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Abstract—This paper presents a mathematical model of con-
sumer behavior in response to stochastically-varying electricity
prices, and a characterization of price elasticity of consumption
induced by optimally shifting flexible demands within a fixed
time window. The approach is based on deriving the optimal
load-shifting policy through a finite horizon stochastic dynamic
program, and the analysis is performed under both perfect
and partial information about price distribution. An aggregate
demand model is constructed from individual demands with
random arrivals and random deadlines. Under this model, the
aggregate demand becomes a function of price only, and thus
allows for quantitative characterization of the utility of demand
and price elasticity. While the demand for electricity is often
deemed to be highly inelastic, it is shown in this paper that
optimal load-shifting can create a considerable amount of price
elasticity, even when the aggregate consumption over a long
period remains constant.

Index Terms—Intertemporal Utility, Mathematical Modeling
of Consumer Behavior, Price Elasticity, Dynamic Programming.

I. INTRODUCTION

The advent of new generation, storage, and demand re-
sponse technologies for improving energy efficiency will
dramatically change the characteristics of supply and de-
mand for electricity at both micro and macro levels. Con-
sequently, econometric models of consumer behavior are
extremely important for understanding the qualitative and
quantitative characteristics of demand response and efficient
integration of the related technologies. Motivated by these
considerations, in this paper we present a mathematical
model of consumer behavior in response to stochastically-
varying electricity prices, and derive the associated optimal
policies for shifting flexible loads under both partial and
full information about price distribution. The closely related
measure of responsiveness and sensitivity of demand to small
variations in price, i.e., the price elasticity of demand is also
examined within the same quantitative framework.

It has been asserted that at any given time, a considerable
portion of the generated power is supplied to flexible loads
that are shiftable in time [6]. Examples abound. Material
processing, electric vehicle (EV) charging, heating, ventila-
tion, air conditioning, refrigeration, and agricultural pumping
can be shifted by a few minutes to a few hours at little or
no cost. Some loads such as refrigeration, air-conditioning
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and heating can also be viewed as thermal storage via pre-
cooling or pre-heating. Electric vehicles can be viewed as
both electrical storage units and shiftable loads.

Previous research efforts concerning the effects of load-
shifting and storage on price elasticity of demand have been
mostly empirical and qualitative, see, e.g., [4]. In contrast,
our approach is based on stochastic dynamic programming
for optimal shifting of time-flexible loads in the presence
of stochastically-varying prices. Related quantitative frame-
works generally appear in the literature that address the
consumer energy management problem, and are mostly based
on dynamic programming.

While some earlier works such as [3] and [1] have in-
troduced and discussed the general concepts of optimization
of energy consumption under real-time electricity pricing,
recent studies more related to our work have been reported
in [5], [2], and [6]. In contrast to these studies, our model
is more abstract, which enables us to obtain analytical and
semi-analytical expressions for the solution of the underly-
ing dynamic programming problem. These technical results
provide an abstract description of a complicated system, and
enable us to develop tractable models that effectively high-
light the essential structural features of consumer behavior,
most importantly in aggregate, from the grid operator’s point
of view. The more closely related paper by Papavasiliou and
Oren [6] proposes a direct coupling of renewable generation
with shiftable loads to mitigate the imbalances caused by the
fluctuation of renewable energy supply. Their approach too,
is based on stochastic dynamic programming. In particular,
our result on the affine structure of the value function asso-
ciated with the optimal load-shifting problem were partially
obtained in [6].

The contributions of this paper are summarized as follows:
– We propose a mathematical model of consumer behavior

in response to time-varying electricity prices under both
perfect and partial information about price distribution
(Sections II and III).

– We examine the relation between the economic value of
load-shifting and price volatility. We present upper and
lower bounds on the economic value for general classes
of distributions, and exact relationships for some simple
distributions (Section IV).

– Finally, we present a model that represents the aggregate
response of a large number of consumers, and use simu-
lations to characterize the utility of the aggregate demand
under certain distributions. It is shown that load-shifting
can induce a considerable amount of price elasticity, even
when the cumulative consumption over a long period
remains insensitive to price variations (Section V).



For brevity, we have excluded all the proofs. The proofs can
be found in the full version of this paper which is available
at [10].

