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‘Abstract

In this paper we present a new framework for itera-
tive modeling and control. We begin by describing the
unknown process with an uncertain model whose pa-
rameterization depends on prior information, available
control design tools and other modeling preferences.
The next step is an iterative procedure for refining the
uncertainty set via robust control based model inval-
idation and can be viewed as a systematic way of ef-
ficiently searching for a controller delivering a certain
desired level of performance to the unknown process.
As a result, either the performance goal will be met
or the entire uncertainty set will be invalidated in ac-
cordance with our modeling and control method preju-
dice. An iterative scheme based on a fixed pole model
structure and rank one mixed p synthesis will be de-
scribed in detail and a specific example will be used to
illustrate the ideas.

1. Introduction

Over the past decade, there has been much research ac-
tivity in the area of worst—case, or control-oriented sys-
tem identification. The motivation can be attributed
to new advances in robust control theory which did
not interface well with existing theory of classical sys-
temn identification. The main focus of this research has
been the design of algorithms that yield nominal mod-
els along with measures of uncertainty which are well
suited for robust control design [8, 7, 21, 17, 11]. Un-
fortunately, these worst—case algorithms tend to pro-
vide error bounds which are very conservative in prac-
tice [10] and are therefore of limited utility. This is one
motivation for the area of iterative identification and
control which has recently gained attention in the con-
trol community. Several researchers have been work-
ing on the connections between identification and con-
trol [1, 23, 24, 6, 14, 19, 20, 13, 12]. This work has typ-
ically been in the spirit of adaptive control. In other
words, a sequence of nominal models is being identified,
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while a sequence of corresponding controllers (usually
robust) is being designed for these models. The hope is
that the models are, in some sense, getting closer to the
unknown process.and the performance is improving.

The more recent formulation of Dahleh and Doyle [2]
uses a somewhat different philosophy. Here, the goal
is to observe some experimentally generated finite set
of data and find a controller that meets a given per-
formance specification for the unknown process. The
model is thought of as a tool which is chosen based
on the designer’s preferences of control design tech-
niques and ways of explaining the observed data. In
this sense, the chosen model parameterization is good
only if a controller designed for this model can also
achieve good performance with the unknown process.
On the other hand, if a controller delivers good per-
formance with the model, yet-fails to - meet the perfor-
mance specifications with the unknown process, this
model is considered to be a poor description of the
process and should be invalidated. In this way, a con-
servative model set can be effectively shrunk until the
remaining elements can deliver a controller which will
achieve the desired performance specifications on the
actual process, or the whole set is invalidated.

In this paper we give a concrete example of an itera-
tive scheme that was presented in [16]. This iterative
scheme is based on a fixed pole model (FPM) and the
rank one mixed p synthesis (ROS) robust control tech-
nique. The following sections discusses the model and
the robust control technique. This is followed by a de-
tailed description of the iterative scheme based on the
FPM and ROS, and some of the computations associ-
ated with it. Finally, a specific example of the ROS
based iterative scheme is considered in Section 5.

2. Selection of Model Parameterization

In general, the selection of the model parameterization
is a process that requires engineering insight as well as
careful consideration of available robust control tech-
niques and available information about the process to
be controlled. Currently there are few robust control
methods available and the existing methods incorpo-
rate only special types of performance objectives and
uncertainty structures [4, 3, 22, 18, 5, 9]. All of these



design methods can accommodate unmodeled dynam-
ics as uncertainty and norms of weighted transfer func-
tions as design specifications. The mixed-u (rank one)
synthesis method of Rantzer and Megretskii [18] can
also nonconservatively accommodate parametric un-
certainty models (having some structural restrictions).
Once the desired model structure, or parameterization
is chosen, the problem is to efficiently map the prior
information about the unknown process into a model
set having the desired structure. This step can be ex-
tremely difficult and so the structure of the prior infor-
mation can significantly influence the choice of model
parameterization.

This model set transformation step can be made more
rigorous by defining the original prior information set
to be the set of models consistent with the priors

Moprior = {P(a) : a € 4, CR"}
where the prior information is embedded in A4, and
the functional dependence of P(a) on a. Note that
any unmodeled dynamics are also contained in Mprmr
Given the desired model structure parameterization,
G(#,4), the goal is to find the smallest ¢ > 0 and
©, C R™ such that

Mprior C Myes = {G(e, A):8€0,, ”A”oo <e¢}

This is generally a very difficult problem to solve and
some approximate solutions are examined in [15].

