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ABSTRACT
We study a model of social learning with partial observations from
the past. Each individual receives a private signal about the correct
action he should take and also observes the action of his immedi-
ate neighbor. We show that in this model the behavior of asymp-
totic learning is characterized in terms of two threshold values that
evolve deterministically. Individual actions are fully determined by
the value of their signal relative to these two thresholds. We prove
that asymptotic learning from an ex ante viewpoint applies if and
only if individual beliefs are unbounded. We also show that sym-
metry between the states implies that the minimum possible amount
of asymptotic learning occurs.

1. INTRODUCTION
Many important decision are taken by individuals under condi-

tions of imperfect information. In such situations, it is natural for
individuals to gather information in order to improve their deci-
sions. A major source of information is the past actions of other
individuals facing similar decision problems. This motivates the
analysis of social learning problems, where a group of individ-
uals are simultaneously learning from others and also taking im-
portant economic or social decisions. Examples of social learning
problems include behavior in financial markets, where each trader
may try to learn from the positions of other traders or from prices,
consumer decisions in product markets, where purchases by other
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consumers are a key source of information, and political decision-
making, where in voting or other political actions individuals typ-
ically learn from and condition on the behavior of others. A cen-
tral question is therefore whether the equilibrium process of social
learning will lead to the correct actions by groups.1

A large literature in game theory investigates the first question.
A well-known result in this context, first derived by Banerjee [1]
and Bikchandani et al. [3], establishes the possibility of a “patho-
logical” result that features no learning and the possibility of incor-
rect actions by a large group of individuals. Consider N individ-
uals ordered exogenously and choosing between two actions, say
0 and 1. Each individual receives a signal about which action is
the right one and also observes the actions of all other agents that
have moved before him. The signal received by each individual
takes two possible values (one favoring 0 the other one favoring
1) and is identically and independently distributed across individ-
uals. Banerjee [1] and Bikchandani et al. [3] show that the per-
fect Bayesian equilibrium of this game involves a particular type of
“herding” in which following two consecutive actions in the same
direction (for example, two individuals choosing 0), each subse-
quent individual ignores his own signal and follows the actions of
these two individuals. Clearly, since two individuals choosing the
action 0 is possible even when the right action is 1, this result illus-
trates a pathological form of non-learning and incorrect actions by
individuals.

A more complete analysis of this model is provided by Smith and
Sorensen [9], who analyze the case in which signals can also differ
in their informativeness. Smith and Sorensen’s main result can be
summarized as follows. Let us refer to signals as unbounded if the
likelihood ratio of a particular state can be arbitrarily large condi-
tional on individual signals and as bounded otherwise. Smith and
Sorensen show that with unbounded signals, there will be asymp-

1A related and equally important question concerns what types of
communication and observation structures will facilitate learning.
For example, is learning more or less likely when individuals ob-
serve actions and communicate within their narrow communities?
More generally, what is the impact of the topology of a social net-
work on the patterns of learning? We study this question in our
companion paper [7].



totic learning, i.e., the probability of the correct action being chosen
converges to 1.

This literature typically focuses on social learning environments
in which individuals observe all previous actions. Consequently,
the information set of individuals making decision later is neces-
sarily finer than those moving earlier, which implies that Bayesian
posteriors form a martingale. This property enables the use of
the martingale convergence theorem and significantly simplifies the
analysis. However, most relevant cases of social learning in prac-
tice do not feature this property. Often, each individual will have
observed a different sample of actions than those who have acted
before and will not necessarily have superior information relative
to them. The existing literature, except for the more recent paper by
Smith and Sorensen [8], has not studied the properties of equilib-
rium social learning in this more realistic environment. An investi-
gation of the patterns of social learning in such an environment is
not only important because of its greater realism, but also because
it will enable us to address the second question posed above and
study what types of social structures are more conducive to learn-
ing and information aggregation.

In this paper, we take a step in this direction by studying the
simplest model of social learning without the martingale property.
Each individual again receives a signal (with varying degree of in-
formativeness) but only observes the action of the person who has
moved before him. Despite the simplicity of this environment, ex-
isting results in the literature do not apply. Moreover, the mathe-
matical structure of this simple case is very similar to the case in
which each individual observes a uniformly random decision from
the past and our result extend in a straightforward manner.

