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for Solving the Multiblock Problem
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Abstract—The authors present a new method to compute
solutions to the general multiblock `1 control problem. The
method is based on solving a standardH2 problem and a
finite-dimensional semidefinite quadratic programming problem
of appropriate dimension. The new method has most of the
properties that separately characterize many existing approaches.
In particular, as the dimension of the quadratic programming
problem increases, this method provides converging upper and
lower bounds on the optimal `1 norm and, for well posed
multiblock problems, ensures the convergence in norm of the
suboptimal solutions to an optimal`1 solution. The new method
does not require the computation of the interpolation conditions,
and it allows the direct computation of the suboptimal controller.

Index Terms—Computational methods,l1 control, optimal con-
trol, quadratic programming.

I. INTRODUCTION

T HE general multiblock problem has been shown to
be equivalent to an infinite-dimensional linear program.

Several methods have been proposed in the literature to
provide approximate solutions to this problem. The main
ones are: -design, finitely many variables–finitely many
equations approximation (FMV–FME), delay augmentation
(DA), the convex programming approach using mixed ,
a geometric dynamic programming approach, and finally,
a state-space approach. Bellow is a brief account of the
advantages and disadvantages of these methods.

The first approach, the -design method [3], is based on
approximating the optimal controller by approximating the
stable parameter (in the standard Youla parameterization) by
a finite impulse response (FIR) system. Theproblem then
becomes a finite-dimensional linear program in the parameters
of . This provides an upper bound on the optimal solution
which is guaranteed to converge to the actual optimal as
the length of the FIR increases to infinity. The controller is
automatically derived from the parameter. In this paper, we
will show that, for a large class of multiblock problems, this
method guarantees that a subsequence of suboptimal solutions
converges in norm to an optimal solution. The disadvantage
of this procedure is that it has no stopping criterion and
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may cause order inflation in the controller due to the FIR
approximation.

The FMV method is based on approximating the closed-loop
map by an FIR and thus has similar properties to the above
method. The FME method is based on approximating the
dual of the original problem and that provides converging
lower bounds of the optimal value. This resolves the issue of
finding a stopping criterion; however, it requires computing
interpolation conditions that characterize the closed-loop map.

In the DA method, the multiblock problem is transformed
into a one-block problem by introducing fictitious delayed
inputs and outputs to the controller. This method has three
important properties: 1) the convergence of the lower bound is
generally fast; 2) there exists a particular ordering of the input
and output channels that ensures the convergence of the upper
bound together with the convergence in norm of the computed
suboptimal solutions to an optimal solution for all well-
posed multiblock problems; and 3) for many problems, there
exists an ordering of the input and output channels that will
generate a sequence of suboptimal controllers without order
inflation. Although properties 2) and 3) are very interesting
from a theoretical point of view, in practice, finding the right
ordering can be difficult even for problems of moderate size
in terms of number of input and output channels. The compu-
tation of a suboptimal controller as well as the construction of
the interpolation conditions are the main practical limitations
to the application of DA and, in general, of all the methods
based on direct optimization on the space of closed-loop maps;
for details on the above methods, see [6] and [7]. A method
that avoids the computation of the interpolation conditions
tightly related to the -design approach has been recently
proposed in [13].

The geometric methods based on dynamic programming
arguments [1] provide a recursive algorithm for computing
FMV. It has a direct relation to the state-space methods [16],
[17], [2] as shown in [9]. Nevertheless, their computational
properties are still under investigation.

Finally, a mixed objective approach based on solving an
was suggested in [12]. The method provides con-

verging suboptimal solutions but does not provide a stopping
criterion. The solutions are based on solving convex optimiza-
tion problems.

The proposed method in this paper can be seen as a-
design method based on a mixed objective optimization. It
therefore provides directly computable suboptimal controllers,
converging upper bounds to the optimal cost, and norm
convergence of the suboptimal solutions to the optimal
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solution. Moreover, since the method is based on closed-loop
map approximation, it provides a converging lower bound to
the optimal cost.

The main idea in this paper can be better understood in
the simple single-input/single-output (SISO) case. Instead of
minimizing the norm of the closed-loop impulse response,
we minimize the square of the norm of the first
samples plus the square of the norm of the tail (after

) of the sequence. For we have a standard
problem, and as the problem becomes a standard

problem. This problem has a special property in that the
solutions are achieved by FIR ’s of order , when
the Youla parameterization is derived from the optimal
controller. In order to solve the mixed objective optimization,
we first solve the standard problem. We then use the
optimal controller to compute and in the Youla
parameterization . Finally, we solve the
convex optimization problem, which can be shown to be
equivalent to a finite-dimensional problem. The paper also
discusses in detail all the convergence issues.

