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A Quadratic Programming Approach
for Solving the/; Multiblock Problem

Nicola Elia and Munther A. DahlehSenior Member, |IEEE

Abstract—The authors present a new method to compute may cause order inflation in the controller due to the FIR
solutions to the general multiblock ¢, control problem. The  approximation.
method is based on solving a standardi, problem and a e F\y method is based on approximating the closed-loop
finite-dimensional semidefinite quadratic programming problem T .
of appropriate dimension. The new method has most of the map by an FIR and thus ha; similar properties t(? th? above
properties that separately characterize many existing approaches. method. The FME method is based on approximating the
In particular, as the dimension of the quadratic programming dual of the original/; problem and that provides converging
problem increases, this method provides converging upper and Jower bounds of the optimal value. This resolves the issue of
lower bounds on the optimal £, norm and, for well posed —gn4ing 4 stopping criterion; however, it requires computing
multiblock problems, ensures the convergence in norm of the . . - ;
suboptimal solutions to an optimal ¢, solution. The new method INterpolation conditions that characterize the closed-loop map.
does not require the computation of the interpolation conditions, ~ In the DA method, the multiblock problem is transformed
and it allows the direct computation of the suboptimal controller. into a one-block problem by introducing fictitious delayed

Index Terms—Computational methods, !, control, optimal con- iNPUts and outputs to the controller. This method has three
trol, quadratic programming. important properties: 1) the convergence of the lower bound is
generally fast; 2) there exists a particular ordering of the input
and output channels that ensures the convergence of the upper
bound together with the convergence in norm of the computed

HE general multiblocké; problem has been shown tosuboptimal solutions to an optimdl solution for all well-
be equivalent to an infinite-dimensional linear progranposed multiblock problems; and 3) for many problems, there

Several methods have been proposed in the literature elgists an ordering of the input and output channels that will
provide approximate solutions to this problem. The maigenerate a sequence of suboptimal controllers without order
ones are:Q-design, finitely many variables—finitely manyinflation. Although properties 2) and 3) are very interesting
equations approximation (FMV-FME), delay augmentatiofiom a theoretical point of view, in practice, finding the right
(DA), the convex programming approach using miXefH.., ordering can be difficult even for problems of moderate size
a geometric dynamic programming approach, and finally terms of number of input and output channels. The compu-
a state-space approach. Bellow is a brief account of thgion of a suboptimal controller as well as the construction of
advantages and disadvantages of these methods. the interpolation conditions are the main practical limitations

The first approach, th€)-design method [3], is based ontg the application of DA and, in general, of all the methods
approximating the optimal controller by approximating th@ased on direct optimization on the space of closed-loop maps;
stable@) parameter (in the standard Youla parameterization) lyr details on the above methods, see [6] and [7]. A method
a finite impulse response (FIR) system. Theproblem then that avoids the computation of the interpolation conditions
becomes a finite-dimensional linear program in the paramet@htly related to the-design approach has been recently
of Q. This provides an upper bound on the optimal solutiogoposed in [13].
which is guaranteed to converge to the actual optimal asthe geometric methods based on dynamic programming
the length of the FIR increases to infinity. The controller igguments [1] provide a recursive algorithm for computing
automatically derived from th@ parameter. In this paper, Wegmy ., it has a direct relation to the state-space methods [16],

will show that, for a large class of multiblock problems, thi?l?], [2] as shown in [9]. Nevertheless, their computational
method guarantees that a subsequence of suboptimal SOM%erties are still under investigation.

converges in norm to an optimél solution. The disadvantage Finally, a mixed objective approach based on solving an

of this procedure is that it has no stopping criterion angll/Hoo was suggested in [12]. The method provides con-
verging suboptimal solutions but does not provide a stopping

criterion. The solutions are based on solving convex optimiza-
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solution. Moreover, since the method is based on closed-lo8p*"(Z) into £5'*"(Z.) and¢3y**"(Z_) induces, through the
map approximation, it provides a converging lower bound teourier Transform, an analogous separatiorj*" [0, 27).
the optimal/; cost. . e -

The main idea in this paper can be better understood in L5700, 2m) = HY ™" @ Hy
the simple single-input/single-output (SISO) case. Instead v%ere HL™ contains all the matrix-valued functions in
minimizing the#; norm of the closed-loop impulse response, ,xn . 2 h tic inside th it di
we minimize the square of thé; norm of the first v 2"[0,2m) that are analytic inside the open unit disc,

1 annJ‘ 1 1 H 1
samples plus the square of thg, norm of the tail (after and Hj contains all the matrix-valued functpns. in
N) of the sequence. FoN — 0 we have a standard{, L577[0,27) analytic in the complement of the unit disc.
problem, and asV — oo the problem becomes a standar&zHglxn is the space of rational transfer function matrices in