II. A DYNAMIC MODEL OF CONSUMER BEHAVIOR

In this section, we develop a dynamic model of consumer
behavior in response to stochastically-varying price signals.
We formulate the consumer’s energy management problem
as an inventory control problem over a finite horizon.

A. Basic Definitions

Demand is the amount of electricity that the consumer
would need to consume by withdrawing from the main grid
to fulfill all the standing needs. Consumption is the amount
of electricity that the consumer withdraws from the grid.
In the absence of load-shifting and storage, consumption
would be equal to demand. Net consumption is the amount of
electricity that the consumer withdraws from, or sells back
to the main grid. In the absence of local storage and local
generation, net consumption would be equal to consumption.

B. Components of the Model

1) Demand: We denote the consumer’s total demand at
time k ∈ {0, · · · , N} by dk, and assume that it consists of
two components:

dk = dfk + dsk

where dfk is the firm component and dsk is the shiftable
component. It is assumed that at time k = 0, both dsk and
dfk are perfectly known1 to the consumer for all periods
k ∈ {0, ..., N}. The shiftable demand dsk can be satisfied
at any time t ∈ {k, ..., N}, whereas the firm demand dfk
must be satisfied at time k. Both dsk and dfk are assumed to
be inelastic.

2) The Decisions: The decision set of the consumer is
characterized by a triplet

(uk, v
in
k , v

out
k ) ∈ [0, u]× [0, vin]× [0, vout] (1)

where, uk is the amount of electricity that, at time k, the
consumer allocates to fulfilling some or all of the shiftable
demands, and vin

k and vout
k are, respectively, the amount of

electricity that the consumer stores in, or withdraws from the
storage. The corresponding upper bounds (vin and vout) repre-
sent the physical ramp constraints on storage, while u limits
the amount of electricity that can be allocated to satisfying
backlogged demand. Letting vk = vin

k − vout
k ∈ [−vout

k , vin
k ],

the net consumption is given by

yk = vin
k − vout

k + uk + dfk (2)

= vk + uk + dfk . (3)

It is assumed that yk is constrained as:

yk ∈ [−y, y], y, y ∈ [0,∞) (4)

Thus, y = 0 corresponds to the situation where selling
electricity back to the grid is not allowed.

1Our results can be extended to the case with stochastic uncertainty in
both components of the demand.

3) The Price: Denoted by λk, the price process is a
non-negative exogenous Markovian process driven by an
independently distributed random process wk, according to

λk+1 = gk (λk, wk)

where the functions gk and possibly the distributions of wk

are known for each k. It is assumed that at the beginning of
each discrete time interval [k, k + 1] , the random variable
λk is materialized and revealed to the consumer. A specific
scenario where this model is readily applicable is where the
distributions of the prices for the next 24 hours are computed
in the day-ahead market and made available to the consumer.
In this case, we may choose g (λk, wk) = wk, where the
distribution of wk is known.

We also assume that the feed-in and usage tariffs are the
same, i.e., λk is the price per unit for both consumption (yk ≥
0) and production (yk ≤ 0), and there are no transaction
costs.

4) The States: It is assumed that the state of the consumer
is characterized by a pair

(xk, sk) ∈ (−∞, 0]× [0, s] (5)
where xk represents the amount of backlogged demand, and
sk represents the amount of stored energy. The parameter
s ≥ 0 is the physical upper bound on the capacity of storage.
We impose a deadline on backlog by requiring xN = 0.

The states xk and sk evolve according to:
xk+1 = xk + uk − dsk (6)

sk+1 = βsk + ηinvin
k − ηoutvout

k (7)

where, uk, vin
k , and vout

k are defined as in (1), β ≤ 1 is
the decay factor, ηin ≤ 1 and ηout ≥ 1 are charging and
discharging efficiency factors For an idealized model of the
dynamics of storage we have: β = 1, ηin = 1, and ηout = 1.

5) Disutility and Penalty: In general, there is a disutility
associated with backlogging the demand. We characterize
this disutility via a sequence of cost functions pk(·) which
essentially represent, in an abstract sense, the inconvenience
associated with deferring the currently standing demands.
Similarly, the cost associated with storage is characterized
via a sequence of penalty functions hk(·).