Our main results are as follows. First, we provide a recursive
characterization of individual decisions in terms of two determin-
istic thresholds, such that the value of individual signals relative
to these thresholds completely determines decisions. Second, as
in Smith and Sorensen [9], unbounded signals ensure asymptotic
learning. Third, when signals are bounded, there will never be
asymptotic learning. Finally, we show that under a symmetry con-
dition on the conditional signal distributions and with bounded sig-
nals, there will exist an equilibrium with the minimum amount of
learning in the long-run. Under very mild conditions, this equilib-
rium is unique. In contrast, with asymmetry between the states, the
amount of asymptotic learning can be quite high.

Our paper is related to the large and growing social learning lit-
erature (see [1], [3], [5], [4], [10]). Most closely related are the re-
cent papers by Banerjee and Fudenberg [2] and Smith and Sorensen
[8]. Banerjee and Fudenberg analyze a model of social learning in
which individuals observe a random sample of past actions under
the assumption that there is a continuum of agents, so that past ac-
tions reveal sufficient information about the underlying state. Smith
and Sorensen study a related environment of social learning without

Figure 1: Model of Social Learning with Limited Information.

the martingale property. While their method of analysis is different
from ours, a number of our results are present in their work. In
particular, Smith and Sorensen also show that unbounded signals
will lead to social learning. However, our results on the dynamics
of beliefs, the limiting distribution of probabilities and the role that
asymmetry plays in asymptotic learning are novel.

The rest of the paper is organized as follows. In Section 2 we
present the model, followed by an analysis of the properties of pri-
vate beliefs in Section 3. In Section 4, we characterize the evolu-
tion of ex ante probabilities of taking the correct action. Section 5
presents our main results on asymptotic learning under unbounded
signals and characterizes the convergence behavior of actions under
bounded signals.

2. THE MODEL
The game consists of a countably infinite number of agents in-

dexed by n ∈ N, acting sequentially. Each agent n has a single ac-
tion xn ∈ {0,1}. The underlying state of the world is a ∈ {0,1}. If
xn = a, then the payoff of agent n is given by un = 1, and otherwise,
un = 0. A priori, both states of the world are equally likely.

Let the information set of agent n be Ωn. We assume that Ωn =
{sn,xn−1}, where sn is the private signal of the individual drawn
independently from the conditional distribution Fa given the under-
lying state a ∈ {0,1}, and xn−1 is the action of the previous agent.

Our goal is to understand the limiting properties of a perfect
Bayes-Nash equilibrium in this model. In particular, we want to
determine the level of learning that is achieved by the agents as
measured by their ex ante probability of choosing the best decision,
i.e., P(xn = a).

DEFINITION 1. (Asymptotic Learning) There is asymptotic learn-
ing if xn converges to a in probability, i.e., limn→∞ P(xn = a) = 1.

3. PRIVATE BELIEFS
How the sequence of decisions {xn} evolves depends on infer-

ence based on individuals’ signals regarding the underlying state. It
is convenient to work with a transformation of these signals, which
we refer to as private beliefs (see [9]).



DEFINITION 2. (Private Belief) Agent n’s private belief pn is
the probability that the state is equal to 1 conditional on his private
signal sn, i.e., pn = P(a = 1|sn).

For a given signal sn, by Bayes’ rule, the private belief is

pn =
1

1+ dF0(sn)
dF1(sn)

, (1)

where dFa reduces to the density of Fa if the distribution function
has a density and the ratio in the denominator is the likelihood ratio.

Since pn is a function of sn only, the sequence of random vari-
ables {pn} is also independent and identically distributed. We will
denote the cumulative distribution function for private beliefs given
the true state a by Ga. That is,

Ga(x) = P(pn ≤ x|a), for all n ∈ N. (2)

Because the private beliefs contain all the useful information
about the signals, we will directly work with private beliefs, or
equivalently we suppose that each agent n knows only xn−1 and
pn when making his decision.

DEFINITION 3. (Bounded and Unbounded Private Beliefs) Let
β and 1− γ be the infimum and the supremum of the support of the
distribution function G1, i.e.,

β = inf
x∈[0,1]

{x : G1(x) > 0}. (3)

γ = 1− sup
x∈[0,1]

{x : G1(x) < 1}. (4)

Then, private beliefs are unbounded if β = γ = 0. The beliefs are
bounded if both β > 0 and γ > 0.

