properties. The
mechanism allows the ISO to achieve efficient EV-power grid
integration and satisfy the demand at minimum possible cost.

The results of the paper can potentially be extended along
several important directions. We have assumed the dead-
line distributions, the energy valuation functions, and the
demand sequence to remain the same on all days. An im-
mediate extension is to address the scenario where these
quantities could be different on different days. Denote by
{θ[1],θ[2], . . .} the sequence of EV parameters on different
days and by {d1,d2, . . .} the demand sequence on different
days. If the number of distinct elements in {θ[1],θ[2], . . .} and
{d1,d2, . . .} are finite, then the above results can be readily
extended to this more general setting. Specifically, by requiring

the EVs to report their parameters in the day-ahead market on
all days, categorizing each day into one of a finite number of
“bins” such that the reported EV parameters and the demand
sequence remain the same on all days belonging to a bin, and
instantiating in parallel the mechanism presented in the paper
— one for each bin — we obtain a mechanism that has the
desired incentive and optimality guarantees.

We have also assumed that the deadlines of all EVs are
independent random variables. Relaxing this assumption and
developing an analogous mechanism for the case where the
EV deadlines could be correlated is an important generaliza-
tion. Extending the results to the context of multi-bus power
systems is another important generalization.

REFERENCES

[1] P. Barter. Cars are parked 95% of the time. Let’s check. Accessed:
01-26-2020. [Online]. Available: https://www.reinventingparking.org/
2013/02/cars-are-parked-95-of-time-lets-check.html

[2] Sales of Electricity to Ultimate Customers by End-Use Sector. Accessed:
10-10-2020. [Online]. Available: https://www.eia.gov/electricity/annual/
html/epa 02 08.html

[3] State motor-vehicle registrations - 2017. Accessed: 10-10-
2020. [Online]. Available: https://www.fhwa.dot.gov/policyinformation/
statistics/2017/mv1.cfm
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APPENDIX A
PROOF OF LEMMA 1

Proof. Denote by σ2
t = Pθi(t)

(
1−Pθi(t)

)
the variance of the

random variable 1{δi(1)=t} − Pθi(t). Since δ∞i is drawn IID
from the distribution Pθi , it follows from the Central Limit
Theorem (CLT) that for any z ∈ R,

lim
l→∞

sup
z∈R

∣∣∣P{√lfi,t(l, δli, θi) ≤ z} −Q( zσt )
∣∣∣ = 0 (42)

for all t ∈ {1, . . . , T}, where Q denotes the cumulative dis-
tribution function of the standard normal distribution. Define

r̃(l) := r(l)
√
l. (43)

It follows from (42) that

lim
l→∞

sup
q∈N

∣∣∣P{√lfi,t(l, δli, θi) ≤ −r̃(q)} −Q(−r̃(q)σt

)∣∣∣ = 0.

Hence,

lim
l→∞

∣∣∣P{√lfi,t(l, δli, θi) ≤ −r̃(l)} −Q(−r̃(l)σt

)∣∣∣ = 0,

which using (43) becomes

lim
l→∞

∣∣∣P{fi,t(l, δli, θi) ≤ −r(l)} −Q(−r̃(l)σt

)∣∣∣ = 0.

The above equality implies that for every ε0 > 0, there exists
L0 ∈ N such that for all l ≥ L0,

−ε0 ≤ P{fi,t(l, δli, θi) ≤ −r(l)} −Q
(−r̃(l)
σt

)
≤ ε0.

Using the bound Q(z) ≤ e−z
2/2 for z ≤ 0, the above

inequality implies that for all l ≥ L0,

P{fi,t(l, δli, θi) ≤ −r(l)} ≤ e−r̃
2(l)/2σ2

t + ε0.

