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Abstract

We are motivated by the need to derive simple control-
oriented models of complex-systems. Briefly, complex-
systems are a collection of systems that are not approx-
imable (arbitrarily closely) by a finitely parameterized
collection of systems. The study of system identifica-
tion for such classes of systems has received consider-
able attention in the past few years. In this paper a new
formulation of the system identification problem, which
balances between the set-membership and probabilistic
approaches is presented. The salient feature of the for-
mulation is that we distinguish between the two prin-
cipal sources of error encountered in the input-output
data—noise and unmodeled dynamics. Unmodeled dy-
namics arises from the fact that the finitely parame-
terized model that we seeck does not truly character-
ize the real system. Therefore, unmodeled dynamics is
“modeled” as the residual error between the parametric
model and the real system. This viewpoint leads to a
decomposition between the parametric model class and
unmodeled dynamics. In contrast noise is modeled so
that it is uncorrelated (in a deterministic or a stochas-
tic sense) from the input. The identification problem
deals with obtaining the appropriate finite paramet-
ric model from input-output data. The identification
problem is studied for several different norms including
£; and Ho,. One of the chief outcomes is a new notion
of a persistent input and showing that there are both
deterministic and stochastic inputs which meet the new
criterion.

1 Introduction

The research reported in this paper is motivated by
the need for deriving simple control-oriented models of
complex systems. This area of research has received a
lot of attention in the past few years and work along
these lines has provided alternative formulations to the
system identification problem (e.g. [4, 1, 10,9, 6, 7, 5,
3, 8] and references therein).
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In this paper, we will give an account of a new formula-
tion for the system identification problem for complex
systems. Complex systems (77) are ones that cannot be
uniformly approximated by a finite dimensional space.
Nevertheless, we represent our prejudice by selecting
a finitely parameterized set of models (G) from which
an estimate of the original system will ultimately be
drawn. We will assume that an estimate of the distance
(in some norm) between the actual process and this set
is available as part of the prior information whenever
we want to determine the sample-complexity.

If the actual process is known, then selecting a model
in G that best approximates T € 7 in some norm is a
straightforward convex optimization problem. Hence,
given any Ty € 7, we can write T' = G + Ay where

Go = arg g}slg ITo — G|

(for simplicity, assume the above minimization is
unique).

In system identification, however, the process is not
known and only a finite set of input-output data is
available. We will assume that this set of data is gen-
erated as:

y(k) = Tou(k)+w(k) = Gou(k)+Aou(k)+w(k), & (S)N
1

where u is the input (experiment) and w is a noise set.
The objective of this development is to show, for rich
classes of noise sets (either stochastic or deterministic
that include white noise with high probability), how
to select an input experiment u and an algorithm that
picks an estimate Gy € G such that |Gy — Gn|| ap-
proaches zero in a reasonable length of time (hopefully
with polynomial sample complexity). In other words,
the derived algorithm used with the derived input pro-
vides a method for solving the actual approximation
problem only from input-output data.

To contrast this with classical formulations, recall that
in classical stochastic identification formulations the
real-physical system is modeled in a suitably, finitely,
parameterized model class and the measurements are
assumed to be corrupted by noise uncorrelated with the
input. Therefore, the estimation errors are assessed as



though the the real system belongs to the chosen para-
metric class. Consequently, the discrepancy between
the real-physical system and the model is hypothesized
to be parametric. Under-modeling is not incorporated
in the problem formulation.

In set-membership identification (see [2, 4, 7, 9, 10]
and references there in), the assumption is that the
real system is in a known set which is characterized by
unknown parameters and unknown but bounded non-
parametric (unmodeled) dynamics. In addition it is as-
sumed that the measured data is corrupted by noise be-
longing to a known set. The set of all parameters con-
sistent with prior information and experimental data is
then computed. Owing to the fact that such a general
identification problem is difficult the problem is simpli-
fied by modeling the effect of unmodeled dynamics and
noise by imposing temporal constraint on input-output
data. However, such an analysis leads to conservative
set estimates for the parameters and even in the limit
of infinite data the parameters can only be guaranteed
to lie in some set of diameter at least the size of prior
bound on the unmodeled dynamics.

In summary, the above standard formulations occupy
two extreme positions: the first assumes crisp prior in-
formation and the latter assumes overly coarse prior in-
formation. Our formulation provides a compromise be-
tween these two and incorporates the under-modeling
as part of the problem formulation.