6) The Optimization-Based Model: The consumer’s en-
ergy management problem can be formulated as a finite-
horizon dynamic programming problem as follows

min E

[∑N

k=0
pk (xk) + hk (sk) + λkyk

]
(8)

s.t. xk+1 = xk + uk − dsk, xN = 0

sk+1 = βsk + ηinvin
k − ηoutvout

k

λk+1 = g (λk, wk)

yk = uk + vin
k − vout

k + dfk

The optimization problem (8) is further subject to state and
action space constraints (1), (4), (5).

We now establish conditions under which (8) can be
decomposed into two sub-problems: 1. optimal load-shifting,
and 2. optimal storage management, as defined below:



1) The load-shifting problem:

min E

[∑N

k=0
pk (xk) + λkuk

]
(9)

s.t. xk+1 = xk + uk − dsk, xN = 0

λk+1 = gk (λk, wk)

xk ∈ (−∞, 0]

uk ∈ [0, u)

2) The storage problem:

min E

[∑N

k=0
hk(sk) + λkvk

]
(10)

s.t. sk+1 = sk + vk

λk+1 = gk (λk, wk)

sk ∈ [0, s]

vk ∈ [−vout, vin]

Proposition. Let γ∗c , γ
∗
x, and γ∗s be, respectively, the optimal

solutions to the general optimization problem (8), the load-
shifting problem (9), and the storage problem (10). Let γf
be the expected cost of the firm demand:

γf = E

[∑N

k=0
λkd

f
k

]
Then, for sufficiently large u we have

γ∗c ≥ γ∗x + γ∗s + γf .

Furthermore, suppose that both y and u are sufficiently large,
and that the storage is lossless, i.e., β = 1, ηin = 1, and
ηout = 1. Then

γ∗c = γ∗x + γ∗s + γf .

The implication of this proposition is that when the limits
(y and u) are sufficiently large, the storage is ideal, and the
feed-in and usage tariffs are the same, then, the consumer
is indifferent to satisfying the demand by withdrawing from
the grid, or from the storage. Hence, not only the problems
of storage and load-shifting can be solved separately, but
also the firm demand dfk becomes irrelevant to decision-
making. The rest of the paper is devoted to the load-shifting
problem (9). The study of the storage problem is addressed
in a separate publication [9].

III. OPTIMAL POLICIES FOR LOAD-SHIFTING

A. Perfect Information about the Price Distribution

In this section, we derive the consumer’s optimal policy
for scheduling the shiftable loads using stochastic dynamic
programming under full information about price distribution.

Definition. Given a probability mass function (PMF) P with
support over a discrete set Θ ⊆ [λmin, λmax] ⊂ R+, and
cumulative distribution function F , the modulated double
cumulative distribution function (MDCDF) associated with
P is a concave function ΓP : [λmin,∞) → R− defined
according to

ΓP (x) =

min(λmax,x)∑
θ=λmin

(θ − x)P (θ) (11)

When the support of P over the set Θ is uniformly spaced
with distance L, then it can be shown using summation by
parts that

ΓP (x) = −L
∑
θ<x

F (θ)

Theorem 1. Characterization of the Optimal Policy.
Consider the load-shifting problem (9) with sufficiently large
u,

u ≥
∑N

k=0
dsk,

and i.i.d. price process λ with PMF P, and linear disutilities
of delay, i.e., pk(xk) = −pkxk. Then,

(i) The optimal policy is a threshold policy characterized by

u∗k =

{
0 if λk > tk

dsk − xk if λk ≤ tk
(12)

where, the thresholds tk can be computed via the following
recursive equations:

tN = λmax, tk = pk + tk+1 + ΓP (tk+1) (13)

where ΓP (·) is the MDCDF (11).

(ii) The value function is affine, of the form:

Vk(xk) = −tkxk + ek. (14)

where the thresholds tk are given in (13) and the constant
terms ek satisfy the following recursive equations:

eN = 0, ek = ek+1 + dsk(tk+1 + ΓP (tk+1)) (15)

(iii) Given x0 = 0, the optimal expected cost is a demand-
weighted sum of the differences between the stage thresholds
and the marginal disutilities, i.e.,

V0(0) =

N−1∑
k=0

dsk(tk − pk) (16)

B. Partial Information about the Price Distribution

In this section, we relax the perfect information assumption
and propose a robust approximation scheme for the case
where only mean and variance of the price distribution is
known. This, we accomplish by approximating the function
ΓP , which embodies the dependence of the optimal policy
on price distribution.

