
Robust Hybrid Control for Autonomous Vehicle

Motion Planning

Emilio Frazzoli � Munther A. Dahleh y Eric Feron z

Abstract

The operation of an autonomous vehicle in an unknown, dynamic environment is a very complex

problem, especially when the vehicle is required to use its full maneuvering capabilities, and to react in

real time to changes in the operational environment. A possible approach to reduce the computational

complexity of the motion planning problem for a nonlinear, high dimensional system, is based on a

quantization of the system dynamics, leading to a control architecture based on a hybrid automaton,

the states of which represent feasible trajectory primitives for the vehicle. This paper focuses on the

feasibility of this approach: the structure of a Robust Hybrid Automaton is de�ned and its properties

are analyzed. Algorithms are presented for time-optimal motion planning in a free workspace, and in

the presence of �xed or moving obstacles. A case study involving a small autonomous helicopter is

presented: a nonlinear control law for maneuver execution is provided, and a robust hybrid automaton

is constructed. Simulations showing the e�ectiveness of the approach are presented and discussed.

1 Introduction

In the past few years considerable interest has been shown and relevant resources have been devoted,

from industry, government and academia, to the design, development and operation of autonomous aerial,

underwater, and ground vehicles. The possibility of removing human pilots from danger, and the size and

cost advantages of autonomous vehicles are indeed very attractive, but very often have to be compared

with the performance that can be attained by human-piloted vehicles, in terms of mission capabilities,

e�ciency, and exibility.

The operation of an autonomous vehicle in an unknown, dynamic and potentially hostile environment

is a very complex problem, especially when the autonomous vehicle is required to use its full maneuvering

capabilities, and to react in real time to changes in the operational environment. A common way of dealing

with highly complex systems is via a hierarchical decomposition of the activities to be performed by the

autonomous vehicles, and consequently the introduction of a hierarchy of control and decision layers (see

for example [1, 2], and references therein).

The dynamics of an autonomous vehicle are inherently continuous, and as such are described by

ordinary di�erential equations. However, digital computers are typically used for control purposes, which

�Research Assistant, Laboratory for Information and Decision Systems, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, email:frazzoli@mit.edu
yProfessor, Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, email: dahleh@lids.mit.edu
zAssociate Professor, Laboratory for Information and Decision Systems, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, email: feron@mit.edu

1

means that the overall control system will be discrete in nature. The control layers that are closest to

the plant are characterized by time quantization (discrete-time control systems). The bandwidth of these

control systems is usually very high, and in some cases they are seen, for design purposes, as sharing the

continuous nature of the underlying plant. Higher control layers are most often designed as logical decision-

making agents, operating on a discrete state space. Systems that include both discrete and continuous

dynamics are usually referred to in the literature as hybrid systems. Hybrid control systems have been

the object of a very intense and productive research e�ort in the recent years, which has resulted in the

de�nition of very general frameworks (for example, see [3, 4] and references therein). General hybrid

systems, derived from arbitrary hierarchical decompositions, however, can be extremely hard to analyze

and verify, and only limited results can be obtained [5, 6]. On the other hand, it may be convenient to

design the hybrid system in such a way that it o�ers safety and performance guarantees by construction,

at least in an idealized situation. This reects the designer's insight into the nominal behavior of the

system [7, 8, 9]. Consequently, the analysis and veri�cation problems of the hybrid system are translated

to a robustness analysis problem, which can be solved using the relevant tools from systems and control

theory [10, 11, 12].

In addition to the already mentioned references, other hybrid control architectures have been devel-

oped in the recent past for control of aerospace vehicles, in particular helicopters, tilt-rotor aircraft, and

Vertical/Short Take-O� and Landing (V/STOL) vehicles. These vehicles are characterized by completely

di�erent dynamics during hovering and forward ight, making the introduction of a hybrid control struc-

ture a natural choice. The applications of hybrid control to aerospace vehicles found in the literature can

be roughly divided into two main classes. A �rst class includes those applications in which the hybrid

system plays the role of a ight mode manager: a discrete logic governs transitions between behavioral

modes like take-o�, hover, cruise, and search [13, 8, 14]. The formal veri�cation of this kind of hybrid

systems can be extremely hard, and is often foregone in favor of simulations [15]. Other hybrid system

architectures proposed for air tra�c conict resolution have a rigorous mathematical foundation, but do

not provide feasible trajectories for the system [11, 16], and as such cannot be applied for motion planning

at scales at which the dynamics of the vehicle are important. In a second class of applications the main

objective of the hybrid control architecture is ensuring the correct execution of maneuvers involving transi-

tions between di�erent operating conditions, by controller switching. In these papers the main objective is

the tracking of a pre-planned trajectory [17, 18], maintaining the vehicle inside an assigned ight envelope

[19, 20].

In the present work, the hybrid controller is responsible for both the generation and the execution of a

feasible trajectory, or ight plan, satisfying the mission requirements while optimizing some performance

criterion. Our main objective is the de�nition of a robust control architecture, and algorithms, to address

the motion planning problem for an autonomous vehicle, in the presence of obstacles, and exploiting to the

maximum extent the vehicle's dynamics. Even though our main focus is control of autonomous vehicles,

the concepts that we will introduce can be used pro�tably for control of a large class of nonlinear systems:

the presentation of the control architecture will be kept at a general level. In section 2 the main component

of our controller, that is a robust hybrid automaton, is introduced. In section 3, control policies on the

hybrid automaton are developed, both for an empty workspace and in the presence of obstacles. In section

4, a case study concentrating on motion planning for a small autonomous helicopter will demonstrate the

general concepts on this particularly challenging application. A new trajectory tracking control law for

underactuated systems, capable of aggressive manuevers, will be introduced. Optimal control in a free

environment, and motion planning in the presence of moving obstacles will be addressed and simulation

results will be provided.

2

2 Robust Hybrid Automaton

A possible approach to reduce the computational complexity of the motion planning problem for a non-

linear, high dimensional system, is based on a quantization of the system dynamics, in the sense that we

restrict the feasible nominal system trajectories to the family of time-parametrized curves that can be

obtained by the interconnection of appropriately de�ned primitives. These primitives will then constitute

a \maneuver library" from which the nominal trajectory will be constructed. Instead of solving an optimal

control problem over a high-dimensional, continuous space, we will solve a mixed integer programming

problem, over a much smaller space. This paper will focus on studying the practical feasibility of this

approach.

At the core of the control architecture lies a hybrid automaton, the states of which represent feasible

trajectory primitives for the vehicle. Each constituent subsystem of the hybrid controller will be the agent

responsible for the maneuver execution. The task of the automaton will be the generation of complete,

feasible and \optimal" trajectories, via the interconnection of the available primitives. Apart from the

reduction in computational complexity, one of the objectives of this approach is the ability to provide a

mathematical foundation for generating a provably stable hierarchical system, and for developing the tools

to analyze robustness in the presence of uncertainty in the process as well as in the environment.

We want to characterize trajectory primitives in order to: (i) capture the relevant characteristics of the

vehicle dynamics; (ii) allow for the creation of complex behaviors from the interconnection of primitives

(we want to obtain \good" approximations to optimal solutions) (iii) determine the minimal set of key

parameters identifying the state of the system: this is even more important for extension to multi-vehicle

operations, or more complex systems. In the following we will de�ne the class of systems we want to

control, and, accordingly, we will give a characterization of the trajectory primitives we will consider. This

will be used to present the Robust Hybrid Automaton structure.

2.1 System dynamics

We will consider a time-invariant nonlinear system the dynamics of which are described by the di�erential

equation:

dx

dt
= f(x; u;w) (1)

where x 2 X is the state, belonging to an n-dimensional manifold X, and u and w represent respectively

the control and disturbance input signals, taking values in the sets U � Rm , W � Rl ; both signals are

assumed to be bounded with respect to some norm p, i.e. u(�) 2 U � Lmp , w(�) 2 W � Llp. Finally, the

function f : X � U �W ! TX is assumed to be locally Lipschitz in its arguments. Let us concentrate

�rst on the nominal system:

_x = f0(x; u) = f(x; u; 0) (2)

that is the system obtained from (1) when the disturbance input is identically zero. We can de�ne

equilibrium points for the nominal system (2) as the points (�x; �u) for which f0(�x; �u) = 0. In general, we

will be more interested in systems that have symmetries, for which we can de�ne the notion of relative

equilibrium.

3

2.2 Symmetries and relative equilibria

Roughly speaking, a symmetry on the system (2) is a group action on the state that leaves the dynamics

invariant. A simple de�nition that is enough for the purpose of this paper is given in the following: for

further details and a precise de�nition in a Hamiltonian mechanics framework, see [21, 22, 23, 24].