Given the computational nature of the solutions, several
researchers have extended these results into constrained
problems [8], [18], [11], [12], [15]. The results in this paper
utilize solutions for mixed objectives to solve theproblem.
In addition, these results can be used in mixed objectives;
however, we will not discuss this here.

The paper is organized as follows. Section II contains
preliminaries and the problem formulation; Section III
presents the mixed problem that approximates theproblem;
Section IV discusses the various convergence issues; and
Section V discusses computational issues and provides an
example. Finally, Section VI contains the conclusions.

II. NOTATION AND PROBLEM SETUP

In this section we establish the notation that will be used
throughout the paper. Apart from some minor differences, we
follow quite closely the notation in [6].

Given a complex-valued matrix denotes the
conjugate of .

denotes the Hilbert space of sequences of
complex-valued matrices, with inner product defined as

can be written as the direct sum of two spaces of
one-sided sequences

with . The Fourier transform of in is
defined as

denotes the space whose elements are the Fourier
Transform of elements in . The decomposition of

into and induces, through the
Fourier Transform, an analogous separation in .

where contains all the matrix-valued functions in
that are analytic inside the open unit disc,

and contains all the matrix-valued functions in
analytic in the complement of the unit disc.

is the space of rational transfer function matrices in
. is defined analogously.

Since we will mostly work with real-valued unilateral matrix
sequences supported on the positive integers, for notational
convenience we will denote as .

is the space of all sequencesof real matrices
such that

The dual of a Banach space is denoted by . The dual
space of is which is the space of all sequences,

, of real matrices such that

denotes the subspace of consisting of all the
sequences of real matrices for which

It is well known that .
Given , a bounded linear operator from to

denotes its adjoint. Given , a bounded linear
operator from to denotes the pre-adjoint,
when it exists, of . .

For notational simplicity, we will often drop the superscripts
when no confusion arises.

We consider discrete time multi-input/multi-output (MIMO)
systems. Given a system, its state-space representation is
denoted by

denotes the -transform of which is given by

denotes . It is often called the Hilbert space
adjoint of .

We consider the standard generalized systemshown in
Fig. 1

We make the following assumptions.
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Fig. 1. General setup.

Assumption 2.1:

A1) is stabilizable and is detectable.
A2) has full column rank and has full row rank.

A3) has full column rank for all

.

A4) has full row rank for all .

A5) and .

Assumptions A1) to A4) are standard assumptions; see [6] and
[19]. Assumption A5) is made only to simplify the derivations
and can be removed.

All stable closed-loop maps from to can be parameter-
ized as where is arbitrary, and

and are stable systems that can be computed from
the problem data [6]. The problem is given by

(1)

Next, we are going to decompose the above expression in a
special way. Let be the space of all sequences of
matrices. For a fixed positive integer, let

denote thetruncationoperator of order

and denote thetail operator of order
. Also let

denote the operator that makes an infinite sequence from
a finite sequence of length by adding zeros.

and denote the operator that putszeros
at the beginning of a sequence

Using these operators, can be expressed as
where . Similarly,

and
. Also define

Note that
, and . It follows from the Toeplitz

structure of that . Since is causal, it follows
that .

Using these expressions, the decomposition ofcan be
written as

III. A PPROXIMATION METHOD

Consider the following optimization problem:

(2)

Properties of Problem (2):

P1) For any , denote

(3)

is a norm on . Prob-
lem (2) is a constrained norm-minimization problem.

P2) For each the solution to Problem (2) exists.
P3) There exists a parameterization , such

that, for any finite , Problem (2) is equivalent to the
finite-dimensional convex optimization

(4)

Equivalently, the optimal solution with this parameter-
ization satisfies .

Proof (Sketch):The first property is immediate. The sec-
ond property follows from standard duality theory results,
given the fact that Problem (2) is itself the dual of another
convex optimization problem. For the third property, the
special parameterization is the one obtained from the model-
based optimal controller. For that case, and are
both inner. The details of the proof are in the Appendix. This
property of the optimal controller can also be derived from
the principle of optimality in dynamic programming.

The next theorem gives the dual formulations for (2) and
(4). These formulations will be used in future sections.
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Theorem 3.1:The dual of Problem (2) with no duality gap
is

(5)

and the dual of Problem (4) with no duality gap is:

(6)

Proof: This is [10, Th. 1, p. 119]. The details are left to
the reader.