' - L, .
¢, problem. This problem has a special property in that tiés - RH3™" s defined analogously. _ _
solutions are achieved by FIR's of order N — 1, when Since we will mostly work with real-valued unilateral matrix
the Youla parameterization is derived from the optirfte) Sequences supported on th?xgositive infgsrs, for notational
controller. In order to solve the mixed objective optimizatiorfonvenience we will denoté;™"(Z..) as £;™". .
we first solve the standar@f, problem. We then use the ¢ " is the space of all sequencBsof i x n real matrices
optimal H, controller to computeH, U, and V' in the Youla Such that

parameterization® = H — UQV). Finally, we solve the A n.o>

convex optimization problem, which can be shown to be [l = max > Ihis(B)] < .

equivalent to a finite-dimensional problem. The paper also T og=Le=0

discusses in detail all the convergence issues. The dual of a Banach spack is denoted byX*. The dual

Given the computational nature of tlie solgtions, seve_ral space oft7*™ is #™x" which is the space of all sequences,
researchers have extended these results |nto. con_str&ineq;, of m x n real matrices such that
problems [8], [18], [11], [12], [15]. The results in this paper .
utilize solutions for mixed objectives to solve the problem. Itel o Z
In addition, these results can be used in mixed objectives; -
however, we will not discuss this here.

The paper is organized as follows. Section Il containg' " denotes the subspace éf:*™ consisting of all the
preliminaries and the problem formulation; Section lisequences ofrn x n real matrices for which
presents the mixed problem that approximates/thgroblem; ) ) )
Section IV discusses the various convergence issues; and Jim gi;(t) =0 Vi=1---m,  Vi=Ll--.n
Section V discusses computational issues and provides an

MXn\« __ gmXn
example. Finally, Section VI contains the conclusions. 't 1S Well known that(c™")" = £,
Given A, a bounded linear operator frold to Z, A* :

Z* — X* denotes its adjoint. GiverT, a bounded linear
Il. NOTATION AND PROBLEM SETUP operator fromZ* to X*,*7 : X — Z denotes the pre-adjoint,
In this section we establish the notation that will be usethen it exists, of7. (*7)* = 7.
throughout the paper. Apart from some minor differences, we For notational simplicity, we will often drop the superscripts

max max |gi()] < oc.

i=1

follow quite closely the notation in [6]. m X n when no confusion arises.
Given a complex-valueadr x n matrix A, A denotes the We consider discrete time multi-input/multi-output (MIMO)
conjugate of A. systems. Given a systed, its state-space representation is

£3*"™(Z) denotes the Hilbert space of sequences denoted by
complex-valuedn x n matrices, with inner product defined as

A B
o0 G =
(H,G) = Z trace(G(k)T H(k)). C D

k=—oc
_ ) G()) denotes the\-transform of G which is given by
3%"(Z) can be written as the direct sum of two spaces of

one-sided sequences G(\) =D+ COXI - A)'B,

77, @ 15X (Z ) G~(\) denoteséT(ﬁ). It is often called the Hilbert space
' . _ ~adjoint of G.
with 0 € Z,. The Fourier transform of7 in £;"*"(Z) is ~ We consider the standard generalized sysfénshown in
defined as Fig. 1

Gle ™) = Z G(k)e ™. 4 ‘ S
k=—o0 M = C ’ D1 Do

L£7"[0, 27) denotes the space whose elements are the Fourier 2 D Do
Transform of elements iy’ *"(Z). The decomposition of We make the following assumptions.
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Note thatl/; : R™ xRN — IR™* xIRY, Uy, : R™ xRY —

w z
— — 7, and Uy : 47+ — £7=. It follows from the Toeplitz
u G y structure ofU that U = U. SinceU is causal, it follows
that Usy é PNUTN = 0.
Using these expressions, the decompositionbotan be
written as
K
' ¢ =H, —-U:1V
Fig. 1. General setup. By = Hy — UpaQ1V — UQ,V.
Assumption 2.1:
Al) (A, B,) is stabilizable andC», A) is detectable. 1. APPROXIMATION METHOD
A2) D;, has full column rank and)s; has full row rank. Consider the following optimization problem:
A—Te™® B,
A3) | ] has full column rank for all¢ <
1 D12
0,2m). - = inf VI + 1223
Ad) T . Dl | has full row rank for allé € [0, 2r). subject to:

B =H —U Q1V

2 21
A5) Dll = 0 and DQQ = 0. BomHy Uis @1V UGV
Ty XMy

Assumptions Al) to A4) are standard assumptions; see [6] and QreR XN ) e
[19]. Assumption A5) is made only to simplify the derivations )
and can be removed.

All stable closed-loop maps frome to » can be parameter-
ized as® = H — UQV whereQ ¢ ¢]*”" is arbitrary, and  Properties of Problem (2):
H, U, and V are stable systems that can be computed fromP1) For anyXN, denote

the problem data [6]. Thé; problem is given by
N = /| @]lf + (1223 3)
S=H-UQV

Qcey Y || ]lv is @ norm onX = IR™=*mwxN x gB=*"=_Prop-
lem (2) is a constrained norm-minimization problem.