Assume that the state space has the structure of a Lie group, and that the manifold X can be written

at least locally as X = Y � Z, so that the state of the system can be written as x = (y; z) 2 Y � Z.
Consider the map 	h : X ! X, parametrized by an element h 2 Y , such that the state x = (y; z) is

transformed into 	h(y; z) = (yh; z). Given the initial conditions x0 at t = 0, let the time-parametrized

curve �u(�; x0) be the resulting trajectory of the nominal system (2) when the control input is any given

signal u.

De�nition 1 (Symmetry group for a controlled dynamical system) If for all initial conditions

x0 2 X, y 2 Y , t 2 R the following holds:

	y � �u(t; x0) = �u(t;	y(x0)) (3)

then Y is a symmetry group for the system (2).

If we indicate with y the Lie algebra associated with Y we can de�ne:

De�nition 2 (Relative equilibria for controlled dynamical systems) Assume that Y is a symme-

try group for the system (2), and that it is possible to �nd constants �z 2 Z, �u 2 U and �̂ 2 y such

that:

��u (t; (eY ; �z)) = (exp(�̂t); �z) (4)

The resulting class of trajectories of the system ��u(t; (y0; �z)) is called a relative equilibrium, or trim

trajectory.

The collection of all possible trim trajectories de�nes a manifold S � X � U , denoted as the trim

surface. It is also clear that relative equilibria include trivially all the equilibrium points of the system. A

consequence of the symmetry of the dynamics is that we can treat all trajectory primitives as equivalence

classes, and choose a prototype for each primitive, starting at a reference position on the symmetry group.

Without loss of generality, we can de�ne all trajectory primitives as starting at the identity element eY of

the symmetry group Y .

Example: A very simple example of a system with symmetries is a system with integrators:

_y = z

_z = fz(z; u)
(5)

where (y; z) 2 Rn , and the group operation we are interested in is the usual vector addition. It is evident

that a translation �y : (y; z) 7! (y + �y; z) does not change the dynamics of the system. Relative

equilibria are all trajectories for which we can �nd �z and �u such that _z = fz(�z; �u) = 0. The momentum

can be identi�ed in the constant vector �z, and the dynamics of y on a trim trajectory are given by

y(t) = y(t0) + �z(t� t0).

A more interesting kind of symmetry, that is invariance to translation and rotation about a vertical

axis, is exhibited by a large class of mechanical systems. This is true of most human built vehicles: vehicles

4

are designed such that once we learn how to operate them at some location (e.g. at the driving school

grounds), we can apply the same skills to drive anywhere in the world. In the following we will focus on

the de�nition of a control architecture for autonomous vehicles, however the concepts and methods are

valid and can be used for systems with multiple equilibria, and possibly with relative equilibria.

2.3 Autonomous vehicle dynamics

The dynamics of a large class of small autonomous vehicles can be adequately described by the rigid body

equations [25]. The con�guration of the vehicle will be described by an element g of the Special Euclidean

group in the three-dimensional space, usually denoted by SE(3). Using homogeneous coordinates, a matrix

representation of g 2 SE(3) is the following:

g =

�
R p

0 1

�
(6)

where R 2 SO(3) is a rotation matrix and p 2 R3 is a translation vector. The kinematics of the rigid body

are determined by

_g = g�̂ (7)

where �̂, denoted as twist, is an element of the Lie algebra se(3) associated with SE(3). A matrix

representation of an element �̂ 2 se(3) is

�̂ =

�
!̂ v

0 0

�
(8)

where ! and v are respectively the angular and translational velocities in body axes, and the skew matrix

!̂ is the unique matrix such that !̂u = !�u, for all u 2 R3 The full state of the vehicle as a rigid body will

then be represented by x = (g; �̂), with X = SE(3)� se(3). The dynamics equations, in matrix notation,

will be given by:

Jb _! = �! � Jb! +Mb(g; �̂; u; w) (9)

m _v = �! �mv + Fb(g; �̂; u; w) (10)

where Jb and m are the vehicle's inertia tensor and mass, and Mb and Fb represent the torques and forces

in body axes, which are in general a function of the vehicle state x = (g; �̂), of the control inputs u, and

of the disturbances w. Note that in the above we have no assumption on the characteristics of the forces

acting on the vehicle (i.e. we do not require potential forces).

The dynamics of a vehicle, including cars, aircraft, ships, etc., under fairly reasonable assumptions,

(such as homogeneous and isotropic atmosphere, and constant gravity acceleration for an aircraft) are

invariant to translation and rotation about a vertical axis, i.e. an axis parallel to the local gravitational

acceleration. If this is the case, the subgroup H � SE(3), composed of translation and rotations about

the vertical axis is a symmetry group for the vehicle dynamics. An element h 2 H = R3 �S1 is completely

described by the translation vector p 2 R3 and the heading angle 2 [0; 2�).

2.4 Equilibrium points and trim trajectories

The simplest possible motion primitive is trivially represented by equilibrium points. In a system with

multiple equilibrium points each equilibrium point can be chosen as a trajectory primitive. A closely

5

related and more interesting class of primitives is given by trim trajectories. In an autonomous vehicle

setting, these can be seen as those trajectories along which the velocities in body axes (the twist) and the

control input are constant.

From the above discussion of the symmetry properties, all trim trajectories will be the composition

of a constant rotation �g and a screw motion h(t) 2 H, given by the exponential of an element �̂ of the

Lie sub-algebra h � se(3). This screw motion corresponds in the physical space to a helix traversed at a

constant speed and sideslip angle. For aerial vehicles, such helices are usually described by the parameter

vector �T := [V; ; _ ; �], where V is the magnitude of the velocity vector, is the ight path angle, _ is

the turning rate and �nally � is the sideslip angle [26].

To make the above clearer, we will give some details on the matrix representation. The elements of H

can be represented in matrix notation as:

h =

2
664

cos � sin 0 x

sin cos 0 y

0 0 1 z

0 0 0 1

3
775 (11)

The identity element eH will be represented by the identity matrix I4. Trim trajectories are described by

the corresponding element �̂ in the Lie algebra h, which can be represented as:

�̂ =

2
664

0 � _ 0 V cos � cos
_ 0 0 V sin� cos

0 0 0 V sin

0 0 0 0

3
775 (12)

Following a trim trajectory for a time interval �t results in a displacement:

htrim(�t) = exp(�̂�t) =

2
664

cos� � sin� 0 r(sin� cos� + cos� sin� � sin�)

sin� cos� 0 r(sin� sin� � cos� cos � + cos �)

0 0 1 V sin �t

0 0 0 1

3
775 (13)

Where � := _ �t and we have introduced the (signed) turning radius r := V cos = _ .

If we restrict the motion of the vehicle to a horizontal plane (as in the case of a ground vehicle, a

surface vessel, or an aircraft at constant altitude), the class of trim trajectories becomes simply the set

of circle arcs on the plane, including in�nite radius turns (that is straight lines). Note also that while for

many kinds of vehicles, such as car-like robots and �xed wing aircraft, � is usually assumed to be zero,

or very small (no skidding, or coordinated ight), this is not necessarily true for vehicles like helicopters,

especially for low velocity regimes (e.g. helicopters can move sideways and backwards). It should be

mentioned that usually for a given choice of �̂, several choices of �g and �u are possible, and the selection

of desirable values for them is the outcome of some o�-line design process. The �rst step in the design of

our control architecture is the selection of a number of trim trajectories. The selection of trim trajectories

can be carried out by gridding the set of attainable values of �T ; this set is compact, and can be identi�ed

with the ight envelope in the case of aerial vehicles.

This class of trajectory primitives has been used widely to construct switching control systems, in

which point stabilization is achieved by switching through a sequence of controllers progressively taking

the system closer to the desired equilibrium [27, 28, 29, 30]. The ideas of gain scheduling and of Linear

Parameter Varying (LPV) system control can also be brought into this class [31], as well as other integrated

guidance and control systems for UAV applications [32]. However, such a design choice generally results

6

Maneuveru

Trim trajectories

Trim surface

2

T1

T

ξ

g

Figure 1: Trajectory primitives

in relatively poor performance, and in \slow" transitions, as the system is required to stay in some sense

close to the trim surface. Moreover, the absence of any information on the transient behavior can lead to

undesirable e�ects, such as limit cycles.

2.5 Maneuvers

For more aggressive maneuvering it is deemed necessary to better characterize trajectories that move

\far" from the trim surface. Even though ours can be seen as a reductive de�nition of what is considered

a maneuver in the common language, it leads to signi�cant simpli�cations in the design of the control

architecture.

De�nition 3 (Maneuver) In this paper, a maneuver is de�ned as a (�nite time) transition between

two trim trajectories, for the nominal system (2).