IV. CONVERGENCE PROPERTIES

In this section, we discuss the convergence of several
quantities. First is shown to converge to . The solution
to Problem (4) is a feasible solution to Problem (1) which has
a cost denoted by . We will show that converges to

. In addition, we will derive a simple sequence of lower
bounds on and show its convergence. Finally, we discuss
the convergence of the actual solutions.

A. Convergence of the Cost

In the next theorem, we will show that the sequence
converges to . The constraints in this problem can be
rewritten as a function of only by introducing a linear
operator , which is standard in the literature. The
problem is, then, equivalent to the following one:

(7)

where is a linear bounded operator with
closed range.

We can write two dual problems for the above minimization:
one in , which is the norm-dual of , and the
other in , the dual of the constraint space. They are
respectively given by

(8)

and

(9)

It is worth mentioning that all satisfying are
in the range of .

We can now prove the following result.
Theorem 4.1:Let be defined as in Problem (4). Then

Proof (Sketch):From the optimal solution of the
problem, which exists under standard assumptions, we

compute the sequence , where is defined
as in (3). This provides a sequence convergent towith

for any . Thus .
To show that , we consider Problem

(9), dual of Problem (7). It is well known that there are finite
support feasible dual sequenceswhose cost, , is arbitrarily
close to from below. The main step is to show that from
each we can find feasible dual solutions to Problem (6)
with cost approaching from below as goes to infinity.
The details are in the Appendix.

B. Convergence of the Upper Bounds

For each , the optimal solution of Problem (4) has
and thus the resulting optimal

is a bounded-input/bounded-output
(BIBO) stable closed-loop map. Define

It follows that .
Next, we will show that converges to as goes to

infinity. To do this, we first show that if is bounded,
then is also bounded. We then prove that the sequence

goes zero.
To prove the first statement, we need to recall the following

result.
Fact 4.1: For the generalized system there exists a

parameterization of all closed-loop stable maps
with polynomial and .

Lemma 4.1:Consider the sequence of optimal solutions,
, of Problem (4), or equivalently of Problem (2), as

a function of . Then there exists a fixed and two positive
constants and such that

for all

Moreover, goes to zero as approaches .
Proof: For simplicity, we consider the case where

and . Assume we have found a parameteri-
zation as in Fact 4.1. Consider Problem (2) with the resulting

polynomial. Note that may not be polynomial in
general; however, it is an element of and hence of .

Note that Problem (2) is jointly convex in and . This
implies that, to find the optimal solution, we can first find
the optimal for each fixed and then we can minimize
with respect to . In our case, for a fixed , the optimal

is the one that minimizes the norm of , i.e., the one
that minimizes . This is a standard
problem. However, instead of approaching it in the spaceas
done in the proof of P3 (see Appendix), it is convenient to look
at it as a minimization on the space of one-sided sequences
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. Thus, and can be seen as sequences in
as an infinite block Toeplitz matrix, and as

a matrix with infinite rows and columns.
Since this is a standard least squares minimization in an

Hilbert space, the optimal is given by

and the optimal is

where denotes the pseudo-inverse of. It is well known
from the standard optimization problem that the optimal

is in and is in . If we denote by ,
then

If is a polynomial matrix, say of order , then for
all the has all zeros in the first columns.
Moreover, the last columns of stay the same for all

and their elements are zeros for .
Thus, for , the optimal has a representation of

the form

where and maps into . In
other words, lies in a fixed translated subspace of
and depends only on the last elements of .

Consider now the sequence of optimal for each ,
denoted by . From the triangle inequality it follows that

or equivalently

From the fact that the range of is fixed and finite dimensional
in for each , it follows that there exists a positive
constant such that

Therefore, we have that

or

where we added and subtracted in the norm on the left-
hand side, and we used the triangle inequality. Notice that

is a monotonically nonincreasing
sequence; therefore, for all . Besides,

as . The result then follows if we let
.

The previous result together with next theorem determine
the convergence of to the optimal cost.

Theorem 4.2:Consider the sequence of optimal solutions
to Problem (4) as a function of . Then

Proof: See the Appendix.
As an immediate result from the above theorem and

Lemma 4.1 we have the following.
Corollary 4.1: The sequence of upper bounds con-

verges to .
Proof: For each , let be the optimal

solution and denote and as follows:

Clearly, .
From Theorem 4.2 we have that as .

From Theorem 4.1 we have that as . As
consequence of these results, it follows that

From Lemma 4.1 it follows that as .
Since it is always true that

we have that as .