Theorem 2. Bounding the MDCDF. Let λmin = 0 and
λmax = 1. Given a mean µ ∈ [0, 1] and an achievable
variance σ2, let P be the set of all distributions with support
on [0, 1] that have mean µ and variance σ2, and let P ∈ P.
Then, ΓP can be bounded from above and below as follows:

Γ(x) ≤ ΓP (x) ≤ Γ(x), ∀x ∈ [0, 1],

where,

Γ(x)=


0 ; x ∈

[
0, µ− σ2

1−µ

]
(1− µ)(µ− x)− σ2 ; x ∈

[
µ− σ2

1−µ , µ+ σ2

µ

]
µ− x ; x ∈

[
µ+ σ2

µ , 1
]



Γ(x)=



−σ2

σ2+µ2x ; x ∈
[
0, µ

2+σ2

2µ

]
−σ2
√

(µ−x)2+σ2

σ2+(µ−x+
√

(µ−x)2+σ2)2
;x ∈

[
µ2+σ2

2µ , 1−µ
2−σ2

2(1−µ)

]
−(1−µ)2(x−1)
(1−µ)2+σ2 + µ− 1 ; x ∈

[
1−µ2−σ2

2(1−µ) , 1
]

Furthermore, both of these bounds are tight pointwise, in
the sense that for every x ∈ [0, 1] there exists a distribution
P ∈ P for which ΓP (x) = Γ(x) and another distribution
P ∈ P for which ΓP (x) = Γ(x). Finally, the bounds for
arbitrary (nonnegative) λmin and λmax can be obtained via
the following transformations:

Γ(x;λmin, λmax, µ, σ) = lΓ (xl; 0, 1, µl, σl) , (17)

Γ(x;λmin, λmax, µ, σ) = lΓ (xl; 0, 1, µl, σl) , (18)

where l = λmax − λmin, xl = (x− λmin)/l, µl =
(µ− λmin)/l, and σl = σ/l.

The proof of this theorem, which we omit for brevity,
relies on the fact that the pointwise bounds can be posed
as linear programs, the solutions to which suggest optimal
distributions that are mixtures of impulses.

Corollary 1. Min-Max Approximation of the MDCDF.
For x ∈ [λmin, λmax], let

Γ̂(x) = arg min
`

max
P∈P
|ΓP (x)− `| .

Then,

Γ̂(x) =
Γ(x) + Γ(x)

2
. (19)

To illustrate these approximations, consider the case where
P represents distributions over [0, 1], with mean 1/2 and
variance 1/12. In Figure 1, we plot ΓP for the special case of
a uniform distribution with these parameters, give the upper
and lower bounds of Theorem 2 over P , as well as the min-
max approximation of equation (19).
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Fig. 1. For distributions over [0, 1], with mean 1/2 and variance 1/12, we
illustrate the ΓP of the uniform distribution, as well as partial information
upper and lower bounds, and the min-max approximation.

The observation that the upper and lower bounds are not
too far apart, suggests that partial information should not
drastically change the characteristics of the consumer’s re-
sponse. We revisit this theme in the next two sections, where
we study consumer savings and aggregate price elasticity.

We will use Theorem 3 and Corollary 1 to provide robust
policies under partial information, and establish bounds on
the optimal value under such policies.

Given a sequence {tk}, we say that π is a threshold policy
associated with {tk}, if the control policy under π is of
the form (12). We denote by JP,π the expected cost under
threshold policy π, when the distribution function of λ is P .

Theorem 3. Bounding the Costs of Approximate Policies.
Let P be the set of all distributions with support on
[λmin, λmax], that have mean µ and variance σ2. Let Γ, Γ,
and Γ̂ be defined according to (17)–(19). Let {tk}, {tk}, and
{t̂k}, be sequences recursively generated according to (13)
with Γ, Γ, and Γ̂ respectively, and let π, π, and π̂, be the
associated threshold policies. Define:

J =

N−1∑
k=0

dsktk, J =

N−1∑
k=0

dsktk, Ĵ =

N−1∑
k=0

dsk t̂k.