It follows from (14) and (43) that r̃(l) ≥
√

ln lγ for all l ≥
Lr. Combining this with the above inequality and simplifying
yields that for all l ≥ max {Lr, L0},

P{fi,t(l, δli, θi) ≤ −r(l)} ≤
1

l
( γ

2σ2t
)

+ ε0,

and so, letting ε0 ↓ 0 and noting that 2σ2
t ≤ 1

2 implies

P{fi,t(l, δli, θi)} ≤ −r(l)} = O
( 1

l2γ

)
.

Since γ > 1
2 , the above equality implies
∞∑
l=1

P{fi,t(l, δli, θi) ≤ −r(l)} <∞. (44)

It can be shown by following the same sequence of arguments
that

∞∑
l=1

P{fi,t(l, δli, θi) ≥ r(l)} <∞. (45)

Combining (44) and (45) implies
∞∑
l=1

P{
∣∣fi,t(l, δli, θi)∣∣ ≥ r(l)} <∞.

Since the above inequality holds for arbitrary t ∈ {1, . . . , T},
it follows that

∑∞
l=1 P{Ei(l, δli, θi)} <∞. Invoking the Borel-

Cantelli lemma yields
∞∑
l=1

1{Ei(l,δli,θi)} <∞

almost surely, and (25) follows.

APPENDIX B
PROOF OF LEMMA 3

Proof. Let ψ be that element of Θ that has the distribution
function Fψ(t) = max{Fθi(t), Fθ̂i(t)}. It is easy to see that

Fψ(t)− Fθ̂i(t) ≥ 0 (46)

for all t ∈ {1, . . . , T}, and that

sup
t∈{1,...,T}

{Fψ(t)− Fθ̂i(t)} = α(θi, θ̂i). (47)

Note that for all t ∈ {1, . . . , T}, Pψ(t)−Pθ̂i(t) = Fψ(t)−
Fψ(t−1)−

(
Fθ̂i(t)−Fθ̂i(t−1)

)
≤
∣∣Fψ(t)−Fθ̂i(t)

∣∣+∣∣Fθ̂i(t−
1)−Fψ(t−1)

∣∣ ≤ 2α(θi, θ̂i), where the last inequality follows
from (46) and (47). Therefore,

sup
t∈{1,...,T}

{Pψ(t)− Pθ̂i(t)} ≤ 2α(θi, θ̂i). (48)

For t = 1, . . . , T, define

βθ̂,i(t;g,π) := Eδ∼P
θ̂

[
β(δ,g,π)

∣∣δi = t
]

(49)

so that βθ̂,i(t;g,π) denotes the conditional expected cost
of satisfying the demand given that EV i disconnects from
the grid at time t, the EV departure profiles is distributed
according to Pθ̂, the generator’s energy dispatch sequence
is g, and the storage policy is π. Note that the conditional
expectation in (49) is well defined for every t, thanks to (1).
Note also that

q∗(θ̂i, θ̂−i) = Eδi∼Pθ̂i
[
βθ̂,i(δi;g

∗(θ̂),π∗(θ̂))
]
. (50)

Now,

Eδi∼Pψ
[
βθ̂,i(δi;g

∗(θ̂),π∗(θ̂))
]

−Eδi∼Pθ̂i
[
βθ̂,i(δi;g

∗(θ̂),π∗(θ̂))
]

=

T∑
t=1

(
Pψ(t)− Pθ̂i(t)

)
βθ̂,i(t;g

∗(θ̂),π∗(θ̂))

≤
[ T∑
t=1

(Pψ(t)− Pθ̂i(t))
2
] 1

2
[ T∑
t=1

β2
θ̂,i

(t;g∗(θ̂),π∗(θ̂))
] 1

2

≤ 2
√
Tα(θi, θ̂i)

[ T∑
t=1

β2
θ̂,i

(t;g∗(θ̂),π∗(θ̂))
] 1

2

,

(51)
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where the last inequality follows from (48). It follows from
(50) and the definitions of the functions g∗ and π∗ that

Eδi∼Pψ
[
βθ̂,i(δi;g

∗([ψ, θ̂−i]),π
∗([ψ, θ̂−i]))