Our work continues along the lines of [14] and distin-
guishes between the two sources of error—unmodeled
dynamics and noise. We define a natural notion of sep-
aration between the parametric part and unmodeled
dynamics. This notion arises naturally if the paramet-
ric part is a subspace of a linear space of systems. As
mentioned earlier, the idea behind the separation is
that the real system belongs to some large space of
systems 7 and if the model is to be obtained in some
subspace, G, then the uncertainty is isometrically iso-
morphic to the quotient 7/G (a mathematical conse-
quence of the optimization problem mentioned earlier).
The noise is assumed to belong to a set of signals that
are uncorrelated with the input (in either a determin-
istic or stochastic sense) is also rich enough to contain
white noise sequences. Equipped with the triple—space
of systems, parametric representation, and noise we
study consistency, sample complexity and algorithms.
We emphasize that consistency is studied with respect
to aforementioned decomposition.

We first delineate the problem setup. We do not go
into the reasons for the need for a new formulation
here other than what has already been mentioned. The
interested reader is referred to [11] for an elaborate dis-
cussion. The formulation has two aspects—consistency
and sample-complexity. Consistency is achieved if es-
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timates converge in the model class. The sample-
complexity is said to be polynomial if the length of the
input is a polynomial function of the prior error be-
tween the estimate and the true model and the size of
the model class. The second aspect concerns the study
of solutions to the formulated identification problem for
LTT stable systems equipped with Hso, Heo, €1 topolo-
gies. An important issue that arises in this context is
input design. We will construct an input that we term
a “robust” input with the property that its n'® auto-
correlation terms decay uniformly in n, with a polyno-
mial rate of decay. Equipped with this input we focus
on the solution to the identification problem for stable
systems belonging to M2 and show that consistency in
the finitely parameterized model class can be achieved
at a polynomial rate in the presence of noise. In ad-
dition, we delineate a systematic solution that can be
applied to all systems belonging to a Hilbert-Space.

We next take up Hoo identification for which no sat-
isfactory solution is shown to exist. In particular, it
is shown that identification of finite-dimensional mod-
els for systems in the Ho, space has infinite sample-
complexity. This, in a sense, implies that the estimate
of the distance between an element of this space and
the finitely parameterized set of models is too coarse if
given in terms of the Mo, norm. To this end we for-
mulate the problem on a Hardy-Sobelev space which is
closely related to Ho, space. This space happily is a
Hilbert-Space and so our identification solution can be
readily applied.

Finally, we solve the ¢4 identification problem and show
that it has polynomial sample-complexity.

2 Problem Setup

Before we present the problem certain assumptions
about the system and the data generation has to be
made. An elaborate discussion on these topics can be
found in {11, 15]. We will discuss these issues very
briefly here for the sake of completion.

We assume that the system belongs to a complex collec-
tion of systems, Z (%), which is a subset a normed linear
vector space 7. We assume the following structure for
the prior, Z(g):

I ={TeT||IT-Gl<y, GeG} (2

where G is some subspace of 7. The prior is based
on the belief that the unmodeled dynamics, when the
system is sought to be modeled in a space G, doesn’t
exceed ~.

In practice, it is possible to estimate a lower bound for
7 from input-output data. Figure 1 illustrates the rela-
tionship between the various entities we have discussed
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Figure 1: Relationship between the real-system, T, and
the model-space G

so far. This type of prior, Z(7y) facilitates a decompo-
sition between the real system and the model space G
as shown in the following theorem.

Proposition 1 Suppose 7 is a normed linear vector
space, G, a subspace of T, and G* the annihilator of
G in the dual 7* of 7. Then the following statements
are equivalent:

1. G € argming, g||T — G'||

2. T=G+ Aforsome G €Gand < ¢,A>={A]|
for some ¢ € G* and ||¢|| < 1.

Thus the unmodeled dynamics is characterized by its
alignment to the annihilators of G in the special case
when G is the subspace of 7.

We now move on to the second aspect—that of gener-
ation of input-output data. We assume that the input-
output data is generated as in Equation 1 and, to keep
the treatment simple, we assume that the noise enters
additively at the output of the system. Noise is mod-
eled by imposing temporal constraints on sample paths.
This is the case for instance in the probabilistic setting.
It has been found to be particularly fruitful in the de-
terministic setting as evidenced from [11, 15, 12, 14].
For simplicity we deal with the deterministic case alone
here. Herein sample paths for noise are assumed to be-
long to an a priori known deterministic set, W. The
main problem with coming up with useful descriptions
for noise is that if the set is too large, for instance,
persistent bounded set like Bf,, noise and input can
be completely correlated. If the set is too small, for
instance, Bf,, we sacrifice persistency. Thus any set-
based description for noise has to balance these the
two extremes. For a further discussion on this topic
the reader is referred to [14]. One model that balances
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these extremes is the following:
N

1 iP(t
Tiiog®) 250
3

PeP™ t=0

WN:{wEIRN | sup

where P™ is the class of polynomials in ¢ of order m
over the field of reals. Note that the above model is
characterized by linear constraints on finite truncations
of noise, w, and it follows that such a class is convex.
The following theorem verifies that such a noise model
is rich enough to contain typical sample paths gener-
ated by an i.1.d. process.