2.1. Fixed Pole Model for Rank One Synthesis
The ROS design method was developed by Rantzer
and Megretskii in [18]. The method is limited to spe-
cial model structures (i.e., SISO, MISO and SIMO with
real and complex coprime factor perturbations), how-
ever, the solution is a convex optimization problem. If
we also require robust performance such as minimizing
a weighted sensitivity (i.e., ||W#,S]|), the uncertainty
can only be in the numerator of the model if the rank
one structure is to be maintained. The correspond-
ing model will be referred to as the fixed pole model
(FPM) and is given by

Yo ezt + WA

G(8,A) = AG)

(2
where ||Ajj £ 1,8 € © C R™, W is a stable and in-

vertible weighting function, and A(z) is a stable poly-
nomial.

When the prior information is given in terms of uncer-
tain pole locations or other structures which are not
compatible with fixed poles, the mapping of these pri-
ors into the appropriate parameter set © and a weight-
ing function W can be difficult. In particular, when
W = eW,, one would like to compute the smallest

(1)
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€ > 0 and the corresponding set © such that the FPM
set contains all the plants given by the prior informa-
tion. It can be shown that computing ¢ is equivalent
to computing the n-width of the prior model set [15],
and finding the corresponding parameter uncertainty
set © is also a difficult task. For this model and the
iterative scheme described in Section 4, it is important
to choose W with very little conservatism (i.e., try to
lump as much of the pole mismatch into the parametric
uncertainty as possible) because the iterative scheme
will reduce uncertainty in the parametric part, while
the WA part will remain fixed. The problem of choos-
ing the smallest ¢ is examined in detail in [15].

3. Rank One Mixed g Synthesis

We first show that the fixed—pole model (FPM) hav-
ing a hypercube for the parameter uncertainty set is a
special case of the perturbed coprime model (PCM).
The PCM is the model used in the rank one synthesis
theory and is of the form (SISO case)

c _ N+6TN,5 + ANa
8T M+ 6TM; + AMa

with N, M € RH,, (N, M) coprime, § € R™, |[6]|oc <
1, A € RHo, ||Allow < 1, Ns,Ms € RHT and
Na,Map € RHy. The fixed-pole model we want is
given by

6
Goa = ( ) + WA
where B(f) = 3", 6r2*, 0 € @ C R™, © is a hypercube
which is centered at 6, and has side lengths {mx}, and
[IA]] € 1. This corresponds to the PCM model above

with M = 1, N = B(6,)/A, Na = W, Ma = 0,
M;s = 0, and
Nj = [0 mz - pr—12™ T
A(z)

We now incorporate the robust performance objective
which is given by ||W,S||c < 7. This can be trans-
formed into a robust stability problem as follows. De-
fine G, = Gs5,a(1 — ApW,)~! which can also be ex-
pressed in terms of the uncertain coprime model as

N +8TNs + ANa + ApNa,

Ga= M + 6T Ms + AMa + ApMa,

()

with Na, = 0, Ma, = W, and the rest of the quan-
tities defined as above. The goal is to find the largest
v~1! such that G, can be stabilized for all ||A|| < 1 and

Al <7~

The general rank one synthesis result was solved by
Rantzer and Megretski [18] who derived a convex pa-
rameterization of all robustly stabilizing controllers for
rank one uncertainty lying in a convex set. We will
state this result in the form specialized for the FPM.



Let the nominal model, B(f.)/A, be denoted by G and
define

. W (lo + BIG + )|
H@f)= s Tea—Re(Nsla+ A~ [ Na(a T B

where a is a positive real transfer function, g is any
stable transfer function, and all quantities are evalu-
ated at e**.

4. Iterative Procedure

Having mapped the priors into a FPM set and having a
solution to the scheme robust control problem, one can
try using an iterative based on the FPM and ROS with
a performance objective which is implied by keeping
the weighted sensitivity transfer function small.

