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Abstract

Input-output stability results for feedback systems
are developed. Robust Stability conditions are pre-
sented for nonlinear systems with nonlinear uncer-
tainty defined by some function (with argument equal
to the norm of the input) that bounds its output
norm. A sufficient small gain theorem for a class of
these systems is presented. Then it is also shown that,
for the vector spaces (£, || - |loo) and (€2, - ||2), the
sufficient conditions are also necessary with some ad-
ditional assumptions on the systems. These results
capture the conservatism of the small gain theorem
as it is applied to systems that do not need to have
linear gain.

'1 Introduction

This paper considers the development of necessary
and sufficient conditions for the robust stabilization
of certain classes of nonlinear plants. The problem of
robust stabilization may be stated as follows. Given
a nominal plant model and a family of possible true
plants, under what condition does some compensator
which stabilizes the nominal plant also stabilize every
plant in the given family?

The idea that a loop of less than unity gain ensures
stability of a feedback loop has been appreciated since
the early days of classical control. In mathematical
terms, it is related to well-known ideas on invertibility
of nonlinear operators of the form I + G1G2 where I
is the identity and G, G are nonlinear operators on
Banach spaces.

The usual form of the small gain theorem assumes
gain properties of the form

I(Mu)r|l < Ylurl 1)

for 'the operator M where u denotes the input sig-
nal, v = sup,o Hﬁﬂ, and ur denotes the trun-

cation of the signal v at time T. With this struc-
ture, it is shown that, if M is linear, for p = 2,00 if
IAllg, ;s <1 then the feedback system of A and M
achieves robust stability if and only if ||M{], <1

p—ind —
For details, see [1]. For a nonlinear M, the result is
shown only for p = 2 (see [6] or [7]).

In [5] a new notion of stability for nonlinear sys-
tems 1s introduced. There, a generalization of (1) is
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given to allow more general bounding functions of the

form
[(Mu)rll < f(llurl)

where f(-) is a monotone function. Systems satisfying
the last inequality are called monotone stable.

While conditions for sufficiency were shown with
this new notion of nonlinear gain (also used by oth-
ers like {8] or [9]) no results on the necessity of such
conditions are known. Such results are useful to un-
derstand the degree of conservatism that the small
gain theorem has. Necessity conditions for linear gain
exists (see [1] or [3]). There also exists necessity con-
ditions for nonlinear systems that have their output
norm bounded by a linear function of the input norm
(see [6] or [7]). :

In this paper, an extension of the small gain theo-
rem presented in [5] will be given. Using this theorem
we will present sufficient conditions on M in order to
guarantee robust stability. For a certain class of per-
turbations, these conditions on M will be simplified.
Then, for the vector space (€eo, || - floo) We will give
conditions on M so that the sufficient conditions are
also necessary with either NLTV or NLTT perturba-
tions. For the vector field (£2, || - ||2) we will also give
conditions on M so that the sufficient conditions are
necessary with non causal perturbations. The con-
struction of a causal perturbation is still under inves-
tigation.

2 Preliminaries

We start by defining some standard concepts. The
set of nonnegative integers is denoted by Z,. The
extended space of sequences in R is denoted by £,
for every 1 < p < oo or just by £ when it is obvious
or when it just does not matter what p — norm is
being used. The restriction of f to the interval [a, b] is
denoted by f|[q,5. For every f = {f(0), f(1),---} €¢

1/p
define || lpi, . 5 1l = (Shea lF@)IP)

The set of all f € £ with f & £, is denoted by £\ Z,,.
Given f € £ define f* = (f(0)*, f(1)%, f(2)",...) and
the support of f € £ by supp(f) = {n: f(n) # 0}.

For k € Z,, Si denotes the kth-shift (time-delay)
operator on £, and Py the kth-truncation operator on
£. Let H : £ — £ be an operator. Then, H is called
causal if PrHf = PyHPyf, Viez, , strictly causal if
Py Hf = PrHPy_.f, Viez,, and time invariant if .
HS, = §.H.