The following statements hold:
(i) The threshold policy π is robust in the sense that

J ≤ JP,π ≤ J, ∀P ∈ P.
(ii) For any distribution P ∈ P , the optimal cost is lower

bounded by J . That is,

J ≤ J∗P
def
= sup

π
JP,π, ∀P ∈ P.

(iii) The expected cost under the min-max threshold policy
π̂ is close to Ĵ in the following sense:∣∣∣JP,π̂ − Ĵ∣∣∣ ≤ N−1∑

k=1

f(k)
∣∣∣ΓP (t̂k)− Γ̂

(
t̂k
)∣∣∣ , ∀P ∈ P

≤ 1

2

N−1∑
k=1

f(k)
∣∣Γ (t̂k)− Γ

(
t̂k
)∣∣ ,

where

f(k) =
k−1∑
i=0

dsk.

(iv) The upper bound J is a quadratic function of σ.

IV. THE VALUE OF LOAD-SHIFTING

We define the value of load-shifting as the expected
savings that result from adoption of the optimal policy (12),
when compared with consuming electricity on demand. The
formal definition is as follows:

V =
∑
k

dskµ−E[V0(x0)], (20)

where Vk(·) is the value function defined in (14). Thus,
we are benchmarking the performance of the optimal policy
(12) against the average cost in the absence of load-shifting.
Intuitively, we expect that the value of load-shifting would
increase with price volatility, as measured by the variance.
The following corollary establishes that as volatility of the
price varies while the mean price is being held constant, the



value of load-shifting is lower bounded by a quadratic func-
tion of the standard deviation for all possible distributions.
The presented bounds are applicable to both partial and full
information cases.

Corollary 2. Let V be the value, as defined in (20), of
the load-shifting problem (9). Then, for all distributions
with fixed mean µ and support over a bounded subset
[λmin, λmax] ⊂ R+, the following statements hold:
(i) There exists a constant C, such that for all achievable

variances σ2 we have
N−1∑
k=0

dsk(µ− tk) ≥ V ≥ Cσ2 =

N−1∑
k=0

dsk(µ− tk)

where {tk} and {tk} are defined as in Theorem 3.
Furthermore, regardless of the the information structure
about the distribution, both bounds are tight for N = 2.

(ii) Under full information, for all uniform distributions, V
is a linear function of σ.

We compute these bounds for the case where λmin = 0,
λmax = 100, and the mean is µ = 50. Figure 2 shows the
upper and lower bounds on V as the standard deviation σ
varies from 0 to the maximum achievable σ = 50. Note that
the lower bound applies to both worst-case distribution under
full information, and to any distribution under policy π (cf.
Theorem 3).
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Fig. 2. Illustration of upper and lower bounds on the value of load-shifting
as a function of the standard deviation, under all possible distributions
with support over [0, 100] and mean µ = 50. The shifting horizon is
N = 24. Also shown are the value under 2-point symmetric distribution
and continuous uniform distribution with the same mean µ = 50. Note
that the maximum achievable standard deviation under continuous uniform
distribution is 100/

√
12 ' 28.86.

V. UTILITY AND PRICE ELASTICITY

In Section III we observed that the optimal response of
an individual consumer to a given price is determined by
both the thresholds, which are time-varying functions of the
distribution, and the amount of backlogged demand, which
in turn depends on the history of the stochastic price process.
The response is therefore, a time-varying function of the
internal state of the consumer. In this section we introduce
an aggregation model that eliminates the dependencies of
consumption on time and the internal states of the consumers,
and thereby, allows us to characterize the collective behavior

of a large number of consumers as a function of price only.
The details of the model are as follows.

A. Aggregation Model

The aggregation model is specified as follows. We denote
the total number of consumers by L, and assume that there
is a global time horizon T for all consumers. At any given
time k ∈ {0, · · · , T}, all consumers are given the same
price signal λk. Each consumer j ∈ {1, · · · , L} starts
consumption at a random time Tstart(j) that is uniformly
distributed over {0, · · · , T − 1}, and has a random deadline
N(j) that conditioned on Tstart(j), is uniformly distributed
over {1, · · · , T − Tstart(j)}. Note that we could equivalently
interpret these as different jobs, perhaps belonging to the
same consumer, that arrive with a certain deadline in the
system. The total consumption of all consumers at time k is
the ensemble average of the individual ujk values, which for
k ∈ {Tstart(j), · · · , Tstart(j) + N(j)} is determined by (12),
and is taken to be zero if k /∈ {Tstart(j), · · · , Tstart(j)+N(j)}.