Partitioning of the model set will be performed with

. respect to © while WA is assumed to represent the

inherent nonparametric uncertainty and will remain
fixed in size. Thus, we will refer to © as the model
set and suppress the WA part which is fixed for each
parameter value in ©. The iterative procedure based
on ROS consists of the following steps.

1. Label the initial model set @y and set k = 0.
2. Can the desired performance be achieved for ©;
by some K7 If yes, go to (4).

3. Refine O in the following way (to achieve better
performance):

(a) Find j such that the performance is most

sensitive with respect to the jth parameter,
9.
-

(b) Split © along the jth dimension, resulting
in the two sets X and X, with O = XoU
X;.

(c) (Skip if & = 0) If X, is smaller than the
smallest allowable partition size we invali-
date B by decrementing k by 1, and go to
(2).

(d) Find ¢ € {0,1} such that the best perfor-
mance which can be achieved for X is bet-
ter than the one for X1_4. Let Kiy1 be the
controller which delivers this performance
to X,.

(e) Set ©r = X1, Op41 = X, increment
by 1, and go to (2).

4. Connect K} to the plant and test for performance
5. If the performance is satisfied, stop.

6. If ¥ > 0 invalidate © by decrementing k by 1
and go to (2). Otherwise, choose a new model
parameterization and go to (1).

This procedure has several nice properties. Choosing
the smallest allowable partition size to be nonzero, we
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are guaranteed termination in finite time. Every time
a set is split, the memory requirement is only increased
by one unit (containing the center and side lengths in-
formation, for example) so there is no geometric or ex-
ponential explosion in required memory. The search is
optimistic, always seeking the best set in the partition.

The computationally difficult steps are steps 2, 3d, and
possibly 3a. Note that in steps 2 and 3d, we are trying
to synthesize controllers meeting either the desired or
the best possible performance levels, with step 3d hav-
ing to solve two such problems. Step 3a which com-
putes the sensitivity of performance with respect to
each parameter is fairly easy to compute in the special
case of ROS and FPM. The solution is given by the
following result, which we state without proof.

Lemma 4.1 Assume that the ROS solution gives a
Jeasible pair (a(2), B(2)) as well as the worst frequency,
wo which mazimizes the functional. Then the param-
eter which has the greatest impact on performance is
given by Or_,., where

e ()

5. Ilustrative Example

kmar = arg max
o gke[o,n-—l]

In this section we present an example which illustrates
the iterative scheme described in the previous sections.
It is assumed that the plant is known to consist of a
second order lightly damped mode with two flexible
modes at higher frequencies. The lightly damped mode
is known to be of the following form.

1

P(s)= V—F7r———
(s) 8% + 2bwns + w2

where w < w, < W, £ £ £ L E, and it is known
that w = 0.7, @ = 0.8, € = 0.2, and € = 0.3. It
is known that the two other modes occur at frequen-
cies of approximately 8 and 12 rad/s. We can discard
these modes and represent them with unmodeled dy-
namics of the form WA. After converting everything
to discrete time (T34, = 0.15s) we model the simplified
plant by the fixed pole approximation. The simplified
plant is given by the following.

0.01212+0.0119 ¢, €
22 +ajz+ag ag €

(~1.9456, —1.9122]

P(a;2) = [0.9274, 0.9570]

This means that the fixed pole model is of the form

L0zt 4 (¢ + DW)A

G0, 8) = (5 = 102807 + 0.9422) 77

where €* can be obtained from the results in [15] and
D(z) is the denominator polynomial (22 — 1.92892 +



P(z) =

0.9422)Ll™/2], The €* represents the error between the
FPM and simplified plant, while the DW term is the
error between the full order and simplified plant.

We assume that the actual plant is given by

0.001812% — 0.00262* + 0.00552% + 0.008722 + 0.0005z + 0.0053

For visual presentation purposes we consider a fixed
pole model of order m = 2. The corresponding €* is
0.0084. The ideal performance objective is assumed to
be good tracking of certain duration step inputs, how-
ever, for the robust control design we will use small
I, gain of the weighted sensitivity transfer function as
the design objective. We consider a weighting function
which will allow designs of fairly demanding bandwidth
(i.e., beyond the first lightly damped mode). This

weighting function is given by W, = £=2152,

5.1. Iterative Scheme Simulation Results

We now demonstrate a few examples of the iterative
scheme. We take the two dimensional parametric un-
certainty set to be the smallest hypercube bounding
the set which is asymptotically given by the robust
set membership identification algorithm given in [15].
This also serves to show the potential improvement in
performance which can be achieved by the iterative
scheme.