?92) For eachV the solution to Problem (2) exists.

P3) There exists a parameterizatibn= H — UQV, such
that, for any finiteV, Problem (2) is equivalent to the
finite-dimensional convex optimization

p = inf 1]z 1) |®

subject to:

Next, we are going to decompose the above expression in
special way. Le?"*" be the space of all sequencesok m
matrices. For a fixed positive integé¥, let Py : %™ —
R™™ x IRV denote theruncation operator of orderV

and Ty : £7%™ — £7*™ denote thetail operator of orderV PN = ot inf 19112 4 ||®2]|3.
Tnz = [z(N) 2(N+1) --]. Also let Py : R™*™ x RY — subject to:

P1=H -U1Q1V
Do=Hy—Ui2V
Q. cIR™ = Xy XN

£ denote the operator that makes an infinite sequence from
a finite sequence of lengtiy by adding zeros.

Pyy=[y0) y1) - yN-1) 0 0 -] (4)
andTy : "™ — ¢m*m denote the operator that putszeros . . . . )
at the beginning of a sequence Equivalently, the optimal solution with this parameter-
- ization satisfiegy, = 0.
Ty = [uv_Q y(0) y(1) ] Proof (Sketch): The first property is immediate. The sec-
N ond property follows from standard duality theory results,
Using these operatorg can be expressed @5 — Py®, + given the fgct. thgt Problem (2) is itself th(_e dual of another
Tn®, Where &, = Py®, &, = Ty®. Similary, Q = convex opt|m|zat|9n lprol.:)Iem. For the _thlrd property, the
Py Py + TnTnQ = PxQy + TyQs and H = Py Py H + special parametenzauon is the one obtained from the model-
TNwTyH = PyHy + Ty H,. Also define base(_d optimalH, co_ntroller. For that c_aseU and V are
both inner. The details of the proof are in the Appendix. This
U, 2 PyUPy property of the optimal{, controller can also be derived from

U A oUp the principle of optimality in dynamic programming. [
12 N NEIN The next theorem gives the dual formulations for (2) and
Uy =TnUTy. (4). These formulations will be used in future sections.
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Theorem 3.1:The dual of Problem (2) with no duality gaplt is worth mentioning that alk* satisfyingU*z*V* = 0 are
is in the range ofAg ..
We can now prove the following result.

— d H i H 5 . .
pn Hax (Hy,21) + (2, 73) Theorem 4.1:Let pun be defined as in Problem (4). Then

subject to:

Ul V Uz, V=0 o

lim pny = p°.
N—oo

UbalV*=0
=i N3 +ll=3 13 <1 Proof (Sketch):From the optimal solutionz® of the
i CRY @y ey £1 problem, which exists under standard assumptions, we

(5) compute the sequencf||z?||x}, where || - |5 is defined
as in (3). This provides a sequence convergeng:towith
[[°||; = pn for any N > 0. Thuslimsupy_, ., puy < p.

BN = max (Hi,27) + (Ha, 23). To show thatliminfy_..opn > 1°, we consider Problem
subject ter (9), dual of Problem (7). It is well known that there are finite

Ur Vot Uppes V=0 support feasible dual sequencéswhose costy, is arbitrarily
ll 5+ llz 115 <1 close tou® from below. The main step is to show that from
oy €Y,z ey eachz* we can find feasible dual solutions to Problem (6)
(6) with cost approaching: from below as/N goes to infinity.

Proof: This is [10, Th. 1, p. 119]. The details are left tol N€ details are in the Appendix. -
the reader. O

and the dual of Problem (4) with no duality gap is:

B. Convergence of the Upper Bounds
IV. CONVERGENCE PROPERTIES For each N, the optimal solution of Problem (4) has

In this section, we discuss the convergence of sevefdl= [Q1,0] € £”" and thus the resulting optimal" =
quantities. Firsiu is shown to converge tp°. The solution # — UQV = [ &J] is a bounded-input/bounded-output
to Problem (4) is a feasible solution to Problem (1) which hd8IBO) stable closed-loop map. Define
a cost denoted byiy. We will show thatfin, converges to iy = || oV]..