]
− Eδi∼Pψ

[
βθ̂,i(δi;g

∗(θ̂),π∗(θ̂))
]
≤ 0. (52)

Adding (51) and (52) yields

Eδi∼Pψ
[
βθ̂,i(δi;g

∗([ψ, θ̂−i]),π
∗([ψ, θ̂−i]))

]
−Eδi∼Pθ̂i

[
βθ̂,i(δi;g

∗(θ̂),π∗(θ̂))
]

≤ 2
√
Tα(θi, θ̂i)

[ T∑
t=1

β2
θ̂,i

(t;g∗(θ̂),π∗(θ̂))
] 1

2

,

which using (50) implies

q∗(ψ, θ̂−i)− q∗(θ̂i, θ̂−i) ≤ Kα(θi, θ̂i) (53)

where

K := sup
θ̂∈Θns

2
√
T
[ T∑
t=1

β2
θ̂,i

(t;g∗(θ̂),π∗(θ̂))
] 1

2

.

That K is finite follows from (7).
Since Fψ(t) ≥ Fθi(t) for all t ∈ {1, . . . , T}, it follows

from Lemma 2 that q∗(θi, θ̂−i) − q∗(ψ, θ̂−i) ≤ 0. Adding
this inequality with (53) establishes (27).

We now turn attention to the second part of the lemma. Let
θ̂i be such that (26) holds and denote by t0 that element of
{1, . . . , T} such that

Fθi(t0)− Fθ̂i(t0) = α(θi, θ̂i). (54)

We first have using the SLLN that P∞θi− almost surely,

lim
L→∞

1

L

L∑
l=1

1{δi(l)≤t0} = Fθi(t0). (55)

Now, let δ̂∞i be any sequence such that
∑∞
l=1 1{Ei(l,δ̂li,θ̂i}

<

∞, i.e., {Ei(l, δ̂li, θ̂i)} occurs only finitely often. Combin-
ing this with (12) implies the existence of L0 such that∑t0
t=1 |fi,t(L, δ̂Li , θ̂i)| < t0r(L) for all L ≥ L0, which in turn

implies that |
∑t0
t=1 fi,t(L, δ̂

L
i , θ̂i)| < t0r(L) for all L ≥ L0.

Substituting (11) in this inequality and carrying out some
algebra yields

L[Fθ̂i(t0)− t0r(L)] <

L∑
l=1

1{δ̂i(l)≤t0}

< L[Fθ̂i(t0) + t0r(L)]

for all L ≥ L0. Using (15), this implies that

lim
L→∞

1

L

L∑
l=1

1{δ̂i(l)≤t0} = Fθ̂i(t0). (56)

Since
∑L
l=1 1{δi(l)<δ̂i(l)} ≥

∑L
l=1 1{δi(l)≤t0} −∑L

l=1 1{δ̂i(l)≤t0} for any L ∈ Z+, dividing both sides
of the inequality by L, taking the limit as L→∞, and using
(56) and (55) yields

lim
L→∞

1

L

l∑
l=1

1{δi(l)<δ̂i(l)} ≥ Fθi(t0)− Fθ̂i(t0) = α(θi, θ̂i)

P∞θi− almost surely, where the equality follows from (54). This
establishes (28).

APPENDIX C
PROOF OF LEMMA 4

Proof. Let IL := {l ≤ L : 1{Ei(l,δ̂li,θ̂i)}
= 1}. Denote by I∗L

the largest element of IL, and note that if
∞∑
l=1

1{Ei(l,δ̂li,θ̂i)}
=∞,

then I∗L = L for infinitely many values of L. Now,

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,θ̂i)}
=

1

L

∑
l∈IL

Jp(l) ≥
1

L
Jp(I

∗
L),

and so

lim sup
L→∞

1

L

L∑
l=1

Jp(l)1{Ei(l,δ̂li,θ̂i)}
≥ lim sup

L→∞

Jp(I
∗
L)

L
=∞,

where the last equality follows from (13) and the fact that
I∗L = L for infinitely many values of L.
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