We consider the evolution of the iterative scheme for
various desired performance levels, v4.s. This is shown
in Figures 1 through 4. The smallest partition size is
chosen such that the space is split at most three times.
The lightly shaded boxes are the ones under current
consideration and the dark shaded boxes are the ones
that have been invalidated. The values ¥ correspond
to the achievable robust performance for the lightly
shaded box, while v, corresponds for the performance
level achieved when this controller is applied to the ac-
tual process. The first execution of the scheme uses
Ydes = 2.5 and the results are shown in Figure 1. One
can see that the algorithm proceeds towards the box
which predicts ¥ = 1.66 and the actual performance
is satisfied (7, = 1.16). The next example considers
the case when v4e; = 1.25. In this case, shown in Fig-
ures 2 through 4, the optimistic search leads to the
upper right corner of Grid 2 and we see that the ac-
tual performance will miss the desired value of 1.25
so the upper right corner is invalidated. In addition,
the box (two boxes down from upper right box) hav-
ing v = 1.189 is invalidated because the actual per-
formance misses 1.25. Finally, we come to the box
which has v = 1.249, and the actual performance is
met (7, = 1.22).

When the desired performance is ¥ = 1.2, the en-
tire model set is invalidated. To achieve better per-

3549

26 — 2.401525 + 2.55682% — 1.836923 + 0.962022 — 0.4987z + 0.2362

formance than this one can use the 4th order model.
Running the iterative scheme with this model and a
desired ¥ of 1.0, the scheme terminates after 11 iter-
ations with a predicted ¥ = 0.989 and the achieved
¥ = 0.987.

6. Conclusion

This paper presented a new framework for iterative
modeling and control. The philosophy of this frame-
work is a very different way of viewing models and their
role in designing controllers for uncertain systems. The
model is viewed as a tool used to describe the unknown
process and really depends on prior information, avail-
able control design tools and other modeling prefer-
ences. The approach described in this paper was an
iterative procedure for refining the uncertainty set via
robust control based model invalidation and can be
viewed as a systematic way of efficiently searching for
a controller delivering a certain desired level of per-
formance to the unknown process. In this way it is
possible to invalidate the model if it does not facili-
tate design of a controller which also provides good
performance for the actual process. The result of an
iterative scheme in this framework is that either the
performance goal will be met or the entire uncertainty
set will be invalidated in accordance with our model-
ing and control method prejudice. An iterative scheme
based on a special fixed pole model structure and rank
one mixed u synthesis control design was described in
detail and a specific example was used to illustrate the
proposed scheme.

References

[1]  B. Anderson and R. Kosut. “Adaptive Robust Control:
On-Line Learning”. pages 297-298, Brighton, England, Decem-
ber 1991.

[2]  M.A. Dahleh and J. Doyle. “From Data to Control”. In
Proc. Workshop on Modeling of Uncertainty in Control Systems.
Springer—Verlag, 1992.

[3] M.A. Dahleh and M. Khammash. “Controller Design for
Plants with Structured Uncertainty”. Automatica, 21, January
1993.

[4]  J.Doyle and G. Stein. “Beyond Singular Values and Loop
Shapes”. Journal of Guidance and Control, 14(1):5-16, January
1991.

[5] N. Elia, P. Young, and M.A. Dahleh. “Robust Perfor-
mance for Fixed Inputs”. In Proc. 1994 Conference on Decision
and Control, Orlando, FL., December 1994.

[6] M. gevers. “Connecting Identification and Robust Con-
trol: A New Challenge”. Technical Report Rep. 91.48, Université
Catholique de Louvain, Louvain, Belgium, 1991.

[7]  G. Gu and P. Khargonekar. “Linear and Nonlinear Al-
gorithms for Identification in H*° With Error Bounds”. IEEE
Transactions on Automatic Control, 37(7):953-964, July 1992.