2. In addition, we will derive a simple sequence of lower
bounds onu® and show its convergence. Finally, we discuds follows that iy > u°.

the convergence of the actual solutions. Next, we will show thati converges tq.° as N goes to
infinity. To do this, we first show that ifi®2'||» is bounded,
A. Convergence of the Cogty then||®1’|; is also bounded. We then prove that the sequence

It
In the next theorem, we will show that the sequepce |I®2 Il2 goes zero. ,
converges tou’. The constraints in this problem can be To prove the first statement, we need to recall the following

rewritten as a function of® only by introducing a linear result. _ _ )
operator Ag..., which is standard in the; literature. The act4.1: For the generalized system/ there exists a
problem is, then, equivalent to the following one: parameterization of all closed-loop stable méps: H-UQV
_ with polynomial U(\) and V(A).
pr= i l121]1 (7)  Lemma 4.1:Consider the sequence of optimal solutions,
subject to: [@ @5, of Problem (4), or equivalently of Problem (2), as

a function of N. Then there exists a fixetl/ and two positive
constantsc; and c, such that
where Az, : €727+ — ¢; is a linear bounded operator with H‘I’N
closed range. z

We can write two dual problems for the above minimizatiorMoreover, ¢, goes to zero a3/ approachesc.

Atcas P=breas
2 X
‘I’EZY w

L S a @Y, + e, forall N > M.

one in ¢7=>*™» which is the norm-dual of=*"+, and the Proof: For simplicity, we consider the case whete =
other in £, the dual of the constraint space. They arg andn, = n, = 1. Assume we have found a parameteri-
respectively given by zation as in Fact 4.1. Consider Problem (2) with the resulting
max (H,z*) ®) U(\) polynomial. !\Ipte thatd may nlot be polynomiallin
subject to: general; however, it is an element4f** and hence of;*".
U 2" V*—0 Note that Problem (2) is jointly convex i; and@-. This
e || <1 implies that, to find the optimal solution, we can first find
2 e X the optimal@; for each fixed@; and then we can minimize
and with respect to@;. In our case, for a fixed?;, the optimal
() is the one that minimizes the norm df,, i.e., the one
max (bteas, 7). (9) that minimizeg|Hz — U120Q1 — UQ>||2. This is a standart,
subject to: problem. However, instead of approaching it in the spacas
o= A2 done in the proof of P3 (see Appendix), it is convenient to look

e llee <t 2% € oo at it as a minimization on the space of one-sided sequences
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£3=*"(Z,). Thus, H, and Q2 can be seen as sequences in Theorem 4.2:Consider the sequence of optimal solutions
*4(Z4), Q as an infinite block Toeplitz matrix, ang;» as to Problem (4) as a function a¥ [®)¥ ®X]. Then
a matrix with infinite rows andVv columns.

Since this is a standard least squares minimization in an
Hilbert space, the optimal, is given by

Jim 2], =0

Proof. See the Appendix. O
Qs = UH(H, — U Q1) As an immediate result fro_m the above theorem and
Lemma 4.1 we have the following.
and the optimal®l’ is Corollary 4.1: The sequence of upper boungs, con-
verges tou°.
) = (I - UUT)(H; — Up2Qy) Proof: For eachN, let " = [®)¥, ®)'] be the optimal

) ) solution and denote; » and u2y as follows:
whereU™ denotes the pseudo-inverseldf It is well known

from the standard{, optimization problem that the optimal MmN = H‘I’f 1
Qqisinf; and®y isin 7!, If we denote byd = I -UU T, pon = |05,
then
N Clearly, iy = /iy + 13y
O, = AHy — AU2Q);. From Theorem 4.2 we have thgty — 0 as N — oo.

From Theorem 4.1 we have thaty — p° asN — oco. As

If U()) is a polynomial matrix, say of orde¥/ — 1, then for consequence of these results, it follows that

all the N > M, U5 has all zeros in the firsV — M columns.
Moreover, the lastM columns ofU;, stay the same for all lim pyn = p’.
N > M and theirk elements are zeros fdr > M. Neo

Thus, forN > M, the optimal®} has a representation ofFrom Lemma 4.1 it follows thaf|®%’

1 — 0asN — .

the form Since it is always true that
2) = AH, + [0, BIOs pun < o < + 2
where [0, B]Q, = AU1,Q; and B mapsRR™ into /2%, In  WE have thafiy — p? asN — oc. =
other words,® lies in a fixed translated subspace &<
and depends only on the la&f — 1 elements ofQ;. C. A Sequence of Lower Bounds
Consider now the sequence of optimg} for each N, Next we derive an easily computable sequence of lower

denoted by . From the triangle inequality it follows that bounds foru? which will be denoted byLN. Assume, without

H‘PN loss of generality, that is strictly greater than zero; since
2

, 2 —||AHs |2 + || [0, BlQY |, 1 = 0 if and only if jio = n = pan = 0.
. ivalent Consider the dual problem in (5). For a givén, z* =
or equivalently [z, z3] are the dual variables. LetM = ||z%]|o and ) =
H[O,B]Ql‘r < H‘PQT , + [|AH||>. ||z%]|2. From the alignment conditions it follows that
N _ HIN
From the fact that the range 8fis fixed and finite dimensional o= LN
in £7>! for eachN > M, it follows that there exists a positive N _ HaN (10)
constante; such that T T
ClH[O’ BlQY , 2 |H073]Q1’ . Given that*|x'2*||oo < /nzl|z3||2, it follows that t.hg elemgnt
Yy = %= has||y"|| < 1 and therefore, it is feasible
vy VR, .
Therefore, we have that for Problem (8), the dual of thé, problem in (1). Hence
110, BIQY ||, < ex|@F]], + call AH |2 s
' ? SINIRRRV RN
or Substituting the expressions in (10) we obtain
|01, < crf|@2l, +erllAHll2 + | AHz (L o Py