Note that the transition can also be from and to the same trajectory (e.g. in the case of aircraft acrobatic

maneuvers like loops and barrel rolls can be considered as transitions from and back to straight and

level ight, and in the case of cars a lane change is a transition from and back to forward motion)

The execution of the maneuver results in a total con�guration change gm, that is g(tm) = gmg(0) if

tm indicates the maneuver duration. For reasons that will be made clear in the following, we are more

interested in the evolution on the subgroup H, and from the properties of trim trajectories we have that

gm = (hm; �gend �g�1start). We will not discuss the details of how to generate the nominal state and control

trajectories describing maneuvers: several methods can be used depending on the application at hand,

the desired performance, and the available computing, simulation and experimental resources. Among

these methods we can mention actual tests or simulations with human pilots [33], o�-line solutions to

optimal control problems, or real-time trajectory generation. A problem in the o�-line generation of

trajectories is the large amount of storage memory required; a possible solution is represented by some

form of compression of the trajectory data. In this case, we have to identify some relevant parameters,

on the basis of which the on-board processor can compute \easily", in real-time, a reference trajectory

to track. A very e�cient representation of trajectories can be achieved by exploiting the properties of

di�erentially at systems [34, 35].

7

Finally, we would like to remark that the design of the nominal trajectories, along with the tracking

control introduced in the next section, has to be carried out in such a way to ensure that the vehicle

does not violate constraints on its dynamic envelope (e.g. maximum velocity) [19]. Thus in this sense the

objective of envelope protection is ensured implicitly by the maneuver de�nition.

2.6 Tracking control and disturbance rejection

In the preceding sections we de�ned the trajectory primitives as feasible, possibly but not necessarily

optimal (for some cost) trajectories for the nominal system, that is when the disturbance signal w is

identically zero. In real applications, we will not be able to achieve exactly the reference trajectories

de�ned by the primitive library, because of deviations in the initial conditions, noise in the measurements,

unmodeled dynamics and modeling errors, and exogenous inputs. We will therefore need to examine the

behavior of the system at non-nominal conditions, and make sure that the resulting system trajectories

are in some sense \close" to the trajectories of the nominal system. In general, this requires some form of

feedback control, complementing the feed-forward open-loop reference input trajectory stored along with

the reference state trajectory.

The reference trajectory will be completely determined, in terms of nominal state and control histories,

by the primitive being executed, its inception time, and initial H con�guration. A feedback control policy

will then be a function � : R � X � H ! U , designed to track (or regulate to) the nominal trajectory.

Once a feedback control law is associated with the system (1) it is transformed into the closed-loop form:

_x = f(x; �(t� t0; x; h0); w) (14)

in which the only exogenous input is the disturbance input w.

The robustness characteristics of equilibrium points and of trim trajectories can be expressed in terms

of invariant sets.

De�nition 4 (Invariant set) A set M � X is said to be a (right)-invariant set if for all x0 2 M ,

w 2 W, and t > t0:

	exp(��̂(t�t0)) � ��;w(t� t0; x0) 2M (15)

where ��;w(�; x0) describes the trajectory of the system under the action of the control policy � and distur-

bance w, and with initial conditions x(0) = x0.

Invariant sets are, properly speaking, \tubes" centered on trim trajectories. However, in the following we

will refer to the section at h = eH .

De�nition 5 (Limit set) We will call the limit set of a trim trajectory q the smallest invariant set �
q

associated with that trajectory.

De�nition 6 (Recoverability set) will call the recoverability set �Rq of a trim trajectory the largest set

for which there exists a �nite time ~t such that for all initial conditions x0 2 �Rq, and for all disturbance

signals w 2 W, the system enters the limit set, that is if :

	exp(��̂(t�t0)) � ��;w(t; x0; t0) 2
q; 8 t > t0 + ~t (16)

8

Trim Trajectory q
1

Trim Trajectory q
2

Maneuver Start set

Maneuver End set

limit set

Maneuver

Ω
C

Recoverability set

R

Ω D
R

Figure 2: Invariant set de�nitions

In general, the exact determination of the sets �Rq and �
q presents a very di�cult challenge. However, often

it is possible to compute conservative approximations, in the sense that we can compute a set Rq � �Rq

such that for all initial conditions in Rq the system trajectory will enter a set
q � �
q after a �nite time,

and stay in
q thereafter. It is obviously of interest to design a control law in such a way to have a large

Rq, and a small
q. In the case in which the control law provides global stability, Rq will coincide with

X, and in the case in which we have asymptotic stability,
q will collapse to the trajectory itself (this is

only possible if the disturbance signal w vanishes).

Similar concepts, close in nature to Lyapunov stability theory, cannot be de�ned for the maneuvers,

since these are by de�nition objects with a �nite time horizon. Instead we will use a concept more closely

related to Poincar�e maps.

De�nition 7 (Image of a set) We will de�ne the image of a set C under the maneuver q the smallest

set D 2 X such that for all x0 2 C, and for all disturbance signals w 2 W (supported on [t0; t0 +�tmq]),

we have that:

��;w(t0 +�tmq ; x0; t0) 2 D (17)

The objective of the control law in this case is to make the ending set D as small as possible for a given

starting set C. Notice that we are not directly interested in the transient behavior of the system during

the execution of the maneuver, as long as we can ensure that at the end of the maneuver the state enters

the set D.

2.7 Robust Hybrid Automaton de�nition

We are now ready to discuss the details of the control architecture. It should be clear by now that the

controlled system will include both continuous and discrete dynamics, thus belonging to the realm of

hybrid control. In the following we will present the de�nition of a hybrid system that is based on the

general model in [3]. The Robust Hybrid Automaton we are concerned with is described by the n-tuple:

RHA = fQ;H; T;X; f; �; �;C;D;R;
;A; V g (18)

9

� Q := QM [QT is the discrete set of the index state. The values of Q identify the trajectory primitive

being executed; as such, Q is assumed to be a �nite set. The subscript T andM indicate, respectively,

trim trajectories and maneuvers;

� H is the symmetry group, identifying the position of the current trajectory primitive;

� T = R: we augment the reference state by a clock, or timer state;

� X is the state space of the continuous system;

� f is the Lipschitz function describing the continuous system dynamics in the usual ODE form;

� � := f�q; q 2 QT g, where each �q describes the motion on the trim trajectory q;

� � := f�q; q 2 Qg is the set of control laws designed for each trajectory primitive; we assume that

each �q is a Lipschitz function;

� C := fCq; q 2 QMg: the collection of sets from which we can initiate maneuvers (controlled jump

set);

� D := fDq; q 2 QMg: the collection of sets at which maneuvers are terminated;

� R := fRq; q 2 QT g: the collection of recoverability sets for each trim trajectory;

�
 := f
q; q 2 QT g: the collection of limit sets for each trim trajectory;

� A = fAq = (qnew;�t;�h); q 2 QMg: autonomous jumps occur during maneuver execution, when

the timer state � 2 T reaches the value �T . The state is reset such that q qnew, h h�h, � 0;

� V := R � QM : is the hybrid control set, determining the controlled jump execution. Controlled

jumps can only be executed from trim trajectories; given a hybrid control (�tcoast; qnew), the jump

occurs when � 2 T reaches �tcoast, and the state is reset such that: q qnew, h h exp(�q�tcoast),

� 0;

We can graphically depict the hybrid automaton as a directed graph, where the nodes represent the trim

trajectories, and the edges represent the maneuvers. Each edge can be labeled with a cost corresponding

to the maneuver duration.

The introduction of a time clock state could seem pointless, as we will in the following assume _� = 1

(when not switching). This corresponds to a classical formulation of a trajectory tracking control. The

reason for introducing the clock state is that we want to allow for maneuver regulation [36, 32]. In that

case, we will have to introduce some condition of the form _�i = �i(�i; x; xref;i) � � > 0, to ensure that the

system does not move \backwards" along a trajectory.

The RHA architecture that we have just de�ned can be considered as both a design paradigm and

a modeling tool for nonlinear systems. The selection of the trajectory primitives, and the design of the

tracking control law have to be carried out according to some speci�c requirements that are directly derived

from the RHA structure. In particular, the conditions for the automaton consistency and controllability

have to be satis�ed. An example of this process will be given in the case study in section (4). On the

other hand, a RHA can be seen as a powerful modeling tool, encoding all the relevant information on the

dynamics of the system in a reduced set of state variables. The design of control laws for \higher-level"

tasks to be performed by the system will then be substantially simpli�ed: as will be shown in the motion

planning section, it will be possible to operate in a a relatively small \maneuver-space", as opposed to

the full state space. Motion planning on this maneuver space will be completely free from all the stability

concerns because these have been already addressed in the construction of the RHA.