Let X. and Y, be two signal spaces. Then an op-
erator G : X, — Y, provides an input-output system
representation.

The following definition provides a concept of input
output stability.



Definition 2.1 The system G is monotone stable if
there exists a monotone increasing homeomorphism
f:Ry - R, and a constant B € Ry such that

I(Gu)rll < flllurl) + 8
forallue X, and T > 0.

@

Definition 2.2 A nonlinear operator G is said to
have finite memory if there exists an increasing inte-
ger function FM(-;G) : Zy — Z with FM(t;,G) >
t such that

(I = Pryuee))Gf = (I = Pru;a))GI — P)f

for all f € £, and t € Zy. The function FM(-;G) is
called the finite memory function essociated with G.

The proof of the following proposition is done in
[6] and therefore it is omitted here.

Proposition 2.1 Let G, a nonlinear operator, have
finite-memory with assoctated finite-memory function
FM(;G). Then for fi € £y with supp(f1) C [0,7]
and fo € £y with supp(f2) C [FM(n;G) + 1,00] we
have G(f1 + f2) =GfL+Gfy

In the following definition, assume that G is some
nonlinear operator.

Definition 2.3 Let ng(s) : R+ — R4 be a non-
decreasing function such that

_Jel _
S e

If G is finite memory, then there always exist an f
that achieves the norm. Therefore, the last definition
can be understood as follows: there exists an f € £
such that HGﬁf)!g = ne(llfll); for all other u € ¢,
G < ne(lul).

Consider the system in figure 1.

M

Figure 1: Closed loop system

Let A denote the class of allowable perturbations.
We now define the subset of A containing elements
with 7a(s) < ks®, for some given z,k > 0 (if k=0
then it is obvious that the system in figure 1 is stable
if and only if M is stable).

Definition 2.4 Let Cp , . be a subset of A defined,
for some given k > 0, as

Ca,.={L€A: na(s) < ks®}
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This is the same to say that, for every u € £ and
T € Zy, 1)l < na(lurll,) where na(s) < ks®.
This means that [|A(ur)|l, < kljur|| and therefore,
according to definition 2.1, all A € Cp, ,, , are mono-
tone stable (note that ks® is a monotonic increasing
homeomorphism for every z,k > 0).

For perturbations A € Cp, ,, , (for some p and z),
the problem will be to find necessary and sufficient
conditions on M to guarantee robust stability.

3 Sufficiency of the Small-Gain
Theorem

In this section we will present a sufficient condition to
achieve robust stability when the disturbance belongs
toCa P First, in section 3.1, we will give some con-
cepts that will be used in section 3.2 to present the
general small-gain theorem. This theorem is an ex-
tension to the one presented in [5]. Finally, in section
3.3, using this theorem, a sufficient condition is given
on some system M, perturbed by A € Cp ,, ., that
guarantees the robust stability of the feedback system
in figure 1.

3.1 Preliminaries
Consider the system of figure 2.

Ty u yi
G1

y2 uy )
Gy | -

Figure 2: Closed loop system

Assumption 3.1 Let Vi, and V. be two signal spaces.
The operators Gy : Vi = Ve, and G : Voo = Vi, are
such that for all input signals r1 € Vi, and ro € Vo,
there ezist unique signals uy,ys € Vi, and us,y; €
Vae-

Definition 3.1 Define the following function classes
f:Ry - Ry| fisam. i h.of Ry onto Ry},
fe Ml 3; € Msit flr) <z—g(x)}, and
Ny={feM|3;€ M st f(z) <z—g(zx) Vx> 1y}
where y > 0 and m. i h. stands for monotonic
increasing homeomorphism.

M=
N =

So, N C N,. Define also M0 = M U {Of} and
NO, = NyU{Op} where Or denotes the zero function
=0.