We ignore the possibility that only one of β and γ is strictly
positive to simplify the presentation.2

Unbounded private beliefs correspond to the likelihood ratio in
Eq. (1) being unbounded, which implies that an agent can receive
an arbitrarily strong signal about the underlying state. As in the
existing work on the social learning literature, this feature will have
important implications for the limiting behavior of the sequence
{xn}.

4. EVOLUTION OF THE PROCESS
In this paper, we will characterize the limiting behavior of the

agents by focusing on ex ante probabilities of correct decisions con-
ditional on the true state a. These probabilities will be denoted

Yn = P(xn = 1|a = 1) and Nn = P(xn = 0|a = 0). (5)

The unconditional probability of a correct decision is then

P(xn = a) =
Yn +Nn

2
, (6)

2Note that β and γ can be alternatively defined in terms of G0 since
the two distributions have the same support.

Figure 2: Equilibrium Decision Rule Depicted on the Private
Belief Interval.

and therefore asymptotic learning (from an ex ante point of view)
is equivalent to the convergence of the sequence {(Yn,Nn)}.

Let us next define the thresholds

Un =
Nn

1−Yn +Nn
and Ln =

1−Nn
1−Nn +Yn

, (7)

which will fully characterize the decision rule as described by Lemma
1 below. Note that the sequence {(Un,Ln)} only depend on {(Yn,Nn)}
and therefore are deterministic. This reflects the fact that each indi-
vidual recognizes the amount of information that will be contained
in the action of the previous agent, which determines his own de-
cision thresholds. Individual actions are still stochastic since they
are determined by whether the individual’s private beliefs is below
Ln, above Un or in between.

DEFINITION 4. Agent n’s strategy σn is a mapping from his in-
formation set to his possible actions, i.e., σn : Ωn → {0,1}. A per-
fect Bayesian equilibrium of the game is a sequence of strategies
for the players {σ∗n } such that for each n, σ∗n maximizes the agent’s
expected utility given {σ∗1 , . . . ,σ∗n−1,σ∗n+1, . . .}.

LEMMA 1. Let Un and Nn be given by Eq. (7). Then, in all
perfect Bayesian equilibria agent n’s decision rule satisfies:

xn =






0, if pn < Ln−1,
xn−1, if pn ∈ (Ln−1,Un−1),
1, if pn > Un−1.

Using Eq. (7), it follows for any β > 0 that Ln ≥ β if and only if

Nn +
(

β
1−β

)
Yn ≤ 1. (8)

Similarly, Un ≤ 1− γ if and only if
(

γ
1− γ

)
Nn +Yn ≤ 1. (9)

We obtain a stationary zone (the shaded area in Figure 3) such
that once the sequence {(Yn,Nn)} enters this area, it remains con-
stant. This region is the singleton (1,1) when beliefs are unbounded
and is a non-degenerate quadrilateral when beliefs are bounded.
Asymptotic learning is clearly equivalent to limn→∞{(Yn,Nn)} =
(1,1).



Figure 3: Stationary Zone on (Yn,Nn) Graph.

5. CONVERGENCE ANALYSIS
The next proposition is one of the main results of our paper and

shows that the sequence {(Yn,Nn)} asymptotically approaches the
stationary zone given by the shaded area in Figure 3.

PROPOSITION 1. Let Ln and Un be as defined in Eq. (7) and β
and γ as in Eq. (3). The sequences Ln and Un satisfy

limsup
n→∞

Ln ≤ β , and liminf
n→∞

Un ≥ 1− γ .

The proof of this and all other results are provided in [6].
An implication of Proposition 1 is that asymptotic learning oc-

curs when the private beliefs are unbounded.

PROPOSITION 2. When the private beliefs are unbounded, asymp-
totic learning occurs, i.e., limn→∞P(xn = a) = 1. When the beliefs
are bounded, asymptotic learning does not occur, i.e., limn→∞ P(xn =
a) < 1.

5.1 Learning under Symmetry
When beliefs are bounded, Proposition 2 does not specify whether

and where the sequence {(Yn,Nn)} will converge. We will next es-
tablish that under a symmetry assumption there exists an equilib-
rium with the minimum amount of asymptotic learning possible.