10

Ω

C

Ω

C

Hover

Forward
flight

Turn
left

Turn
right

Figure 3: Robust Hybrid Automaton (simpli�ed)

2.8 Well-posedness, consistency, and controllability

When dealing with systems of the form (1), where the right-hand side is not continuous, care must be

taken to ensure that the system is well-posed, that is, a unique solution exists. In our case well-posedness

is ensured by the fact that the system is piecewise continuous, and the maneuvers are a �nite set of

primitives with a �nite time duration (by de�nition). As a consequence in every �nite time interval there

will be a �nite number of switches, or discontinuities in the feedback map.

In order to decouple stability and motion planning concerns we have to ensure that the automaton

is consistent, which means that any sequence of hybrid controls will generate a trajectory which remains

\close" to the nominal trajectory, in the sense of the invariant sets de�ned in the previous sections.

De�nition 8 (Consistency) We say that the automaton is consistent if for all q 2 QT the following

conditions hold:

1.
q � Cl; 8l 2 Lq;
2.
S
p2Pq

Dp � Rq;

3.
S
p2Pq

Dp � Cl; 8l 2 Lq,

where Lq; Pq � QM are respectively the set of indices of maneuvers leaving and arriving at the trim

trajectory q.

Remark 2.1 (Maneuver recovery) If the �rst and second conditions are satis�ed, the third one can

always be satis�ed by adequately extending the maneuvers with a recovery phase at the new trim trajectory.

De�nition 9 (Hybrid State) We will say that the system is in the hybrid state (q; h; �) if 	h�1x 2T
l2Lq

Cl � Rq, that is if the continuous state is inside the starting sets for all the maneuvers leaving the

current trim trajectory.

The full state of the system will then be described by (q; h; �; x), where q 2 Q;h 2 H; � 2 R; x 2 X.

11

Once we have established that the hybrid system is well posed and consistent, we have to ensure that

it is controllable:

De�nition 10 (Controllability) We say that the RHA is controllable if it is possible to �nd an ad-

missible sequence of primitives such that we can steer the system from any initial condition (q; h) to any

desired location �h 2 H, and at any desired operating condition �q 2 QT , in �nite time.

It is clear that a necessary condition for controllability is that the directed graph describing the automaton

be fully connected. Moreover, the set of trim trajectories must be rich enough that by interconnecting

an appropriate sequence of them we cover the group H. In the case of a system with integrators, this

translates simply to the requirements that the set f�qg; q 2 QT is a complete basis for Rn . The problem of

assessing the minimum set of trim trajectories based on which we can build a controllable automaton for

autonomous vehicles recalls some classical problems both in the nonlinear control and robotics literature.

For example, it is known that for models of car-like robots optimal trajectories are indeed composed by

straight lines and by arcs of minimum radius circles (trim trajectories in the plane)[37, 38, 39]. We are

not aware of results in the literature which are applicable to systems switching between trim trajectories

in a three-dimensional space, with arbitrary transients (maneuvers) during the switches. However, we can

state the following:

Proposition 2.1 (Minimum set of trim trajectories) Assume that the system dynamics are invari-

ant to translation and rotations about a vertical axis, i.e. that H is a symmetry group for the system.

Then two trim trajectories q1 and q2, described by the parameters
n
V1; _ 1; 1; �1

o
,
n
V2; _ 2; 2; �2

o
, along

with any two maneuvers connecting them, are su�cient for controllability in a three-dimensional space if:

V1 _ 2 cos 1 6= V2 _ 1 cos 2, and V1 sin 1 < 0 < V2 sin2.

Proof: Given in the appendix.

Remark 2.2 (Controllability in the horizontal plane) If the motion of the vehicle is restricted to a

horizontal plane (1 = 2 = 0), then the vehicle is controllable if just the �rst condition above is satis�ed.

It is clear that this would be just a minimum set of trim trajectories to ensure controllability: for practical

applications, the set of trim trajectories will be much richer. Notice that the \uncontrollable" car in [40],

which can only turn left with di�erent turning radii, is in fact controllable according to our de�nition,

even though it is not small-time controllable [41].

3 Motion planning

The hybrid control architecture lends itself to computationally e�cient solutions of many problems of

interest for practical applications. Most often the results that are achievable using nonlinear control

theory involve stability or tracking performance. Ensuring the feasibility of solutions with respect to non-

convex constraints such as obstacles in the physical workspace is in many cases of interest impossible in

this framework alone. At the same time when we are dealing with systems whose dynamics is important,

we cannot just deal with a simpli�ed kinematic model, or with a discretized, logic-based controller, as the

resulting trajectory will in general be unfeasible for the system.

12

The price that we have to pay in using the hybrid automaton is the sub-optimality of the computed

solutions, owing to the fact that the stored trajectory primitives do not represent the whole dynamics

of the system. However, the number of trajectory primitives stored in the automaton can be increased,

depending on the available memory and computational resources, so the sub-optimality gap can be reduced

to a point were it is not noticeable for practical purposes. Moreover, very often a sub-optimal solution

which is computable on-line can be worth more than an optimal solution that requires computational

resources only available for o�-line planning.

3.1 Optimal control in a free environment

At this point the design of the hybrid controller consists of the de�nition of a policy � for selecting optimal

jump times and destination (maneuver) from trim trajectories. We recall that all the relevant information

while in a trim trajectory are de�ned by the hybrid automaton state and the \position" h 2 H at the

current trajectory inception time (� = 0). On each trim trajectory q 2 QT , the discrete control set can be

identi�ed with the subset Vq � QM containing the indices of all the maneuvers that start at q. Moreover,

the timing of the jump must be decided by the hybrid controller. The policy � will then be a mapping

� : QT �H ! R+ �QM . Assume we want to control the system to the state (�q; �h), and de�ne a running

cost function : Q � H � R+ ! R+ , with (�q; �h; �) = 0. Given a policy � we can de�ne a total cost

function:

J�(q0; h0) :=

Z 1

t0

 (q(t); h(t); �(t))) dt (19)

where the system dynamics are governed by the continuous evolution and the jump rules given in the

previous sections.

A policy � is said to be proper if the above integral is �nite for all initial conditions. Also, in the

above we assumed that both autonomous and controlled jumps occur instantaneously, and have no cost

penalty. The assumption that maneuvers are strictly �nite time transitions between trim points (i.e.

minf(�tman)qgq2QM
> 0) ensures that there are �nite switches in �nite time, and that the resulting

system trajectories are well de�ned. If the system is controllable, then a proper policy exists.

We are interested in computing the optimal policy ��, that is the policy that minimizes the total cost for

all initial conditions. The ensuing optimal cost will be indicated by J�. Following dynamic programming

theory [42], it can be shown that the optimal cost satis�es Bellman's equation:

J�(q; h) = min
(� 0;q0)

�
�T (q; h; �

0) + �M (q0; h0) + J�(q00; h00)
�

(20)

where � 0 is the delay before the commanded transition to q0 2 QM , h0 represents the position and heading

at the start of the maneuver, and q00 and h00 represent the new state at the inception of the new trim

trajectory. In the above equation, �T and �M indicate the cost associated with the trim and maneuver

portions of the commanded transition. Moreover, the optimal control (� 0; q0)� is the minimizer of Eq.(20).

Nominal stability of the control algorithm is a consequence of the optimality condition; from the consistency

conditions on the automaton we also have that the system will be driven to the limit set
�q.

We notice that the optimization requires the solution of a mixed-integer program, with one continuous

variable (� 0), and one discrete variable (q0). In general, the optimal cost function is not known. However,

if an initial proper policy can be devised, approximate dynamic programming algorithms, such as value

or policy iteration, can be used to improve on the initial policy, and possibly get to the optimal control

strategy. Moreover, since the dimension of the state space has been reduced to one discrete variable and

four continuous ones, neuro-dynamic programming approximation techniques for a compact representation

13

of the cost function can be e�ectively used, making the control algorithms suitable for real-time applications

[43].

3.2 Motion planning in the presence of obstacles

A very important problem, especially when controlling autonomous vehicles, is represented by motion

planning in the presence of �xed or moving obstacles. We are using the expression \motion planning"

as opposed to the traditional \path planning" because we want to emphasize the role of the dynamics of

the system, or of non-holonomicity constraints, on the allowable feasible trajectories; this problem is also

known in the literature as kinodynamic planning[44].

One of the fundamental conceptual steps in addressing a problem is the selection of the appropriate

representation of the system state, constraints and of the decision variables. In the path planning literature,

the most commonly encountered object underlying the algorithm design is the con�guration space, that is

the set of all possible collision-free con�gurations for the robot [45, 46]. In [44], it is suggested that a more

appropriate representation for a large class of motion planning problem is via the state space, since this

encodes the additional information related to the system dynamics. However, the state space of non-trivial

systems is typically very large, and the \curse of dimensionality" makes the solution of motion planning

problems in such large-dimension spaces computationally intractable.