The dependence on state is eliminated by averaging over
the process history. In particular, we can define:

uj(t, λ) = E
[
uj∗t |λt = λ

]
.

In order to eliminate stage-dependence, we think of the
consumption-measuring observer as sampling a random time
τ uniformly over {0, · · · , T}. By averaging over this ran-
domness, we maintain dependence on price alone. More
precisely, we are interested in the quantity:

ua(λ) =
1

L

L∑
j=1

Eτ
[
uj(τ, λ)

]
,

which is easily captured in numerical simulations by cluster-
ing real-time prices, and averaging over each cluster.
B. Simulations

1) Aggregation Parameters: In the numerical simulations
we used L = 500 (number of consumers), T = 720 (global
horizon). The choice of T = 720 corresponds to a period of
24 hours with price updates in every two minutes.

2) Load-Shifting Model Parameters: We assume that each
consumer starts with no backlogged demand, i.e. x0 = 0,
and that dsk = 1 for all k. In order to investigate how load-
shifting penalties affect the aggregate utility, we examine two
scenarios: (a) pk = 0 for all k, and (b) pk = 0.1µ for all k.

3) The Distribution Parameters: We simulate with three
different price distributions: a discrete uniform distribution, a
3-point symmetric distribution with support in {0,0.5,1} and
P(0.5)=0.5, and a discretized and truncated log-normal dis-
tribution, using the same mean µ = 0.5 across distributions.

4) Numerical Results: Figure 3 illustrates how the nor-
malized aggregate demand changes as a function of price
for each of the three distributions in scenario (a), i.e., when
pk = 0 for all k. Each plot contains two graphs; one graph
represents the aggregate consumption for the load-shifting
problem (9) where consumers have perfect information about
the price distribution and the other represents the same
quantity where users substitute the true threshold function
with the min-max optimal approximation (19) under partial
information.
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Fig. 3. Aggregate demand vs. price, with no backlog penalty, for the uniform (left), 3-point symmetric (middle), and truncated log-normal (right) distributions.
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Fig. 4. Aggregate demand vs. price, with backlog penalty, for the uniform (left), 3-point symmetric (middle), and truncated log-normal (right) distributions.

Figure 4 illustrates how the aggregate demand changes
as a function of price for each of the three distributions in
scenario (b), i.e. when pk = 0.1µ for all k. As before, each
plot contains two graphs, corresponding to perfect or partial
information about the price distribution.
C. Interpretation

In the absence of penalties (i.e. when pk = 0 for all k, Fig.
3), the aggregate consumption varies as a relatively smooth
function of price. However, when the demand has even a
small disutility of delay, (10 precent of the average price in
these simulations, i.e., pk = 0.1µ for all k), the aggregate
demand behaves approximately according to the policy of
purchasing from the grid only when prices are below µ, see
Fig. 4. This means that the price elasticity of demand is very
small nearly everywhere, except when the price is close to a
certain threshold near µ, where the demand shows significant
elasticity. For the symmetric 3-point distribution, it follows
from the above analysis that if at any given time x percent of
the overall load is shiftable, ternary pricing could induce a
price elasticity of nearly 100x/(1 +x) percent at the middle
and lowest prices, and zero at the highest price.

In view of the results of [7], [8], the implications of this
observation is significant for stability of power grids under
dynamic pricing.

VI. CONCLUSIONS AND FUTURE WORK
We proposed a dynamic model of consumer behavior

in response to stochastically-varying electricity prices and
derived optimal policies for the load-shifting problem. We
also proposed an approximation to the optimal policy for the
case when the price distribution is not known, but only its
support, mean, and variance are given. We showed that for all
distributions with bounded support, the value of load-shifting,
defined as the total expected savings from implementing the
optimal load-shifting policies is at least of the same order as
the variance of the price.

An interesting observation is that load-shifting can induce
a considerable amount of price elasticity. The actual amount
would depend on the ratio of shiftable loads to firm loads,
which is time-varying and depends on the temporal charac-
teristics of the load.

Future work includes extending these studies to analysis of
the feedback interconnection of consumes and the wholesale
markets and investigate the implications of load-shifting and
storage on volatility and robustness of the closed loop system.
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