C. A Sequence of Lower Bounds

Next we derive an easily computable sequence of lower
bounds for which will be denoted by . Assume, without
loss of generality, that is strictly greater than zero; since

if and only if .
Consider the dual problem in (5). For a given

are the dual variables. Let and
. From the alignment conditions it follows that

(10)

Given that , it follows that the element
has and therefore, it is feasible

for Problem (8), the dual of the problem in (1). Hence

Substituting the expressions in (10) we obtain

Clearly converges to as , since the numerator
and the denominator converge to and , respectively.

Remark 4.1:Notice that the results on the convergence
of the upper and the lower bounds do not indicate that the
sequences and are, respectively, monotonically
nonincreasing and monotonically nondecreasing. In fact, they
may not be as such, as shown in the example of Section V.
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D. Strong Convergence of the Suboptimal Solutions

We now address the convergence of the solutions of Problem
(2), . The results in this section are similar to the ones
presented in [7].

Theorem 4.3:For each , let be an optimal solution
to Problem (2). Then, the sequence contains a
convergent subsequence whose limit is an optimal
solution, , for Problem (1). Moreover, if the optimal solution
is unique, then the whole sequence converges to it.

Proof: Since is a convergent sequence,
contains a converging subsequence. Denote the
limit by . For each is feasible to Problem

(1). This implies that belongs to the set
. However, is closed, and thus it

contains all its limit points. Therefore, is a feasible
solution to Problem (1).

is also an optimal solution to Problem (1). This follows
from [7, Lemma 2.5.5]:

If is unique, then all subsequences must converge
to it. Thus the whole sequence converges to .

We recall a standard result [7] useful in the development of
the main convergence theorem.

Lemma 4.2: If converges to , and
converges to , then converges to in the norm.

From the previous theorem and the above result it follows
that, if any row of achieves the optimal norm, ,
then the respective row of , will converge in norm
to .

Let be the set of row indexes for which
. . Let denote

the cardinality of , i.e., the number of elements in. Given
any and any index set with
cardinality , we can construct by
collecting only the rows on whose index is in . Define
and analogously so that .

Definition 4.1: A multiblock problem with an optimal so-
lution such that is referred to as a well-posed
problem.

As noted in [7], for most multiblock problems the optimal
solution achieves the optimal norm on at least rows.
However, it is possible to construct multiblock problems for
which . Such problems are not well-posed in the
sense of Definition 4.1.

We then have the following result.
Theorem 4.4:Assume that Problem (1) is a well-posed

multiblock problem. Let be a subsequence of solutions to
Problem (2) that converges to , an optimal solution
to Problem (1) with . Assume further that
has full normal rank. Then as .

Proof: We have that converges strongly to . From
the rank assumption on we have that the map from
to

is continuous with continuous inverse. Therefore, con-
verges strongly to . The result follows from the continuity
in of the map .

Corollary 4.2: The sequence converges strongly to
.

Proof: Since by assumption has full normal rank, there
is a set of columns of such that and

is invertible with continuous inverse. Given that is
converging strongly to , then is also converging
strongly to . The result follows from the continuity of

.

V. EXAMPLE

In this section we briefly discuss some computational issues
and present an example.

First, we describe how Problem (4) can be rewritten as a
linear matrix inequality problem. To avoid notational com-
plications, we only describe the case whereis SISO. The
generalization to the case, whereis MIMO, although tedious,
is straightforward and is left to the reader.

We start by removing the variable and from the
problem by rewriting it as follows:

(11)

Using the linearity in can be rewritten in
the following matrix form: where,

is the vector containing the first
elements of the impulse response of, and .

The norm constraint can now be transformed into a set of
linear constraints by a standard trick in linear programming.
Namely, we have that

On the other hand, if then there exists
a vector such that

Thus is given by

(12)

Now, consider the term . From simple
state-space manipulations, can be represented
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as follows:

Then

where is the observability gramian, which is given by
unique positive definite solution of

The dimension of is fixed for a given problem and does
not depend on , the order of the approximation. This is
because can be realized with and fixed
and independent of . Moreover, the computation of is
independent of . Therefore, can be precomputed.

Finally, from [4], we have that the constraint

is equivalent to the following linear matrix inequality (LMI)
in , and :

Thus, Problem 4 can be solved by solving the following LMI
problem:

(13)

Note that, with a slight abuse of notation, we useand
to describe both matrix inequalities and component-wise

inequalities. Note however, that since the linear inequalities
are a special case of matrix inequalities, they can be interpreted
as component-wise matrix inequalities.