Proposition 3.1 f € N, if and only if 3, € M such
that (i + g) o f(z) <z for allz > y.

Definition 3.2 The feedback system in figure 2 un-
der assumption 3.1 is called monotone stable if there



exist functions fi, fo : Ry x Ry = Ry and constants
B1,B2 € R such that

lnrll < fillrazll, lirerll) + 61
lyarll < folllrazll, lirerll) + B2

VTZO; Vn € Eme; Vrg € epze: and f1(07'); fZ(Ov'):
f1(, f2(-,0)) € MO with £,(0,0) = f2(0,0) = 0.

3.2 General case

Let each system be monotone stable with gain func-
tions g3 and g2 as in definition 2.1. This means that

lyirll < g1(lluarll) + Ba, (3)
lyarll < galluarll) + Be, (4)

The proof of the following theorem is similar to the
one in [5] and therefore it will be omitted here.

Theorem 3.1 Consider the system in figure 2. Sup-
pose Gy and G4 are stable with gain functions g1 and
g2 as in (8,4) . Suppose that assumption 3.1 holds.
The feedback system is monotone stable if there exist
g € M and s* > 0 such that

()

Comment: In the proof of the last theorem (not
done here), s* # 0 implies that 8; # 0 and 8, # 0
(in definition 3.2) although both systems G and G
have zero bias terms. The reason for is that the §;
are used to accommodate the lack of information on
the closed loop system for s < s* (in equation (5)).
Since (5) only gives us information for s > s*, we
need 6, # 0 and B2 # 0 in order to bound |lyi7||
and ||yor|. Note that if s* = 0 we have exactly the
theorem presented in [5].

g20(i+g)ogs € N,

Corollary 3.1 Consider the system in figure 2. Sup-
pose G1 and G5 are stable with gain functions ¢; and
g2 as in (3,4). Suppose that assumption 3.1 holds.
The feedback system is monotone stable if there exist
p1,P2 € M and s* > 0 such that

(t+p1)ogao(i+p2)og1 <s forall s>s* (6)

3.3 Particular case

Consider again the system in figure 1. Assume that
AeCp,,and that M is monotone stable with gain
function m(s). For simplicity, let §(s) = na(s).

We will prove that it is sufficient to have m(s) <
(%)l (and therefore (§ o m)(s) < s) for all s > s*
for some s* > 0 in order to have robust stability.
This means that we do not need to find monotonically
increasing functions p1 and p, satisfying (i + p;) o
d o (2 + p2) om(s) < s in order to have closed loop
stability.

Theorem 3.2 The system in figure I achieves robust
stability for all A € Cp - if there exists s* > 0 such

that m(s) < (%)aL for all s > s*.
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Proof: Assume there exists an s* > 0 such that
m(s) < {/s/k for all s > s*. Also, because A €
CA p,.» We have that §(s) < ks®. Then, for a given
A e CA,p,;- we can always find k; > 0 with k; < k
such that d(s) < kys%, for all s > 0. This means that
lA(ur)ll, < killurll; and therefore A is monotone
stable with gain function f(s) = k;1s®.

So, if we find pq, p2 € M and § > 0 such that, Vs>s,

(i+p1)omo(i+pa)of(s) <s (7)

we meet all the conditions of corollary 3.1 and there-
fore we prove stability.

Let pi(s) = Bs and pa(s) = es (with 8 > 0 and
€ > 0). Then

(i+p1)omo(i+pa)o f(s) = m(ki1s®(1+¢€))(1+8) (8)

1

x

Let 5 = (F(sl'm) . Note that when s* = 0, we
have § = 0. Then, for any s > 3, m(k15°(1 +¢€)) <
\/; Y/ k15%(1 + €). Therefore, from (8)

(i + pr) omo (i + pa) o £(5) < s;’/%—(ue)(um

k 2x [k

and if we let ¢ = Y - ZVE L
2/4 2%/

we actually satisfy (7) for all s > § which implies

(from corollary 3.1) that the feedback system is sta-

ble. [ ]

>0and 8 =

4 /., Stability Robustness Nec-
essary Conditions

Consider the system in figure 1. In {1, 2, 4] necessary
conditions for stability robustness were presented for
the case when M is linear time invariant. We will now
extend those conditions to certain classes of nonlin-
ear M. First, we will consider the case where the
perturbation is NLTV. Then, we will prove that the
necessity conditions still holds if the perturbation is
NLTIL

To prove necessity, we add the following assump-
tion on M.