Theorem 1 [Richness]

Suppose z(0), z(1), (2), ... is a discrete time random
process (white gaussian process or bernoulli process)
with mean 0 and bounded variance. Then:

P(Pye(t) € Wn) =% 1 @)
where Wy is given by Equation 3.
Note that an alternate description in the form of linear

constraints can also be given. In other words the set
W contains all elements that satisfy:

Fow<l 5)
for some linear operator F,, that maps R" to Leo-
We are now ready to define the identification problem.
Problem 1 (Identification) Suppose the output sat-
isfies Equation 1 for every input u and the noise w

belongs to the set W given by Equation 3. Determine
an input u and an algorithm G™ so:

1. G™ is consistent:

limsup sup ||T-G"||<||IT-G'||, YVG' €G, VT €I

" weW,

(6)

2. Sample complezity: Given any €,y > 0 obtain
N(e,v) € Zt such that:

sup sup |||T-— G‘"H T =G|} <¢€, Vn > N(e,7)

weW, TGI('y) ( )
7

where Z(7y) is given by Equation 2.

Remark: There are several comments that are to be
made in reference to the formulation.

¢ A minimizer G(T') will exist for every T on ac-
count of finite dimensionality, however, it need
not be unique and the problem has been posed
accordingly.



e The sample-complexity is parameterized by v, an
a priori known upper-bound of the distance be-
tween the system, 7', and the subspace G. As
noted earlier it is possible to estimate v from
input-output data.

3 Results

An important aspect of identification problem is the
choice of input. In statistical identification, for the case
of LTI systems, any input which satisfies a persistency
of excitation condition is sufficient to guarantee consis-
tency. However, in our case, since we need to robustly
estimate the parameters in the face of unmodeled dy-
namics this property will not suffice. A complete study
of input selection for identification of complex-systems
is carried out in {13]. We only touch upon this topic
here for the sake of completion. To motivate the dis-
cussion consider the following example.

Example 1 :

Suppose the real system, T, is an arbitrary
LTI stable system, the model space is the
FIR space of length m, and an experiment
and model space are given respectively as:

Tu+w, Te{(tk)) et} (8)
{(g(k)Eo}
Consider identification of the FIR model in

the £; norm. The appropriate model and
unmodeled dynamics is:

Y
g

G(T) = argming g||T - Gy = (t(k))ﬁ%o)
9

Thus, from Proposition 1 it follows that A

is the tail of the impulse response of T, i.e.

A(T) = ((k))k>m (10)
and so we have:
M s
y(s) = D _t(k)u(s—k)+ Y t(kyu(s—k)+w(s)
k=0 k=M1
(11)
the annihilators, vk, k < M, for A are:

(0 1

k

Vp = 0

(12)

Notice the following dichotomy in the input
selection strategy. In the absence of noise a
pulse input of unit-amplitude is sufficient.
For, we may “filter” the output y resulting

from the pulse input through the annihila-
tors. This results in identification of the
model because:

g(k) =< v,y >=1t(k), k<M  (13)

However, in the presence of noise a long per-
sistently exciting input is necessary to aver-
age out the noise and this results in exciting
the unmodeled dynamics. A case in point
is a periodic input u. Suppose, u, with
u(s+{) = u(s), is one such input, the exper-
iment results in aliasing unmodeled dynam-
ics with the model rendering identification
of the model impossible. In other words for
s> 0: ’

s

> t(k)

k=0
(t(0) + £(1) + . . Ju(0)
FEQ) A+ 1)+ (D) + . ..+ w(s)

i

y(s) u(s — k) + w(s) (14)

Thus one obtains information only on linear
combinations of the ¢(k)’s and not individ-
ual coefficients. We don’t comment on this
example any further and revisit it at the
end of the section where we will comment
on a systematic way to cancel unmodeled
dynamics and noise. At this point all that
the reader is asked to do is to make a note
of the fact that separating unmodeled dy-
namics and noise is non-trivial.

[ |
Remark: It is worth noting that in the set-
membership literature, often, the unmodeled dynamics
is modeled by explicitly assuming a decay rate for the
unmodeled part. Such an assumption with our model
for noise will reduce the problem to one where the real
system can be modeled as an FIR and therefore the
system will no longer be complex.

The example above can be generalized further to the
case of identification of limited complexity models for
space of LTI systems and we can derive necessary and
sufficient conditions on the inputs required which we
state here in the form of the following theorem.