B2 == .
where we added and subtractdd/, in the norm on the left- AN + /N pieN
hand side, and we used the triangle inequality. Notice th@tearly ., converges tq:.” asN — oo, since the numerator
en = c1||AH;||2 +||AH>]|: is a monotonically nonincreasingand the denominator converge (°)? and .°, respectively.
sequence; thereforeyy < € for all N > M. Besides, Remark 4.1:Notice that the results on the convergence
ey — 0 as M — oo. The result then follows if we let of the upper and the lower bounds do not indicate that the
C2 = €M O sequenceqpin} and {HN} are, respectively, monotonically
The previous result together with next theorem determim@nincreasing and monotonically nondecreasing. In fact, they
the convergence ofiy to the optimalé; cost. may not be as such, as shown in the example of Section V.
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D. Strong Convergence of the Suboptimal Solutions is continuous with continuous inverse. Therefagé}:V con-

We now address the convergence of the solutions of Probl¥ff9es strongly t&)?V'. The result follows from the continuity
(2), ®. The results in this section are similar to the ondd @V of the map® = H —UQV. -
presented in [7]. Corollary 4.2: The sequencel™: converges strongly to

Theorem 4.3:For eachXN, let " be an optimal solution Q°. ) .
to Problem (2). Then, the sequenf®™} contains aweak* Proof: Since by assumptioll has full normal rank, there

. " Ty X
convergent subsequence whoseak® limit is an optimal IS @ setJ of n, columns ofV such thatV; € £,*" * and
solution,&°, for Problem (L). Moreover, if the optimal solutionV7 i invertible with continuous inverse. Given th@f'=V" is
is unique, then the whole sequence converges to it. converging strongly t&@°V, thenQ™-V; is also converging

Proof: Since ||®V|| = fix is a convergent sequence,Stml”g'y to Q°V;. The result follows from the continuity of

{®"} contains aweak® converging subsequence. Denote th&s [
weak™ limit by ®*". For eachN, & is feasible to Problem
(1). This implies that®" belongs to the seS = {& | V. EXAMPLE
Ateas® = breas }. However, S is weak™ closed, and thus it |, g section we briefly discuss some computational issues
contams all itsweak™ limit points. Therefore®™ is a feasible and present an example.
solqt@p to Problem. D). . ) First, we describe how Problem (4) can be rewritten as a
¢* s also an optimal solution to Problem (1). This fOIIOWﬁinear matrix inequality problem. To avoid notational com-

from [7, Lemma 2.5.5]: plications, we only describe the case whdras SISO. The

o generalization to the case, whdres MIMO, although tedious,
1<t is straightforward and is left to the reader.

We start by removing the variabl®, and ¢, from the

If ®° is unique, then all subsequences must convergek® problem by rewriting it as follows:
to it. Thus the whole sequence convergesk* to &°. [ .
We recall a standard result [7] useful in the development v = inf 7+ [ Hz = Ui2QuV 2.
the main convergence theorem. Ly —U2 @ V] <
Lemma 4.2:1f z,, € ¢; convergesweak™ to =, and ||z, |1 0.cRY B
converges td|z||;, thenx,, converges ta: in the £, norm. (11)
From the previous theorem and the above result it follows
that, if any row of®?, (€7); achieves the optimal normi’,  ysing the linearity in Q;, U;Q;V can be rewritten in
then the respective row ab™-, &=, will converge in norm  the following matrix form: UsQ,V = Asq; where, ¢ =
to (7). [0:(0),- -, (N — 1)]T is the vector containing the first
Let I C {1,---,n.} be the set of row indexes for whichglements of the impulse response@f, andA; € RNV,
[(@2)illy = p°. I ={i|[[(®")ill. = p°}. Let card(I) denote  They, norm constraint can now be transformed into a set of
the cardinality of/, i.e., the number of elements ih Given |inear constraints by a standard trick in linear programming.
any ® € /7=*"+ and any index sef C {1,---,n.} with Namely, we have that
cardinality card(I), we can constructp; € ¢*40>m py
collecting only the rows o® whose index is inf. Define H;

2“7 ||y < liminf||®"
N;—oo

subject to:

—p<H —A;q1 <p

and U; analogously so thab; = H; — U;QV. . P(’?_Zl 0 < [[H1 — Apqill £ 7
Definition 4.1: A multiblock problem with an optimal so- Anqi =20 PE) <™