ASSUMPTION 1. (Symmetry) The states are symmetric if G0(r)=
G1(1− r) for all r ∈ [0,1].

ASSUMPTION 2. G0 and G1 have densities.

The next proposition contains the main convergence result of this
subsection. In particular, we show that both sequences {Nn} and
{Yn} converge to the limit (1−β ).

PROPOSITION 3. Assume that symmetry holds. Then, there ex-
ists an equilibrium where the sequences {Nn} and {Yn} both con-
verge to the limit (1−β ), i.e., limn→∞ Nn = limn→∞ Yn = (1−β ).
If Assumption 2 also holds, this equilibrium is unique.

Figure 4: Example Showing Asymmetry Could Lead to More
Learning.

If symmetry does not hold, then the sequence {Yn + Nn} might
converge to a value greater than 2(1− β ), i.e., not to the edge of
the shaded region in Figure 3.

As an example of the behavior of asymptotic learning without
symmetry, Figure 4 represents the dynamics of {(Yn,Nn)} for the
following the distribution G0(r) = 18

30 , for r ∈ [0.1,1− 0.7) and
the cumulative distributions having value 0 if r < 0.1 and value
1 for r ≥ 0.7 (there is a unique G1 associated with this G0). In
this example, private beliefs can take only two values, 0.1 and 0.7.
The private belief of 0.1 implies a strong likelihood that 0 is the
true state, while a belief of 0.7 implies a much weaker likelihood in
favor of state 1. In this example, the sequence {(Yn,Nn)} converges
to a point in the interior of the stationary zone as can be seen in
Figure 4. As noted above, this limit point involves a greater amount
of asymptotic learning than in the case with symmetric pair.

6. CONCLUSIONS
In this paper, we presented an analysis of social learning when

individuals only observe the action of their immediate neighbor.
Despite the simplicity of this environment, the evolution of beliefs
is substantially different than the typical models of social learn-
ing in the game theory literature. We characterized the behavior
of asymptotic learning in terms of two threshold values that evolve
deterministically. Individual actions are fully determined by the
value of their signal relative to these two thresholds. We prove that
asymptotic learning from an ex ante viewpoint applies if and only
if individual beliefs are unbounded. We also show that for symmet-
ric states bounded signals imply the minimum possible amount of
asymptotic learning.

The tools introduced in this paper can be generalized to analyze
social learning in environments in which individuals observe many
samples of past actions and investigate how the topology of com-
munication across agents affects information aggregation and the
likelihood of asymptotic learning. This is an area we are investi-
gating in [7].



7. REFERENCES
[1] Banerjee A., “A Simple Model of Herd Behavior," Quarterly

Journal of Economics, vol. 107, pp. 797-817, 1992.

[2] Banerjee A. and Fudenberg D., “Word-of-mouth Learning,"
Games and Economic Behavior, vol. 46, pp. 1-22, 2004.

[3] Bikchandani S., Hirshleifer D., and Welch I., “A Theory of
Fads, Fashion, Custom, and Cultural Change as Information
Cascades," Journal of Political Economy, vol. 100, pp.
992-1026, 1992.

[4] Ellison G., Fudenberg D., “Rules of Thumb for Social
Learning," Journal of Political Economy, vol. 101, no. 4, pp.
612-643, 1993.

[5] Ellison G. and Fudenberg, D., “Word-of-mouth
communication and social learning," The Quarterly Journal
of Economics, vol. 110, pp. 93-126, 1995.

[6] Lobel I., Acemoglu D., Dahleh M., Ozdaglar A., “Learning
from Neighbors,", MIT Mimeo, 2007.

[7] Lobel I., Acemoglu D., Dahleh M., Ozdaglar A., “The
Structure of Information and Limits of Learning,", MIT
Mimeo, 2007.

[8] Smith L. and Sorensen P., “Rational Social Learning with
Random Sampling," unpublished manuscript, 1998.

[9] Smith L. and Sorensen P., “Pathological Outcomes of
Observational Learning," Econometrica, vol. 68, no. 2, pp.
371-398, 2000.

[10] Vives X., “Social Learning and Rational Expectations,"
European Economic Review, vol. 40, pp. 589-601, 1996.