The alternative that we propose, through the introduction of our hybrid control architecture, can be

seen as a maneuver automaton space, in which we discretize the system dynamics, not the state space.

Using this representation, the hybrid automaton already encodes all the relevant information about the

system dynamics and dynamic constraints (such as non-holonomicity). The dynamic constraints must then

be complemented by the con�guration constraints. We can de�ne a setQ � Q�H of primitives and starting

con�gurations, such that the resulting trajectory is collision free. The set Q is the direct counterpart of

the traditional con�guration space C, but in addition completely encodes the system dynamic constraints.

To check whether a given trajectory is collision-free, we have to check that the appropriate invariant

sets do not intersect with the obstacles. In the case of trim trajectories, the relevant set is the controlled

jump set
S
l2Lq

Cl. In the case of maneuvers, this would be the set spanned by the image of Cq over

the maneuver duration. A perhaps more interesting and useful de�nition for the set Q is as a safe set of

maneuvers; in the case of moving obstacles the set Q will be time dependent. In general, the computation

of such a set is very challenging. In the hybrid system literature an approach that has been applied to

several problems, including air tra�c control, is based on the de�nition and the computation of the level

sets of an appropriately de�ned Hamiltonian function [47, 11]. A possibly conservative computation of the

safe set can however be carried out quite easily in several cases; for example, in the case of �xed obstacles,

each trajectory, the execution of which allows for a complete stop along a collision free trajectory, is safe.

Notice that the set Q is considerably smaller than the complete state space X; moreover, the hybrid

control space V is typically smaller that the continuous control space U . This means that in general,

solution to optimal control problems for the hybrid automaton will be computationally less expensive

than solutions on the full state space. We found that the hybrid automaton model, for its structure and

properties, lends itself in a very straightforward manner to the implementation of a new class of motion

planning algorithms, based on a randomized approach [48, 49, 50]. In particular, we will use a form of the

so-called Rapidly-exploring Random Trees (RRT's), introduced in [51, 40].

Consider the case in which we want to control our system to the state (�q; �h) 2 Q, starting from the

state (q0; h0) 2 Q. A concise statement of our version of the RRT algorithm is in the following:

14

Starting point Target

Random test point

Obstacle

Figure 4: RRT algorithm - Pictorial representation of one iteration

1. We start building a tree, and assign (q0; h0) as its root. Also, set the index i to 0.

2. As the next step, we compute the optimal path in the obstacle free case: this will generate a sequence

of states f(qi;1; hi;1); : : : ; (qi;n; hi;n)g, where qi;n = �q and hi;n can be made arbitrarily close to �h;

3. de�ne n̂ as the index of the last one of the above states that belongs to the set Q; if n̂ = n then

we have found a feasible solution to the problem. Moreover, if i = 0, the solution is the optimal

one (subject to the dynamics represented in the trajectory primitives library), and we can exit.

Otherwise add all the states f(qi;1; hi;1); : : : ; (qi;n̂; hi;n̂)g as a child to the node i;

4. choose (at random) a new \destination state" (~q; ~h) 2 Q, and compute the corresponding optimal

obstacle-free path, starting from the \closest" state in the tree (indexed as j). In this case, we can

use as a distance function the unconstrained optimal cost function J�(q; h � �h�1). If the �rst state in
the computed path is in Q, then add it to the tree as a child of the state j, and set i to the index of

the newly added tree node

5. if the maximum iteration number has not been exceeded, set i i + 1 and go back to step 2,

otherwise exit with a failure.

The hybrid automaton architecture solves many of the issues that could be a problem for the e�ec-

tiveness of the RRT algorithm as presented in [51]. First, the optimal cost function J� represents a valid

distance function, with a meaning that is directly related to the system (e.g. time to target in a mini-

mum time problem). Moreover, once the optimal cost function is computed, the selection of the optimal

controller and hence of the optimal path can be carried out in an extremely e�cient and computationally

inexpensive fashion. The need for a second tree, growing from the target point, is removed by the fact

that at every step the tree grows in the direction of (�q; �h). For an online implementation, the tree growth

is not parametrized with constant time steps that have to be kept \small", but instead with the coasting

times (in trim trajectories) and the maneuver durations, that are not necessarily \small". This means

that the computation of the new hybrid control input value does not need to be performed at a high rate.

The RRT algorithm is not complete, in the sense that it could fail to generate a feasible trajectory, even

if one exists. However, it can be shown that the RRT algorithm, in the continuous case, provides a feasible

solution with high probability, and is complete in a probabilistic sense [52]. Randomized algorithms have

been found to perform very well in many applications of interest; however, RRTs cannot deal very well with

workspace con�gurations that present \narrow passages" [53]. In many cases of interest though, like in the

case of aerial vehicles, the environment is such that the work space does not have such narrow passages;

15

moreover, in cases where this narrow passages exist, they could be known a priori, and appropriate way-

points could be set.

4 Case study: control of an autonomous helicopter

A small helicopter is a very good example of the systems to which our control architecture can be pro�tably

applied. Radio-controlled helicopters are capable of remarkably agile and aggressive maneuvers, which

are impossible to perform using traditional control techniques, especially when the on-line solution of

the motion planning problem is required. Among the reasons for that we can state that helicopters

are essentially unstable systems, with a very high bandwidth, and their dynamics change considerably

throughout the ight envelope. We anticipated that an approach based on a quantization of the system

dynamics, through the de�nition of a library of maneuvers and other trajectory primitives could deal

e�ectively with the complex dynamics of a helicopter, and at the same time provide a valuable modeling

tool for motion planning.

In the process of building a robust hybrid automaton for the helicopter, the problem of designing

feedback control laws for stabilization and tracking had to be faced. The RHA de�nition does not specify

any particular form for the low-level control law, so it is possible to choose the most convenient design

methodology. Several techniques for autonomous helicopter control have been proposed, ranging from

robust linear control, neural control, fuzzy control, and nonlinear control [54, 55, 56]. We will focus on

the latter techniques, mainly because of the fact that, if we can �nd control Lyapunov functions for the

system, we can derive very easily estimates of the invariant sets Rq and
q, as well as estimates of the

image of a starting set Cq under a maneuver.

In recent papers, feedback linearization techniques have been applied to helicopter models, with positive

results. The main di�culty in the application of such techniques is the fact that, for any meaningful

selection of outputs, the helicopter dynamics are non-minimum phase, and hence are not directly input-

output linearizable. However, it is possible to �nd good approximations to the helicopter dynamics such

that the approximate system is input-output linearizable, and bounded tracking can be achieved [57, 35, 58]

The above mentioned approach su�ers from a few drawbacks, including the fact that, since attitude is

often parameterized using Euler angles, singularities arise when performing some maneuvers, such as

loops, barrel rolls and split-S's [59]. A possible solution to the singularity problem is represented by chart

switching when approaching a singularity. However, this can be cumbersome in implementation, and can

lead to excessively high gains in the proximity of singularities. On the other hand, the singularities arising

in these model are artifacts due to the choice of the attitude parameterization (Euler angles), and do not

reect any intrinsic characteristic of the helicopter dynamics. The need to avoid arti�cial singularities due

the attitude representation is the main driver behind the control design presented in this paper. This can

not be achieved using a coordinate-dependent control system: to achieve this goal, we will operate directly

in the con�guration manifold of the helicopter.

The \tracking on manifolds" problem is solved in [60] for fully actuated mechanical systems. In the

following we present an extension, for achieving asymptotic (locally exponential) tracking of trajectories

for a particular class of underactuated mechanical systems. An approximation of the helicopter model

can be shown to be in this class: the approximation that will be shown in the paper is the same one that

leads to feedback linearizability, or di�erential atness of the model. However, the method presented here

can deal, through trivial modi�cations, with more accurate models, including for example the e�ects of

aerodynamic forces.

The control design will be based on a non-trivial extension of backstepping ideas [61, 62, 63] to dynamic

16

systems on manifolds. In its basic form the backstepping procedure is carried out on a chain of integrator

(integrator backstepping); in our case the backstepping procedure is implemented on a dynamic system

evolving on the group of rotations in the three-dimensional space SO(3). A backstepping approach for

control of underactuated, non-minimum phase nonlinear systems was used in [64, 65] for control of surface

vessels: in our case the problem is more di�cult since we need to control the rigid body motion in the three-

dimensional space, as opposed to the plane. At the time of writing this paper, the authors also became

aware of the work in [66], where a backstepping procedure was implemented to design a controller for a

helicopter close to hover. However, the approach in the above paper is still partially based on a coordinate

representation, and Euler angles are used in the expression of the control law. As a consequence, geometric

singularities are not eliminated, and the system is not able to track trajectories in which the helicopter

\turns upside down"[67]. In addition to providing a more rigorous approach to the \backstepping on

manifolds" design procedure, our formulation avoids the introduction of arti�cial singularities, and results

in a controller that is capable of tracking any feasible trajectory (within the limitations of the model).