:;th(l)obTe?r;J_Ch thatcard(I) = n,, is referred to as a WeII—posedOn the other hand, iflHy — Asqu[l, = ~1 then there exists
As noted in [7], for most multiblock problems the optimaf”1 vectorp such that

solution achieves the optimal norm on at least rows. —p<H —Ajp <p

However, it is possible to construct multiblock problems for p(k) >0

which n; < n,. Such problems are not well-posed in the o (k) =m.

sense of Definition 4.1.
We then have the following result. Thus 4 is given by

Theorem 4.4:Assume that Problem (1) is a well-posed 5 . 2 _ 2
multiblock problem. Le® V- be a subsequence of solutions to 'V ~ inf N+ 1z = Un@u V-

subject to:
Problem (2) that convergeseak® to ®°, an optimal solution A p<m

to Problem (1) withcard(I) = n,. Assume further thal/; () Hi—A;a<p
has full normal rank. Thefj®®s — ®°||; — 0 asN — oo. CHitA g <p
Proof: We have tha;'* converges strongly t&$. From 20, g1 CIRN
the rank assumption ofi; we have that the map fro@™- v/ - (12)

to o7
o X Now, consider the term|H, — U12Q1V||3. From simple
QVV =U; (Hr — 27°) state-space manipulationd, — U1,Q1V can be represented
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as follows: wy
zy
il B { L } |
Hy —Up1V = . p W,
C 0
Then P @ 2

Hy — UppQ1 V|3 = Trace( [1 qF BTL.B 1
2 ! q1

K Wy [ wo

where L, is the observability gramian, which is given by
unique positive definite solution of Fig. 2. System configuration.

ATL,A-L,+C*C =0.

and the weights are

The dimension ofL, is fixed for a given problem and does . 0.4 . 1 — 0.75)
not depend onV, the order of the approximation. This is p = 0.1, Wi(\) = T o6V Wa(\) = T 0250
becauseH, — U;»,Q,V can be realized witid and C fixed o I
and independent oN. Moreover, the computation of, is The same problem has also been considered in [7].

independent of;;. Therefore,L, can be precomputed. The closed-loop system is the following:
Finally, from [4], we have that the constraint o pK(1— PK)"'W,  pK(1 - PK)"'W,
=\ (1-PE)"'W, PKQ1-PK)"'W, )

Trace([l qf] B'L.B [ ! }) <7
4 Fig. 3 shows the convergence of the upper and the lower
is equivalent to the following linear matrix inequality (LMI)bounds for increasing order 6f; (A). Notice that the sequence
in X(X = X7), ¢, and~2: of upper bounds is not monotonically nonincreasing.
. For N = 26, which correspond to a polynomia]; of
X 1 qf|BT order25, we obtain that the suboptimé] solution ®® with
Trace(X) < 73, B[ 1 } L1 2 0. iy = ||®N||; = 71.1147. The maximum value of the lower
di ° bound is71.0884. Thus||®" ||, is within 0.04% of the optimal
norm, .°. The#; norms of the single transfer functions are

Thus, Problem 4 can be solved by solving the following LM{1
problem: |11l ||<1>12||1} B [1.8606 5.4428

B = o 2 a3) |Porlls || @azlls | — |26.0191 45.0956 |
subject to: . From this information, we see that the second row is dominant
P e ”‘}o in the problem and, in particula,, is the element with
higher norm. This immediately indicates the right reordering
Agy p<m for DA, namely, we need to switch the two outputs and the
two inputs in order for the DA upper bound to converge:to
Tracex) < -2 The coefficients of the suboptim@, for N = 26 are shown
in Fig. 4.
Hi—Arqa<p Although @1 (k) is supported for allN < 26, the coef-
ficients Q1 (k)'s for £ > 13 are all smaller than 3 10°°.
—Hi+Arqi<p By neglecting these coefficients we obtain that the suboptimal
controller K has order 16. The resultirg norm of the closed-
x [1 BT loop system, using such a controller, is 71.1147. Thus, we do
A [ 1 } -1 20 not lose much by considering, of order 12 instead of 25. If
‘ we only consider the first nine coefficients@f, as the figure
X=X", @ cRN suggests, we obtain a suboptimal controller of order 12 dith

. ] ) norm equal to 71.1296, still within the 0.06% of the optimal.
Note that, with a slight abuse of notation, we useand

< to describe both matrix inequalities and component-wise
inequalities. Note however, that since the linear inequalities
are a special case of matrix inequalities, they can be interprete§Ve have presented a new method to compute suboptimal
as Component_wise matrix inequa]itiesl solutions to the standard, problem. The new approach
We now apply the new method to solve theproblem for has several advantages over existing methods. It provides

the system described in Fig. 2, where the plant is given byconverging upper and lower bounds to the optirialcost,
A= 0.5) and it guarantees the convergence in norm to the opténal
~ — U.0

P\ = solution of a subsequence of suboptimal solutions. In contrast
(A=0.1)(1 = 0.5}) with the delay augmentation method, the norm convergence