Assumption 4.1 Assume that the bound nas defined
in definition 2.3 satisfies, for all s > O, np(s) =
SUpP|f|=s 1M (Flloo-

4.1 [/ stability robustness with NLTV
perturbations

Assume that Cp ., o, , represents the set of all causal

NLTV perturbations according to definition 2.4. Also,
M is stable, causal, and NLTV.

Theorem 4.1 Under assumption 4.1, the system in
figure 1 achieves robust stability for all A € CATv,oo,z

if and only if there exists an s* > 0 such that nas(s) <
(%)% for all s > s*.



Proof: We first prove sufficiency. Assume that there
exists an s* > 0 such that na(s) < (%)5 for all s >
s*. This is the same to say that for any u € ¢ with
lurlloo > %, |M(ur)llo < (12Zle)2 which means
that M is monotone stable with gain function m(s) =
(%)% for every s > s*. We can now use theorem 3.2
and conclude that the closed loop system is stable.

We now prove necessity. To simplify the proof,
consider M and A SISO and let m(s) = np(s) and
5(s) = na(s). ,

The approach we use is to show that we can con-
struct a destabilizing perturbation A € C Ary 0oz

whenever the conditions of the theorem are not sat-
isfied. So, assume that V>0, Js>e+: m(s) > (£)=.

As in [1, 2, 4], the proof is divided in two parts:
construction of an unbounded signal and construction
of a destabilizing perturbation using that signal.
Construction of the unbounded signals

For simplicity assume that M has finite-memory.
This means that there exists an increasing integer
function FM(-; M) as in definition 2.2.

(t) (t)

y é

y t) Z § t)
( (f) M (

+

r(t)=sgn(z(1))
Figure 3: Construction of £

Assume that No = 0 and sp = 0. The construc-
tion of ¢ proceeds as follows (see figure 3). For all
n=1,23,---, let N, = FM(Np—1; M) and s}, =

1

k((s—%——l)%u)“. Then Jy,50: m(sn) > (22)%
Choose [£(t)] < sp for £ = Np_1,..., N, — 1 with

|PN, —~1&]loo = Sn such that m(s) is achieved. Then
1 1
I‘PNn—lzuoo > (if,"); and “PNn—ly"oo > (S_):'); +1.

by
Therefore || Py, —1Y]lco > (%”PN,L-IEHOO) =+ 1.
Note that, in this case, |Py,—1llco = $n > 5%, >

T
k((sik‘i)L +2) > -+ > kn® and ||Pn,—1¥llc >

n+1. This means that both ||£(¢)|] = oo and |jy(t)|| —
oo as n —+ oo (or as t — o).
Because of the way £(t) was constructed we have

7

1Pleo > (HIPEl ) ©)

for all .
Construction of the destabilizing perturbation
We have & = {£(5)} 2 € £ and y = {y(1)} 22, € €
such that (9) is satisfied. Note that the inequality
in (9) is equivalent to ||P{|lec < K|l Pey|lZ,-
Constructing the destabilizing perturbation the same
way as in [1, 2, 4] we have that A is trivial if y = 0:
just pick A itself to be zero. So, assume that y # 0.
Constructing (y(i1),y(i2),...) as in [1, 2, 4] we can
now construct our A,

So, A is constructed by having (see figure 4) { =

A(y) = Ay®. This can be seen as a serie of two
systems. The first raises every element of y() to the
power of z (and it is therefore nonlinear) while the
second (A) is just an LTV system.