4.1 Helicopter dynamics

The helicopter model that we will use here is based on the model presented in [35]. A very similar model

has been widely used in the nonlinear control literature, in the three degrees of freedom case, as a VTOL

aircraft model [57, 58]. More details on helicopter dynamics can be found in [68, 69, 70]. The dynamics of

the helicopter as a rigid body can be expressed as in section (2.3), with the following expressions for the

body force and moment in eq. (9):8>>>>>><
>>>>>>:

Fb = mR�1~g + u4

2
4 0

0

�1

3
5+

2
4 0 ��2 0

�1 0 ��3
0 0 0

3
5
2
4 u1

u2
u3 � �4(u4)

3
5

Mb =

2
4 u1
u2
u3

3
5

(21)

In the above, ~g is the gravity acceleration, and we have de�ned:8>><
>>:

u1 := �zmrTb1
u2 := �zmrTa1
u3 := k0 + kTT

1:5 + xtrFt
u4 := T

(22)

and: 8>>>>>><
>>>>>>:

�1 := � 1
zmr

�2 := � 1
zmr

�3 := � 1
xtr

�4(T) := k0 + kTT
1:5

(23)

where T is the main rotor thrust, a1; b1 are respectively the pitch and roll rotor apping angles, Ft is

the tail rotor thrust, �zmr and �xtr are the moment arms of the main and tail rotor with respect to the

helicopter center of mass, and k0; kT are the coe�cient in the approximate expression of the main rotor

reaction torque. As suggested and motivated in [35], we will use a dynamic extension procedure to ensure

that the augmented system has constant relative degree. This is done by appending two integrators to the

thrust control input u4. We will thus consider as the control inputs the vector u := [u1; u2; u3]
T and the

scalar �u4.

17

4.2 Control Design

The objective of the feedback control law will be to track a smooth, feasible reference trajectory

(gref (t); �̂ref (t)). We will start by designing a controller for the approximate system obtained by set-

ting �i = 0; i = 1 : : : 4. This approximation simpli�es the control design considerably: it can be shown that

the resulting approximate system is di�erentially at, and hence feedback linearizable [35]. Even though

we will not use a feedback linearization technique, the absence of unstable zero dynamics gives an insight

on the nature and the advantages of the approximate system.

4.2.1 Translational dynamics

If we consider as translational coordinates the position and velocity in the inertial frame (p; _p) = (p;Rv),

the translational dynamics is composed of three double integrators in parallel, driven by the force input

�(R; u) := RFb(u). Since the translational dynamics block is essentially linear, it is easy to design a

Lyapunov function Vp and a control policy Kp such that if

�(R; u4) = ��(p; _p) := Kp(p; _p)�m~g (24)

then the translational dynamics is stable, that is _Vp(p; _p) � �W (p; _p), where W is a positive de�nite

function. The above can be easily extended for tracking of a reference trajectory pref (t), by adding the

appropriate feed-forward terms. For simplicity, we will assume the following proportional-derivative (PD)

form for the translational dynamics control law:

Kp(p; _p) := �pref �Kp(p� pref)�K _p(_p� _pref) (25)

where the constant gains Kp;K _p can be derived from standard linear control design techniques, and �pref
is the feed-forward term.

If the function �(R; u4) were invertible, then we would be able to use the attitude R as a control input

to the translational block. This is not the case, however, we can select the desired attitude Rd as the

\closest" (in the sense explained below) element to reference attitude Rref for which we can �nd a u4
such that �(Rd; u4) = ��(p; _p). A measure of the distance between two elements R1; R2 of SO(3) can be

derived from the relative rotation �R := R1R
�1
2 (group error), that is still an element of SO(3) [60]. All

the elements of SO(3) can be described by a �xed axis ~r, corresponding to the single real eigenvector, and

an angle of rotation ~�, which can be derived from the complex conjugate eigenvalues. As a measure of the

magnitude of the group error �R, that is the distance between the rotations R1 and R2, we can consider

the following function:

�(�R) := 1� cos(~�) = 2 sin2
~�

2
=

1

2
Tr(I � �R) (26)

At this point, we can de�ne the desired attitude and thrust as the solution of the following optimization

problem:

(Rd; u4d) = argmin
(R;u)2SO(3)�R

�(RR�1ref)

s:t: �(R; u) = ��(p; _p)
(27)

It can be veri�ed (see the following) that a unique solution exists, and that the dependence of (Rd; u4d)

on (p; _p) is smooth, excluding the sets over which Rrefe3 � ��(p; _p) = 0. This includes the case in which the

commanded acceleration of the helicopter is equal to the gravity acceleration. This singularity is inherent

to the physics of the problem, and as such cannot be avoided: it corresponds to the fact that if u4 = 0 the

18

helicopters enters a free fall, regardless of the attitude. Moreover, in the case in which the commanded

acceleration requires a rotation of �=2 radians of amplitude, there are two equivalent solutions to the

problem (27), corresponding to u4d = ��u. Having de�ned the vector r := Rrefe3 � ��(p; _p)=jj��(p; _p)jj2,
simple geometric reasoning provides the following solution to the above minimization problem:

(Rd; u4d) =

� �
Rot(�r; sin�1 jjrjj2)Rref ; jj��(p; _p)jj2

�
; if Rrefe3 � ��(p; _p) � 0�

Rot(r; sin�1 jjrjj2)Rref ; �jj��(p; _p)jj2
�
; if Rrefe3 � ��(p; _p) > 0

(28)

where e3 := [0; 0; 1]T , Rot(r; �) is the rotation about the �xed axis r through an angle �, and � and �
represent the scalar and cross products of vectors in R3 . The rotation Rot(r; �) is given by Rodrigues'

formula:

Rot(r; �) = I3 + sin �
r̂

jjrjj2
+ (1� cos �)

r̂2

jjrjj22
(29)

4.2.2 Attitude dynamics and backstepping control design

Once we have the desired attitude, using backstepping ideas [61, 62, 63], we want to track Rd in such a

way to stabilize the overall system. However, before we can go on with the control design, we have to take

a look at the rate of change of the objects introduced in the previous section (see also the derivations in

[60]). First of all, we have that _Rref = Rref !̂ref ; accordingly, we can de�ne !̂d := RT
d
_Rd. Furthermore,

the following equalities hold:

d
dt
�(RRT

d) = sin ~�d
~�
dt

=

= Skew(RT
d R)

_ � (! � !d) = Skew(RRT
d)

_ � Rd(! � !d) =
= sin ~� ~r � Rd(! � !d) = sin ~� ~rd � (! � !d)

(30)

where Skew(M) = 1
2(M �MT), the operator (�)_ is the inverse of the \hat" operator (i.e. S_ � u =

Su; 8u 2 R3 , and S is a skew 3� 3 matrix), and ~r; ~� are respectively the �xed axis and rotation angle of

the attitude error RRT
d , obtained by:

cos ~� =
Tr(RRT

d)� 1

2
(31)

sin ~�~r = Skew(RRT
d)

_ (32)

We can rewrite eq.(30) as:

d

dt
�(RRT

d) = r� � (! � !d) (33)

having de�ned:

r� := sin(~�)~rd = Skew(RT
d R)

_ (34)

Now we are ready to state the following result (for the de�nition of asymptotic tracking on manifolds, see

[60]):

Theorem 1 (Asymptotic tracking for the approximate system) Given a smooth, feasible state

trajectory xref (t) = (gref (t); �ref (t)) for a rigid body under the action of the forces in eq. (21), with

�i = 0; i = 1 : : : 4, there exists an (almost everywhere) smooth control law under which the system state

x(t) globally asymptotically, and locally exponentially tracks the reference trajectory xref (t).