VI. CONCLUSION
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Fig. 3. Convergence of the upper and lower bounds to the optimatost.
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Fig. 4. Coefficients ofQ¢ for N = 26.

is guaranteed independently of the inputs and outputs orderethod is greater than the number of variables used by DA by
Moreover, the suboptima® is directly computed, and there-approximatelyn.,, x n, x N (the number of elements iy).
fore, the computation of the associated controller is mudkowever, for a fair and realistic comparison of the complexity
simplified in comparison with DA or any known closed-of the two methods, we must include the complexity of the
loop approximation method. Another computational advantagemputation of the interpolation conditions required by DA
is that the computations of the interpolation conditions armethod. Moreover, for the DA method, we must also include
completely avoided. the overhead of computing the suboptim@l To perform
For eachN, we have to solve a semidefinite quadratic prssuch computations reliably, one must run a model reduction
gramming problem instead of a linear programming problemrocedure, which is usually a time-consuming operation even
The complexity of these two problems is not fundamentalfipr relatively small problems.
different. While the number of constraints is approximately the One property of the DA method is that for certain problems
same for the two problems, the number of variables in the nelae method captures the structure of the optimal solution in a



1250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 9, SEPTEMBER 1998

finite number of steps. In such cases, the order of the optimal Proof: Considerb, = Hy —(U1,Q1)V — U0V, where

control is derived from the sequence of suboptimal controller@y@l) is the A-transform of the sequendé»Q;.

Unfortunately, there does not exist a characterization of thesep, can be rewritten as follows:

problems in terms of the problem data which limits the utility . e

of this property. In addition, it may be necessary to reorder the by = A"N[H —UQV — ]

inputs and outputs in the DA method to derive this informatio shered, = H, — U,Q, V. Notice that<i>1()\) is a polynomial

The method presented in this paper does not possess %ii of order ¥ — 1. Assume without loss of generality that

property. However, the norm convergence result may give ./ _ 1 20477~ — 7. Then we have that

indication to the proper ordering for the DA problem. Deriving

an algorithm that combines DA with the suggested algorithm U™ ®, V™

is currently under investigation. =ANUYHVY = ANQ, = Qy — A NI~ V.
Finally, it is possible to extend the method in this paper to

compute solutions to other mixed objective problems such A the terms in the right-hand side of the above equation are

the ¢, problem with amplitude constraints on the response t& Rz with the exception ofQ.. Thus we have that

fixed inputs. |Hz — Ur2Q1 —UQ2V|2
APPENDIX = 107 (Hy = (U2QU)V = UQ2V)V™ |2

= INNOYHVY = ANQ = AT DV + (1Qsla-

A. Proof of P3) Therefore, the minimum value ofV(Q,) is achieved by
Here we show that for any, Problem (2) is equivalent ¢, — 0. Thus

to a finite-dimensional convex optimization in the first _
elements of the impulse response @f This result follows 1221211||H2 —U12Q1 —UQeV |2 = ||H2 = Upr2Q1 V2. O
from a property of the optimak, controller.

Consider the following problem: B. Proof of Theorem 4.1
= inf |P1112 + || D2||3. Consider the optimal solution;’, of the#; problem, which
subject to: exists under standard assumptions. The sequé€fge||y}
P1=H1-l1Q1V converges tq.°, and for eachvV, ||z°|| 5 is an upper bound on
Po=Hz—U12Q1V—-12Q2V p~ - Thus, all the limit points of i } will have values greater
QueR™ My N Qe MY than zero and less thar?. Consider any subsequengey !,

(14) converging to one of the limit points. To simplify the notation,

: L . we remove the subindex and denote the subsequengeby.
Notice that(},, (J> are minimizing solutions to Problem (14)Let .* be its limit. We are going to show that* — ;7. Fix

if and only if they are minimizing solutions to Problem (2), ~} converges tqu°, there exists an

: o : . any e > 0. Since{||z°
Smc_e Problem (14) .|s jointly convex iQ; and (., it can be integer M, such that, for allN > M, [u® — ||l2%||x] < .
rewritten as follows:

Consider Problem (9). It is well known that there are finite

A= inf @417+ inf ||®2|l3. support feasible dual sequencgswhose costy, is arbitrarily
D= -V Pr=Ho Ui V1@V close top®, sayu® —p < € for e; < ¢/2. Sincez* is feasible,
QueIRT Xy XN Qzel " it is also true thaf|Af,, 2*||- < 1. Givenz* = Ay, 2", for

(15) any N, we have that
Given any N > 0, define Uf Pna*V* + U Tna*V* = 0.
N . 2 . .
Q) = inf o [®oflz- (16) Now pick any 0 < e < min{e/2, u}, and lety" =
%:Hzc;blz%fﬁbzw (1 - e2/p)a”. Theny* € £z and [[y*[lec < 1 — e2/p.
2€4,

Moreover, there exists ah/s large enough such that
Then the following is true.