A
Y O la IL -

Figure 4: Structure of A

A is a matrix constructed as in [1, 2, 4].

Each row of A has at most one nonzero element
which has absolute value less than k. This means
that [|Allee, e < k-

Now, let’s see if A belongs to the set Ca . . .-
For every t > 0 we have {|Pi|lo = |APY ||c <
ANl teg—inall Pty lloo < EllPylloo = kil PeyllE, or just
that ||Piéllec < Kkl|P:yl|%Z, which means that 6(s) <
1Alte_inas® < ks®. So, A € Cp ., o - Moreover,
A is causal and NLTV.

So, we found a bounded input that produces an
unbounded output. This means that in definition 3.2
there is no monotonic increasing homeomorphism f;
such that [ly17|| < fi(Jlrazll, IIrlelg+ﬁ1 because there
exists a bounded r; (with ro = 0) that produces an
unbounded y;. Therefore, we conclude that the closed
loop system is unstable. B

Remark 4.1 For z = 1 the above theorem provides
a necessity proof for Lo, — stability of finite memory
systems that satisfies

mu(s) = sup [[M(f)|l =s
lI7li=s

Moreover, the destabilizing perturbation can be LTV.

Remark 4.2 Assumption 4.1 which states that the
supremum ts achieved for each s can be relazed. In-
stead, let si be a sequence with the properties

1. |sg — sg—1} < L for some L > 0 and
2. limg_,00 S = 00

The above proof can be modified with this new as-
sumption:

nu(sk) = sup [[M(f)|l
171

=$

The proof will be omitted.

4.2 /., stability robustness with NLTI
perturbations

Assume here that C A ’ 0. TEPTESENES the set of all

NLTTI perturbations according to definition 2.4. The
proof of the following theorem is similar to the one
done in {1].



Theorem 4.2 Under assumption 4.1, the system in
figure 1 achieves robust stability for allA € Cp . o .

if and only if there exists an s* > 0 such that nar(s) <
(%)% for all s > s*.

Proof: The proof of this theorem follows exactly as
the proof of theorem 4.1 except for the construction
of the destabilizing perturbation. Given the signals y
and £, we show that a nonlinear time invariant pertur-
bation can be constructed to destabilize the closed-
loop system.

Let the signals y and £ be given as before. Then
A must be such that

a(s) < ||Alle §* < ks® (10)

and &€ = A(y). We just need to redefine A. So, let A
be defined as follows

@ ={ §C=9

It is easy to see that the new A is a nonlinear, time in-
variant, and causal system. It satisfies (10) (because

lAlltw_ina < k) which means that A € Cp_ o,
and maps y to £.

co—ind

if 3jez, + Pof = RS0,

otherwise.

5 /5, Stability Robustness Nec-
essary Conditions

Once again, we will extend the conditions for stabil-
ity robustness presented in [1] to certain classes of
nonlinear M.

To prove necessity, we add the following assump-
tion on M, similar to the one in the £, case.

Assumption 5.1 Assume that the bound ny defined
in definition 2.8 satisfies, for all s > 0, np(s) =
SUP|| flj2=s 1M (F)l2-

5.1 /¢, stability robustness with non-
causal perturbations

The following theorem gives a necessary and suffi-
cient condition on the system M in figure 1 in order
to guarantee that the closed loop system is stable.
Here, M is assumed to be some NLTV system with
its output norm bounded (to an input «) by na(||ull2)
according to definition 2.3 and assumption 5.1.
Assume here that Cp , , T€presents the set of ail

non causal perturbations acéording to definition 2.4.

Theorem 5.1 Let ¢ < 1. Under assumption 6.1,
the system in figure 1 achieves robust stability for all
A€ CA,Lpag i ond only if there ezists an s* > 0

such that nu(s) < (%)% for all s > s*.