19

Proof: We will prove the above statement by actually building a tracking control law. De�ne a candidate

Lyapunov function by adding to Vp terms that opportunely penalize the attitude con�guration and velocity

errors. Such a candidate Lyapunov function is the following:

V = Vp(p; _p) + k��(RR
T
d) +

1

2

�jj�jj22 + kujju4 � u4djj22 + jj�jj22
�

(35)

where:

� := ! � !d �
u4d

k� cos
~�
2

RT
d

�
~t�r _pVp

�
(36)

� := _u4 � _u4d �
1

ku
r _pVp � Re3 (37)

and:

~t :=
(R+Rd)e3

jj(R +Rd)e3jj2
(38)

Computing the time derivative of V , with the de�nition of Rd and u4 given in the previous section, we

get:

dV

dt
� �Wp(p; _p) +r _pVp(p; _p)(u4dRde3 � u4Re3) + k�r� � (! � !d) + � _� + ku(u4 � u4d)(_u4 � _u4d) + � _�

(39)

We can make the above negative semide�nite by imposing:

_� = �k�� � k�r� (40)

_� = �k�� � ku(u4 � u4d) (41)

where k�, k�, k� , ku, are all positive constants. Noting that:

r _pVp � (u4dRde3 � u4Re3) = �r _pVp � [u4d(R�Rd)e3 + (u4 � u4d)Re3] = (42)

= �r _pVp �
"
2u4d sin

~�

2
(~r � ~t) + (u4 � u4d)Re3

#
= (43)

= �k�r� �

u4d

k� cos
~�
2

RT
d (~t�r _pVp)

!
� ku(u4 � u4d)r _pVp �Re3 (44)

= k�r� � (� � ! + !d) + ku(u4 � u4d)(� � _u4 + _u4d) (45)

we get:

dV

dt
� �Wp(p; _p)� k� jj�jj22 � k� jj�jj22 � 0 (46)

The time derivative along system trajectory of the Lyapunov function V is hence negative-semide�nite:

asymptotic stability can be inferred from LaSalle's principle. To prove local exponential stability, augment

the Lyapunov function (35) with a cross term:

Vcross = � [r� � � + (u4 � u4d)�] (47)

where � is a positive constant. The time derivative of the cross term, under the control law (40) can be

computed as:

d
dt
Vcross = �

h
dr�
dt
� � +r� � _� + (_u4 � _u4d)� + (u4 � u4d) _�

i
=

= �
��k�jjr�jj22 � k�r�� + dr�

dt
� � � ku(u4 � u4d)2 � k�(u4 � u4d)� + (_u4 � _u4d)�

� (48)

20

Moreover, it is possible to �nd positive constants c1; c2 so that we have the following bounds:

dr�
dt
� � � (1 + jjr�jj2)jj�jj22 + c1jjr�jj22 jj�jj2 jjP jj22 (49)

and:

(_u4 � _u4d)� � �2 + c2jjP jj2� (50)

where P := [p� pref ; _p� _pref]
T . For su�ciently small �, and error vector � := [P;r�; �; u4�u4d; �]T , the

derivative of the augmented Lyapunov function Vtotal := V + Vcross will be negative de�nite, and it will

be possible to �nd a � > 0 such that _Vtotal < ��Vtotal, which proves local exponential stability.

The control law will be smooth almost everywhere, that is for all conditions for which ~� 6= �=2. The

explicit expression for the control torques u = [u1; u2; u3]
T , and the control force second derivative �u4 will

then be given by:8<
: u = ! � J!+ J

�
�k�� � k�r�+ d!d

dt
+ d

dt

�
u4d

k� cos
~�
2

RT
d

�
~t�r _pVp

���
�u4 = �u4d � k�� � ku(u4 � u4d) + 1

ku

d
dt
(r _pVp �Re3)

(51)

To the authors' knowledge, the above control law is a new result, providing asymptotic tracking for a class

of underactuated mechanical systems on SE(3). While based on the control design framework presented

in [60], the control law we presented provides asymptotic tracking for a broader class of systems. The

class of systems for which the control law is applicable comprises vehicles modeled as rigid bodies subject

to one force in a body-�xed direction, and three independent torque components. The main advantage of

(51) is the absence of arti�cial singularities, deriving from attitude parameterizations, like Euler angles.

Note that the elimination of geometric singularities has been accomplished through an over-

parametrization of the outputs: we need to fully specify the reference attitude if we want to achieve

asymptotic tracking. Of course the reference attitude has to satisfy the constraints represented by the

system dynamics, for the full trajectory to be feasible. It is to be mentioned that we can also specify an

unfeasible attitude reference trajectory: in that case we will not be able to achieve asymptotic tracking

for the whole state. However, we can guarantee that the system trajectory will be such to asymptotically

track the position reference, and the attitude will be the closest (in the sense of eq. (26)) element in SO(3)

to the reference attitude that ensures the feasibility of the trajectory. The only requirement needed is that

this unfeasible reference attitude must di�er from the actual feasible attitude by less than �=2 radians. As

a �nal remark, note that imposing (28) is equivalent to requiring that a body-�xed vector (e.g. a camera

line of sight) be pointed as close as possible to a speci�ed direction. Yaw tracking only ensures that the

projection on a horizontal plane of the body-�xed vector points in a speci�ed direction.

4.2.3 Tracking for the actual model

So far, we have been able to design a controller to achieve asymptotic tracking of a reference trajectory for

the approximate system. The terms neglected in the approximation appear as perturbations in the nominal

model. A �rst question that arises is how will the controller designed for the approximate system behave

for the actual system, and in the presence of bounded external forces jjFejj2 � �e , like for example those

ensuing from uncertainties in the aerodynamics, or from wind gusts. We want to analyze the robustness

properties of the control law given in eq. (51), in order to construct a consistent automaton, as de�ned in

section (2.8).

21

Assume that the reference trajectory xref (t) = (gref (t); �ref (t)) is feasible for a rigid body under the

forces in (21). Note that if we replace in the relevant equations in the previous paragraph the nominal

thrust direction in body axes e3 with the actual thrust direction as obtained from eq. (21, the control laws

(51) will give exact tracking for initial conditions on the reference trajectory, and no external disturbances.

As a �rst step in our analysis we will consider trim trajectories. Since the unmodeled forces Fu are

a function of the control, given in eq. (21), that is a smooth function of the states and the reference

trajectory, we have that, in a compact set R := x 2 X;V (x; xref) � �V , we can characterize the e�ect of

the neglected coupling as:

jjFujj2 � �u + �jj�jj2 (52)

where � is the state error vector � = [p � pref ; _p � _pref ;r�; �; u4 � u4d; �]T . If we assume that we can

measure the acceleration of the vehicle (this is a reasonable assumption, since autonomous vehicles are

usually equipped with accelerometers), we have the following:

Theorem 2 (Bounded tracking for trim trajectories) Given a trim trajectory xref(t) =�
(exp(�̂ref t); �g); ��ref

�
for a rigid body under the action of the forces in eq. (21), there exist su�-

ciently small �;� = �u + �e such the control law de�ned in section (4.2.2) is such that for all initial

conditions in R the state x(t) achieves bounded tracking of the reference trajectory xref (t).

Proof: If we compute the time derivative of the Lyapunov function Vtotal under the e�ect of the

disturbance forces, we get that:

_Vtotal � ��Vtotal +rV _p(Fe + Fu) �
� ��Vtotal + �jj�jj2 (� + �jj�jj2) �
� �(�� ���)Vtotal + ��

p
�Vtotal

(53)

where � is such that jj�jj22 � �Vtotal. De�ning the set:

 =

(
x 2 X j Vtotal(x; xref) < �

�
��

�� ���

�2
)

(54)

we have that, if � < �=(��), _Vtotal is negative semi-de�nite in the set R n
. Note that this, to be of any

signi�cance, requires that � be small enough that
 � R, that is �
�

��
�����

�2
< �V . Finally, notice that if

� = 0, the control law for the approximate system is asymptotically stabilizing for the actual system

It turns out that the values of � for small helicopters are such that the conditions in the above theorem

are satis�ed (see simulation results in section 4.3. Theorem 2 can be used to characterize the recoverability

and limit set estimates for each trim trajectory. The same Lyapunov function for the nonlinear system

can be used to study the behavior of the system during a maneuver. In this case, de�ne the set C :=

x 2 X;Vtotal(x; xref) � �V , and assume that we can characterize the e�ect of the neglected coupling as:

jjFujj2 � �u + �jj�jj2 (55)

for x 2 C. Then, by the same procedure used earlier, we have that:

_Vtotal � �(�� ���)Vtotal + ��
p
�Vtotal (56)

After the maneuver duration tm, we have that the state will be contained in the set:

D :=

(
x 2 XjVtotal(x; xref) <

�p
�V � ��

p
�

�� ��� exp

�
��� ���

2
tm

�
+

��
p
�

�� ���

�2)
(57)

22

0
1

2
3

4
5

6
7

8
9

10
−5

−4

−3

−2

−1

0

−3

−2

−1

0

North [m]
East [m]

A
lti

tu
de

 [m
]

Actual model
Approximate model

0
1

2
3

4
5

6
7

8
9

10 −6

−5

−4

−3

−2

−1

0

−3

−2

−1

0

North [m]
East [m]

A
lti

tu
de

 [m
]

Actual model
Approximate model

Figure 5: Point stabilization example

Notice that by extending the maneuver duration tm we can make the measure of the set D n
 arbitrarily

small. The above characterization of the destination sets D given a starting set C can be used to design

maneuvers. In the general case, the computation of the Poincar�e map will have to be carried out by

speci�c techniques. Computationally e�cient algorithms for robustness analysis of trajectory tracking for

nonlinear systems have recently been developed, and can be pro�tably used in this case [71, 72]. Once we

have computed the Poincar�e maps, we have the tools for constructing a consistent automaton as de�ned

in Section 2.8.