(8] A.J. Helmicki, K. Jacobson, and C. Nett. “Control Ori-
ented System Identification in Hoo”. IEEE Transactions on Au-
tomatic Control, 36(10):1163-1176, October 1991.

[9] M. Khammash. “Robust Steady State Tracking”. In
Proc.1994 American Control Conf., Baltimore, MD., 1994.

[10] P. Khargonekar. “System Identification in Frequency Do-
main: Theory and Examples”. Proceedings Conf. Feedback Con-
trol, Nonlinear Systems, and Complezity, May 1994.



[11] R. Kosut, M. Lau, and S. Boyd. “Set-Membership Iden-
tification of Systems with Parametric and Nonparametric Un-
certainty”. IEEE Trans. on Auto. Control, 37(7):929-941, July
1992.

[12] J. Krause, P.P. Khargonekar, and G. Stein. “Ro-
bust Adaptive Control: Stability and Asymptotic Perfor-
mance”. IEEE Transactions on Automatic Control, 37(3):316—
331, March 1992. :

[13] J. Krause, G. Stein, and P.P. Khargonekar. “Robust
Performance of Adaptive Controllers with General Uncertainty
Structure”. In Proc. 1990 Conference on Decision and Control,
Honolulu, Hawaii, December 1990.

[14] W. Lee, B. Anderson, R. Kosut, and I. Mareels. “On
Adaptive Robust Control and Control-Relevent System Identi-
fication”. In Proc. 1992 American Control Conference, pages
2834-2841, Chicago, IL, June 1992.

[15] M. Livstone. Identification, Robust Adaptation and Ii-
erative Schemes. PhD thesis, MIT, Cambridge, Massachusetts,
October 1994.

[16] M.M. Livstone, M.A. Dahleh, and J.A. Farrell. “A Frame-
work for Control Based Model Invalidation”. Proc. 1994 Amer-
ican Control Conference, Baltimore, MD, June 1994.

{177 P.M. Mskild . “Robust Identification and Galois Se-
quences”. Technical Report Rep. 91-1, Abo Akademi (Swedish
University of Abo), Abo, Finland, January 1991.

[18] A. Rantzer and A. Megretski. “A Convex Parameteriza-
tion of Robustly Stabilizing Controllers”. Technical report, The
Royal Institute of Technology, Stockholm, Sweden, 1993.

[19] R. Schrama and P. Van den Hof. “An Iterative Scheme
for Identification and Control Design Based on Coprime Factor-
izations”. In Proc. 1992 American Control Conference, pages
28422846, Chicago, IL., June 1992.

[20] R.P.J. Schrama. “Accurate Models for Control Design:
The Necessity of an Iterative Scheme”. IEEE Transactions on
Automatic Control 22(2):173-179, July 1992.

[21] D. Tse, M.A. Dahleh, and J. Tsisiklis. “Optimal Asymp-
totic Identification Under Bounded Disturbances”. Proc. 1992
American Control Conference, Chicago, IL, pages 679-685, July
1992.

[22] P.M. Young. “Robustness with Parametric and Dynamic
Uncertainty”. PhD thesis, California Institute of Technology,
Pasadena,CA, May 1993.

[23] Z. Zang, R. Bitmead, and M. Gevers. “Hy Iterative
Model Refinement and Control Robustness Enhancement”. In
Proc. 1991 Conference on Decision and Control, pages 279284,
Brighton, England, December 1991.

[24] Z.Zang, R. Bitmead, and M. Gevers. “Disturbance Rejec-
tion: On-Line Refinement of Controllers by Closed Loop Mod-
elling”. Technical Report Rep. 92.15, Université Catholique de
Louvain, Louvain, Belgium, 1992.

Figure 1: Iterative Scheme (745 = 2.5)
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Figure 2: Iterative Scheme: steps 1-4 (yges = 1.25)

y=1.229 Invalidated
¥=1.286 ¥=1.307

Figure 3: Iterative Scheme: steps 5-8 (Vdes = 1.25)

¥=1.189 v,=1.263 Invalidated

\

¥=1.249 y,=1.219

Figure 4: Iterative Scheme: steps 9-12 (yges = 1.25)