Proof: The proof of sufficiency follows the same way
as in the proof of sufficiency of theorem 4.1.

The method of proof for necessity will again be
similar to the one in [1} or in [6, 7]. Once again,
for simplicity, let m(s) = na(s) and &(s) = na(s).
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We will show that one can construct a destabilizing
perturbation A € C Avc2.z whenever the conditions
of the theorem are not satisfied. So, assume that
V30, Jopsn: m(s) > (£).

A particular signal £ € £\ {3 is constructed for
which there is an admissible A such that one has (I —
AM)E € L. The lack of invertibility of (I—AM) then
follows immediately.

This will be done in two steps. The first step is to
construct that signal £. The next step is to use this
signal to construct a destabilizing perturbation.
Construction of the unbounded signals

Assume that M is finite-memory. The construction
of ¢ proceeds as follows (assume to = 0 and so = 1).

For any n =1,2,3,---, let a, > 1 and s}, = aps,-1.
Then, for any a, > 1, 35,551 m(sp) > (%")al Let
an = % >1and ¢y, = apan > 1. Then, s, = ansy, =

AnlnSn-1 = CnSn—1 = CnCn—18n—2 = Cnln—1’" " C251.
For simplicity, let [| M fi||2 = [|M filla|, »,, and z; rep-
resent some signals in ¢ of appropriate length for
i=1,2,---. Choose f, € £, with ||fn|l2 = Sn, and
an integer N, > 0 such that supp(f,) = [0, N,] and
m(s) is achieved. This means that

1

10 fulls > (32) 7 = (Cotnmtzesn)®

Lett, = FM(N,; M)+t,—1+2. Define also P, 1€ =
(f1,0,+-+, fa,0). From proposition 2.1, this means
that

Ptﬂ——ly=(Mfla-z'l;""anawn) (11)
Therefore, we have || P;, —1£||2 given by

P, —1€ll2 = s1/1+ -+ + (caCn_1 - - €2)?

and || Py, —1yll2 given by

1
S1\ ¥
"Ptn_ly“g > (%1‘) \/1 4+t (Cncn-—l .. -02)2/‘”
1 3
= (fIPanstlle) 1=
where
O<e,=1— 1+"'+(Cncn-1"'02)2/$

(14 +(cncn-1-- .62)2)1/2

It is easy to see that when a,, — 00, ¢, —+ 00, and
therefore €, — 0.

Also, 51 > landforalli =1,2,---,n, ¢; > 1. This
means that

"Ptn"'1€"2 = 81\/1+"'+(cncn—1"'62)2
= \/ﬁ

Therefore, when n — oo, ||P;,-1§]l2 — oo and
therefore ¢ is unbounded.
Construction of the destabilizing perturbation
Given the signals y and €, we show that a nonlin-
ear, non causal perturbation can be constructed to
destabilize the closed-loop system.




Let the signals y and € be given as before. A must
be constructed such that 5(8%1< ks® and £ = A(y).
Consider the perturbation defined as follows

0, if k<t1,
(AfYk) =4 &k—3), if Jjez, : Puf = PeSjy,
0, otherwise.

It can be verified that A is a nonlinear and non
causal perturbation. We notice that the maximum
amplification occurs when the input signal of A is &.
We also know that

1Pe-s6ll < (=) Pl

and if take the infimum on the right side of the last
inequality over €, we actually get

1P —1€ll2 < Kl Pt —19ll3

which means that d(s) < ks® and therefore A €
CA o2, 20d maps y to &

So, A is constructed in such a way to have A(y) =
5_ (fl,0,0,0,‘ : ) = (0’0)f270af3)0) f47 o ')'

Now, we just need to show that this is indeed a
destabilizing perturbation. If we let £ be the input to
(I — AM) then we have