_Theorem 7.1:Consider the parameterization fdr, & = 1Py lIZ + vy ls < 1

H —UQV wherelU andV are inner (i.,e.U~U andVV"™ for all N > M,. Hence, for allN > M,, y* is feasible for

are stable with stable inverse) and is H. optimal or Problem (6) with cosi — e, < paz,. Thus we have that, for

equivalently, UVHV~ € RHz. A parameterization with g|| N > max{ My, M)}

these properties can be obtained from the model-based optimal

H, controller. pe =y > p = ||z°
Then, for anyN > 0

Q1) = ||Hy = U1 V|3

i.e., the minimum is achieved &, = 0.

’ . e Therefor

The result of this theorem implies that Problem (14) is eretore
equivalent to Problem (4). |® —

N > —€

and

po—pun < p’ —pte <ete<e

<e for all N > max{M;, M>}.
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Thus, for anye > 0 there exists ad{ such thafu® — pn

< €

Let YN =
for all N > M; hence,y converges tou’. Since any Y% is uniformly bounded sincely "

1251

RQYN = H — ®". Notice that thef; norm of

1 < H |l A+ 12Nl

convergent subsequence convergegtothe whole sequence and||®%||; is converging to somg < ;°v/1 — a2.

must converge t@.°, and the result is proved. O

From [10, Lemma 1, pp. 155], we have thatfifhas closed

range, then there is a positive constéansuch that for any

C. Proof of Theorem 4.2

For eachN, let ®V = [@) ®1] be the optimal primal
solution andc* = [z}, z3] the optimal dual solution. We know
that they are align6d. LQILIN = ||‘I>{V||1, HoN = ||‘I>é\r||2,

Y in the range ofR, there is a@ satisfyingY = RQ,
with |Q]l1 < k||Y]|:. Thus, if we consider the sequence
{Q~

norms,{||Q"||1} is uniformly bounded. Therefore, it contains

"} of optimal ’s, we have also that the sequence of

1 = ||z%]|eo, and 45" = ||x3||2. The alignment condition ansg,?seq“ence which mga}:" convergent ,“2 SOW"Q“’ <
implies that £, and moreover,®* = H — UQY V since the

’ H1N
,Y{\ - 20\

N loN (7)
Yo = .
BN

Moreover, ®Y = uywzs. Thus, ||@Y
only if v3" goes to zero.
To derive a contradiction, assume that is not converging

> goes to zero if and

sequence{®" — (H — UQMV)} is weak® convergent to
zero. Summarizing, we have a feasible solutid#™ with

|8¥" ||, < u’v1—a? < p°. But this is impossible; hence,
||®5||2 must go to zeros foN — oc.

O
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to zero. This implies that there exist a positive constastiggesting a shorter proof to Theorem 7.1.

1 > a > 0 such that for any positive integéd it is possible
to find someN,; > M for which
,.yé\‘f\/[ > a. "

For simplicity, relabel the sequeneg ™ as~2'. Then, from
Lemma 4.1, also the sequende®)||; } is uniformly bounded
by some constanty < oo.

Since~y > a for all N, we have thaty < v/1—a2 < 3l
1 for all V. [4]

Thus, from the alignment condition in (17), we have that
@)l < pnv1—a? The convergence ofiy implies that s
the sequencé||®{||; } is uniformly bounded by some positive
constand. Thus, the sequendd|®” ||, } is uniformly bounded
becausg|®V ||, < |®N]|L + |95 ]]1-

It follows from the Banach Alouglu theorem that there is al’l
subsequencd®™- }, convergingweak™ to some elemenb®’ .

We claim that||®*" ||; < u°v/1 — a2

For eachN, &IV € R™:*"*N_ &Y can be seen as an
element of/7=*™ by considering it as an FIR sequence in
2= \We still denote this extension d@gY. For anye > 0,
there exists atVy such thal| ¥+ ||; < (u°+e)v1— a2 forall 19

0 1

N, > Ny. Thus, forN, > N, the sequencé®)"} contains [11]
a weak™ convergent subsequend@! 1. Let ®¥" denote
its weak” limit point. Then®” = ', since the sequence|;)
{®sr — ®Ner} is weak™ convergent to the zero element.
Moreover, we have that

(2]

(8]
El

(13]

12 ]Iy < (u” +€)V1—a?.
Since ¢ can be arbitrarily small, we have th§®™ ||, < 4]
1oy 1—a?. [15]

We now show thatd*” is a feasible solution to thé;
problem. This immediately implies that’ is not the optimal [1g]
cost, and this contradiction will prove the assertion of the
theorem. [17]

Let R: £} — 47> be the linear operator mappingjis]
@ to RQ = UQV. Under the current assumptions,is one-
to-one with closed range iff'=*"~. The proof of the above [19]
statement is left to the reader.
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