As a further note, the performance bounds just derived are obtained by using a simple PD controller for

the translational dynamics. However, the form of the disturbance input is such that is satis�es a matching

condition: as a consequence, a robust control policy K(x) can be designed in a relatively straightforward

manner to achieve better bounds. This possibility will be not be explored here, and is left to future

research.

4.3 Simulation examples

In this section we show some simulations obtained for the tracking control law for point stabilization, trim

trajectory tracking, and for tracking of \aggressive" maneuvers that cannot be handled in a straightforward

manner by coordinate-based controllers because of singularities in the attitude parametrization.

The �rst example that we will show is a stabilization problem. The helicopter starts at hover with

non-zero position coordinates, and we want to hover at the origin, heading due North. In Fig. 5 we show

the response of the approximate system and of the actual system in the two cases of \normal" attitude

and inverted ight. Note that in order to obtain discernible plots, we had to multiply the �i values for a

typical model helicopter by a factor of 10. As we can see, the application of the controller designed for

the approximate system to the actual system (with exaggerated coupling terms) gives very good results.

As expected, the response of the approximate system is identical in the two cases the previous case (up

to a rotation of 180 degrees). However, we see in the response of the actual system in the inverted ight

case the typical \undershoot" of non-minimum phase systems. The helicopter model used in this paper

is known in the literature as being non-minimum phase, where the zero dynamics can be represented as

undamped oscillators, of the form �� = �k sin�. As a consequence, we notice the non-minimum phase

behavior when the attitude of the helicopter is such that the zero dynamics evolve close to the unstable

equilibrium point.

A third example, in �g. (6), is about tracking of a trim trajectory, in this case a climbing turn. Again we

see satisfactory performance, even though we notice that tracking a time-parameterized trajectory could

require excessive control e�ort and ying aggressiveness. Maneuver tracking techniques [36, 32] could be

23

−2
0

2
4

6
8

10 −5

0

5
−2

0

2

4

6

8

10

North [m]

East [m]

A
lti

tu
de

 [m
]

Actual model
Approximate model

0
1

2
3

4 −0.5
0

0.5
1

1.5
2

2.5
3

−0.5

0

0.5

1

1.5

2

2.5

North [m]

East [m]

A
lti

tu
de

 [m
]

Actual model
Approximate model

Figure 6: Trim trajectory (left) and maneuver (right) tracking example

pro�tably used in this case, but we will leave this to future work.

As a fourth example, always in �g. (6) we consider tracking a trajectory that performs a transition to

inverted ight. This maneuver, in the case in which continuous controls are required, has to go through

the singularity at T = u4 = 0, since the thrust will be positive (upwards in the body frame) in the

initial condition, and negative (downwards in the body frame) in the inverted ight condition. In the

example, attitude control was shut o� when ju4d j was smaller than a preset value Tmin. As a matter of

fact, on helicopters the rotor thrust can be changed very quickly by just a step in the collective: since the

kinetic energy stored in the rotor can be used to provide very fast commanded thrust responses, the thrust

dynamics are much faster than the rigid body dynamics. Hence the requirement of having a continuous

thrust history can be relaxed.

In the transition to inverted ight maneuver that we are considering, we are close to the singular

condition only for a short period of time, during which we cannot guarantee that _V < 0. This is the

reason for the relatively large deviations from the reference trajectory in the second half of the maneuver

(following the singularity). However, the increment �V between before and after the singularity can be

made to be arbitrarily small (for example by reducing Tmin, at the expense of a larger required control

authority).

4.4 Time optimal control in a free environment

For this application example, we consider the minimum time optimal control problem, in an obstacle-free

environment. We want to take a helicopter to hover in a neighborhood of the origin in minimum time,

under the constraint of the allowable maneuvers. In this case the running cost function is:

(q; h) =

�
0 for (q; h) = (qhover; [�x; �]T); jj�xjj < �

1 otherwise
(58)

The radius of the target zone � can be made arbitrarily small, but must be strictly positive, at least in the

current implementation of this architecture, because of truncation (�nite number of trajectory primitives),

and computational issues (continuity at the optimum). As an alternative an additional terminal cost can

be included in the cost expression. As a simplifying assumption, we will consider only trajectories in the

horizontal plane. In this case the problem has an axial symmetry, and the relevant information in the

outer state vector can be reduced to the scalar quantities � and �, that is the distance and the line-of-sight

angle to the target (see �g. 7). In the example, the design trim trajectories collection is de�ned by:

24

(V; _ ; ; �) 2 f0; 1:25; 2:5; 5; 10 m/sg �
�f�1; 0:5; 0; 0:5; 1 rad/sg �
�f0 radg � f0 radg

Reference maneuvers are computed for transition between all trim trajectories. Each maneuver is computed

by connecting the trim parameters by splines of su�ciently high order to guarantee the required smoothness

in the control inputs, and looking for the spline of least duration while satisfying constraints on the states,

controls, and control rates.

An initial proper control policy, based on heuristics, can easily be derived (i.e. stop the helicopter, turn

facing the target, move slowly towards the target). Application of a value iteration algorithm provides

convergence in the evaluation of the optimal cost-to-go to within one hundredth of a second in 15 iterations.

In this application example, the computation of the optimal cost is carried out o�-line (see �g. 8). The

evaluation of the optimal control, that is the computation of the minimizer (the argmin) of J as de�ned

in eq. (20), which has to be done in real-time, requires only a few hundredths of a second on a Pentium-

class CPU, and is therefore implementable on current on-board computer systems for small aerial vehicles.

Examples of trajectories obtained by simulation are shown in �g. 9. In these �gures, the height of the

stems represents the velocity of the vehicle; moreover, solid lines and circle symbols indicate transitions

in the hybrid automaton.

4.5 Motion planning with obstacles

As explained in section (3), the optimal cost function computed in the obstacle-free case can be pro�tably

used in a randomized path-planning algorithm. A variation of the algorithm summarized in section(3)

has been implemented to allow for selection of the best feasible trajectory, still considering time as the

performance measure. Essentially, such a modi�cation consists in back-propagating the time to target

each time a feasible child trajectory is added to the tree. By back-propagating we mean that we have to

climb the tree back towards the root, labeling each node as the time to target of the child tree plus the

time required for the transition from the node to the root of the child tree. This climbing process has to

be reiterated until the label on the node under examination is actually smaller that the new computed

value (this means that the current trajectory is not the best one found so far), or until we get to the

maneuver tree root, in which case the current trajectory represents the best choice. Also, notice that care

must be taken in labeling the nodes that belong to obstacle-free solutions as such, and exclude them from

the randomized search. This is because an obstacle-free solution is optimal by construction, so we should

not waste computing time in trying to improve it.

The randomized path planning has been tested in several examples, including cases with moving

obstacles, and proved to be very fast and reliable. In the two cases depicted in �g. (10), the randomized

motion planner succeeded in �nding 50-100 feasible trajectories, for a running time ranging between 2 and

6 seconds.

5 Conclusions

In this paper a Robust Hybrid Automaton architecture, applicable to autonomous vehicles has been

presented and discussed. Algorithms have been given to solve, or approximate, the time-optimal motion

planning problem in the free workspace case as well as in the presence of �xed and moving obstacles.

A speci�c example, involving a small autonomous helicopter, has been presented in detail. The hybrid

automaton structure has been found to provide a very exible, and computationally e�ective tool for

25

North

East
λ ρ

Figure 7: Example geometry

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

λ (deg)

J(
q ho

ve
r, 7

.5
 m

, λ
)

(s
)

Initial cost estimate

Cost estimate after 15 policy iteration steps

0
50

100
150

200
250

300
350

0

10

20

30

40

50
0

2

4

6

8

10

12

λ (deg)ρ (m)

J* (q
ho

ve
r, ρ

,λ
)

(s
)

Figure 8: Value iteration results and optimal cost

−60
−50

−40
−30

−20
−10

0

−10

−5

0

5

10

15

20
0

2

4

6

8

10

12

East (m)North (m)

V
 (

m
/s

)

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

0

5

10

15
0

2

4

6

8

10

East (m)North (m)

V
 (

m
/s

)

Figure 9: Simulated trajectory and velocity pro�le, starting from a high speed turn away from the target

(left), and from high speed ight over the target

26

−60 −40 −20 0 20 40 60
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

East (m)

N
or

th
 (

m
)