(I —AM)(E) € — A(ME)
(fl)o»""o).fn_fn,o,"')
= (f1,0,0,0,0,---) € £,

Il

i

This implies that the system in figure 1 is not f3 —
stable because it maps a signal in £, to a signal in
£\ £2. Therefore, as in the case of the £ proof,
we conclude that the system is not monotone stable.
This completes the proof. n
Comment: One of the assumptions in the last the-
orem is z < 1. The reason that the theorem does not
follow for £ > 1 is because we assumed in the proof
that M is finite memory. In fact, if z > 1 then M can
not be finite memory. It has to be infinite memory.
Comment: In the ¢ case, the construction of a
causal perturbation A instead of a non causal one,
like in the £, case where the conditions for stability
hold for both NLTV and NLTT causal perturbations,
is under investigation.

6 Concluding Remarks and Fu-
ture Work

This paper presented a generalization of the small
gain theorem for feedback systems. Sufficient condi-
tions on a system M perturbed by a family of dis-
turbances A were presented. Then, it was shown
that those conditions are also necessary in the vector
spaces ({oo, || * lloo) and (€2, ]| - l|2) under appropriate
assumptions on the system M. For the vector space
(£oo, ||  llco), those conditions are necessary with ei-
ther NLTV or NLTI perturbations and for the vector
field (42, || - ||2), those conditions are necessary with
non causal perturbations.

The sufficient conditions are a generalization of the
small gain theorem presented in [5]. With this new
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theorem, the computation work involved in finding
the function 7 of some system M is simpler since the
conditions of the theorem only require that nas(s) <

(%)% for big values of s. This way, we only need to
find nar (or a suitable upper bound of ) for big
values of the norm of the input signal of M such that
nm(s) < (%) . This is very useful since in most cases
it very hard to find s (s) for all s > 0.

In 10] results for the case where the nonlinearities
are sector bounded by linear functions are given. As
future work, this results can be extended to the case
where the nonlinearities are sector bounded by a cer-
tain class of monotonic increasing functions. Also, as
future work, in the > case, a causal perturbation A
should be constructed instead of non causal one like
in the £, case where the conditions for stability hold
for both NLTV and NLTI causal perturbations.

References

[1] Munther A. Dahleh and Ignacio J. Diaz-Bobillo.
Control of Uncertain Systems: A Linear Pro-
gramming Approach. Prentice Hall, N.J., 1995.

[2] Munther A. Dahleh and M. H. Khammash. Con-
troller design for plants with structured uncer-
tainty. Automatica, 29(1), January 1993.

[3] M. Khammash and Munther A. Dahleh. Time-
varying control and the robust performance of
systems with structured norm-bounded pertur-
bations. Automatica, 28, July 1992.

[4] M. H. Khammash and J. B. Pearson. Perfor-
mance robustness of discrete-time systems with
structured uncertainty. IEEE Transactions on
Automatic Control, 36, 1991. |

[5] Iven M. Y. Mareels and David J. Hill. Monotone
stability of nonlinear feedback systems. Journal
of Mathematical Systems, Estimation, and Con-
trol, 2(3):275-291, 1992.

[6] Jeff S. Shamma. The necessity of the small-
gain theorem for time-varying and nonlinear sys-
tems. IEEE Transactions on Automatic Control,
36(10):1138-1147, October 1991.

[7] Jeff S. Shamma and Rongze Zhao. Fading-
memory feedback systems and robust stability.
Automatica, 29(1):191-200, 1993.

[8] Eduardo D. Sontag, Héctor J. Sussman, and
Yudi Yang. A general result on the stabiliza-
tion of linear systems using bounded controls.
Submitted to IEEE Transactions on Automatic
Control, 1994.

[9] Andrew R. Teel. A nonlinear small gain theorem
for the analysis of control systems with satura-
tion. Submitted to IEEE Transactions on Auto-
matic Control, June 1994.

M. Vidyasagar and C. Desoer. Feedback Systems:
Input-Output Properties. Academic Press, N.Y.,
1975.

(10]



