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Abstract

This paper pertains to the results obtained in [2]
where the authors present a new norm, which they
call the “x-norm”, and conclude that minimizing
the star norm results in good peak to peak distur-
bance rejection. The problem they treat reduces
to solving a set of parameter dependent LMIs for
standard synthesis problems in control and esti-
mation. Unfortunately, we show using examples
that minimizing the star norm does not necessar-
ily imply good peak to peak disturbance rejection.
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1. Introduction

The basic motivation of this work is to comment
on the results and claims made by authors in [2].
We establish the following

1. The star norm is not a good approximation
to ¢; in that both the ratio between these
two entities and the difference can be arbi-
trarily high.

2. The optimal star norm filter can amplify
peak to peak disturbance rejection arbitrar-
ily in comparison to its ¢; counterpart.

For the sake of completion we briefly describe the
results obtained in [2).

1.1. Analysis
The *-norm of the strictly proper, stable system

a2 o

is given by
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Definition 1 Suppose that A in Equation(1) is
stable, then the x norm is defined as

IPll« = min max ||Czl|
Lo Qe

where @ is any symmetric positive definite matric
such that for some real number a > 0, we have

1
AQqu + QoA +aQq + EBB' <0

and o € (0,k) where k = —2max(real(p(4)), |||l
denotes the £ norm.

1.2. Filtering

A B
P=1C; O
Co D

Further let BD' = 0 and DD' = I then the fol-
lowing theorem holds.

Theorem 1 Suppose that (A, B) is controllable.
Then the following statements are equivalent.

1. There ezists a strictly proper, finite-
dimensional, LTI filter F that renders
I Towlls <.

2. There exists a scalar & > 0 and e symmetric

matriz Yo > 0 such that Y, is the stabilizing
solution to the ARFE

AY, 4+ Y, A —aY, CLCLY, +aYa+éBB’ =0
and ||C1Y,Chll2 < 72
2. Worst case sz_ ratio
LS §

Here, we show that the ratio between * norm and
the ¢, norm can be infinite.



Theorem 2 Let
P = {P | P is strictly proper, stable}
then for any M € IR there exists a P € P such

that 1P
* > M
1Plle, ~

We prove this by defining a set of plants parame-
terized by A. Consider ‘
1 s—A

P {P/\IP/\ \/X(S'F)\)(S-l-:l\')’
The result then follows by direct substitution. The
result is quite obvious if one plots the correspond-
ing reachable sets as shown in the figure. As the
plot shows the reachable set estimated by the =
norm is exact along the major axis but is a poor
estimate along the minor axis. The reason can
be attributed to fitting an ellipsoid to the actual
reachable set. Infact along the minor axis the es-
timate goes to a non-zero constant. Thus in order
to get a large ratio all we need to do is to allign the
output vector roughly along the minor axis while
taking care that we do not lose observability while
doing so.
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3. Filtering problem

Having done the above analysis we can intuitively
see that control/estimation problems will suffer
the same problems. To define precisely in what
sense problems arise we follow on the lines of [1]
and make the following definition.

Definition 2 Consider a set of real rational SISO

plants H, and let L(P,K) denote the LFT of

P,K € H. Let K.(P) denote the optimal star

norm filter, and K1(P) the corresponding optimal

¢, filter for a plant P € H. Then * norm is said

to be extreme compared to ¢y in the £; sense if
”L:(Pv K*(P))”h
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The reason one would expect * norm to be extreme
should be obvious. Consider for example a filter-
ing problem where our objective is to minimize the
star norm of the transfer function between exoge-
nous inputs to the error in the hope that it will
minimize the ¢; norm. The transfer function for
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example could be like the one considered in the
previous theorem. Thus while the transfer func-
tion may have excellent peak to peak disturbance
rejection properties, it may have a large star norm.
This would mean the optimal star norm filter will
differ markedly from that of an optimal ¢; filter
(which in the above case may have gain equal to
zero). This will then result in a very £; norm. The
following theorem illustrates this particular case.

Theorem 3 The * norm is extreme compared to
£y in the ¢; sense.

Again we consider the following parameterized
family of plants and deduce the result.
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