Theorem 2 A necessary condition for an input to sat-
isfy the consistency condition in Problem 1 is if there
exists a sequence ¢, € £, satisfying:

sup |{(¢",w)| < € Vn2> N(ey) (15)

weW,
llg"|leo < C/+/nlog(n) (16)
(", u) =1 (17)
Orgkagnlﬁ”,/\%)l < €/, Vn > N(e,7)(18)
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where C is some constant and the notation < z,y > is
given by (when the limit exists):

<zy>= nlir{.xolg 2(t)y(t)

We term any input that meets the necessary condition
a robust input. It follows from the above theorem that
a robust input be persistently exciting of infinite order
which we state in the form of a corollary below:

Corollary 1 Robust inputs are persistently ezciting of
infinite order.

Based on these conditions we classify commonly used
inputs based on the criteria of robustness.

Bernoulli | robust
Periodic | not robust
exp(iat®) | not robust
PRBS not robust
exp(tat”) | robust

The fact that the higher order chirp, exp(iat?) is ro-
bust depends on a theorem by Hardy-Littlewood and is
derived in [13, 11]. The cross-correlations of the higher-
order chirp vanish uniformly at a polynomialrate in the
length of the input. This is all we need to average out
the transients and noise. The convolution operation
being commutative allows us to rewrite Equation 11 as
follows.

§6) = 2 30 kuk) =< vy, - S (A F P ()t (8) >
k=1

k=0
(19)
where the operator A~* P, is given by

A Py (y) = (y(k), y(k+ 1), ..., y(n), 0, ...) (20)

Simplifying Equation 19 we obtain contributions from
unmodeled dynamics and noise ( as in Equation 3), i.e.,
the estimate can be verified to satisfy:

§G) =) + D HUr)rm (1) +15,(0)  (21)

T™>1
It is now straightforward to prove that:

0) 1) < 252 (22)

In general we have the following theorem:

Theorem 3 For the experiment (Equation 1) with
noise belonging to the set of Equation 3 and input
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being the higher order chirp it follows that identifica-
tion of FIR models in #; norm has polynomial sample-
complexity. Alternatively, if G is the space of FIR mod-
els of length m, and ming ¢ [T — G| < 7 then

IG" = G(Dx < & ¥n > m(y/e)® (23)

The steps involved here can be summarized as follows.

e Obtain a decomposition of the system in to a
model and unmodeled dynamics.

o Determine the annihilator (filter) of the unmod-
eled part.

o Pass the output through filter.

o Cross-correlate the filtered output with the input.

We have applied these steps in more general contexts
and met with much success. We describe these in the
sequel.

Suppose the real system, T, belongs to the class of
MIMO linear shift-invariant operators, 72*?. Such op-
erators take inputs, u, in £, ., to outputs, yr, in £, ..
They are characterized by the following equation:

t

yr(t) = (Tu)(@) = Y t(k)u(t - k) (24)

k=0

where t(k) € RP™? is called the kernel of T'. The model
space G is a mq dimensional subspace of 77*? given by:

g:{GET”XHGE [—%}—g—], BeIR’""} (25)

where A and C are fixed a priori. We solve the identifi-
cation problem outlined earlier in Section 2 for a variety
of norms/spaces. The solutions have been tabulated in
the table below and for proofs the reader is referred to
[11, 12].

{ Space | Sample-Complexity
H, Polynomial
4 Polynomial
Hoo infinite

H?!" | Polynomial

The table calls for several remarks. First, in arriving
at the polynomial complexity results it turns out that
the recipe (algorithms) used was exactly the one out-
lined earlier. Second, we prove using a counterexam-
ple that the space Ho has infinite sample-complexity.



This is not surprising considering the fact that even in
the case of non-noisy data the problem boils down to
approximating an arbitrary continuous function with
finite data. Finally, the symbol H?! stands for the
Hardy-Sobelev space. These spaces are given by:

HP = {T €T | io:(k2 + Dtrace(t(k)t*(k)) < oo}

k=0
(26)
It can be shown (see [11]) that for such spaces (unlike
Hz) a parallel robust control theory can be developed.
In this way such spaces are unique in the respect that
both identification and robust control synthesis is sim-
ple.

4 Conclusions

We have conducted a theoretical study of the identifica-
tion problem ranging from set-membership id to classi-
cal identification. One outgrowth of this study has been
the recognition that the current set-membership iden-
tification goals are too ambitious. Our focus has been
to impose structure on the space of systems to obtain
“high-fidelity” models with a short length of data. An
outcome of imposing such structures is a natural defi-
nition of separation between a model for a system and
the residual error between the model and the system.
This plays a major role in all our identification schemes.
It is important to stress here that we are interested in
obtaining consistency in the model space as opposed to
the real system. Our sample-complexity results pertain
to how fast can one identify an “appropriate” model of
a system in a finite-dimensional model space with par-
ticular cognizance to the fact that the system doesn’t
necessarily belong to the finite-dimensional space. Ac-
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