We now apply the new method to solve theproblem for
the system described in Fig. 2, where the plant is given by

Fig. 2. System configuration.

and the weights are

The same problem has also been considered in [7].
The closed-loop system is the following:

Fig. 3 shows the convergence of the upper and the lower
bounds for increasing order of . Notice that the sequence
of upper bounds is not monotonically nonincreasing.

For , which correspond to a polynomial of
order , we obtain that the suboptimal solution with

. The maximum value of the lower
bound is . Thus is within 0.04% of the optimal

norm, . The norms of the single transfer functions are

From this information, we see that the second row is dominant
in the problem and, in particular, is the element with
higher norm. This immediately indicates the right reordering
for DA, namely, we need to switch the two outputs and the
two inputs in order for the DA upper bound to converge to.

The coefficients of the suboptimal for are shown
in Fig. 4.

Although is supported for all , the coef-
ficients ’s for are all smaller than 3 10 .
By neglecting these coefficients we obtain that the suboptimal
controller has order 16. The resulting norm of the closed-
loop system, using such a controller, is 71.1147. Thus, we do
not lose much by considering of order 12 instead of 25. If
we only consider the first nine coefficients of , as the figure
suggests, we obtain a suboptimal controller of order 12 with
norm equal to 71.1296, still within the 0.06% of the optimal.

VI. CONCLUSION

We have presented a new method to compute suboptimal
solutions to the standard problem. The new approach
has several advantages over existing methods. It provides
converging upper and lower bounds to the optimalcost,
and it guarantees the convergence in norm to the optimal
solution of a subsequence of suboptimal solutions. In contrast
with the delay augmentation method, the norm convergence



ELIA AND DAHLEH: QUADRATIC PROGRAMMING APPROACH 1249

Fig. 3. Convergence of the upper and lower bounds to the optimal`1 cost.

Fig. 4. Coefficients ofQ1 for N = 26.

is guaranteed independently of the inputs and outputs order.
Moreover, the suboptimal is directly computed, and there-
fore, the computation of the associated controller is much
simplified in comparison with DA or any known closed-
loop approximation method. Another computational advantage
is that the computations of the interpolation conditions are
completely avoided.

For each , we have to solve a semidefinite quadratic pro-
gramming problem instead of a linear programming problem.
The complexity of these two problems is not fundamentally
different. While the number of constraints is approximately the
same for the two problems, the number of variables in the new

method is greater than the number of variables used by DA by
approximately (the number of elements in ).
However, for a fair and realistic comparison of the complexity
of the two methods, we must include the complexity of the
computation of the interpolation conditions required by DA
method. Moreover, for the DA method, we must also include
the overhead of computing the suboptimal. To perform
such computations reliably, one must run a model reduction
procedure, which is usually a time-consuming operation even
for relatively small problems.

One property of the DA method is that for certain problems
the method captures the structure of the optimal solution in a
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finite number of steps. In such cases, the order of the optimal
control is derived from the sequence of suboptimal controllers.
Unfortunately, there does not exist a characterization of these
problems in terms of the problem data which limits the utility
of this property. In addition, it may be necessary to reorder the
inputs and outputs in the DA method to derive this information.
The method presented in this paper does not possess this
property. However, the norm convergence result may give an
indication to the proper ordering for the DA problem. Deriving
an algorithm that combines DA with the suggested algorithm
is currently under investigation.

Finally, it is possible to extend the method in this paper to
compute solutions to other mixed objective problems such as
the problem with amplitude constraints on the response to
fixed inputs.

APPENDIX

A. Proof of P3)

Here we show that for any , Problem (2) is equivalent
to a finite-dimensional convex optimization in the first
elements of the impulse response of. This result follows
from a property of the optimal controller.

Consider the following problem:

(14)

Notice that are minimizing solutions to Problem (14)
if and only if they are minimizing solutions to Problem (2).
Since Problem (14) is jointly convex in and , it can be
rewritten as follows:

(15)

Given any , define

(16)

Then the following is true.
Theorem 7.1:Consider the parameterization for

where and are inner (i.e., and
are stable with stable inverse) and is optimal or
equivalently, . A parameterization with
these properties can be obtained from the model-based optimal

controller.
Then, for any

i.e., the minimum is achieved at .
The result of this theorem implies that Problem (14) is

equivalent to Problem (4).

Proof: Consider , where
is the -transform of the sequence .

can be rewritten as follows:

where . Notice that is a polynomial
in of order . Assume without loss of generality that

and . Then we have that

All the terms in the right-hand side of the above equation are
in with the exception of . Thus we have that

Therefore, the minimum value of is achieved by
. Thus

B. Proof of Theorem 4.1

Consider the optimal solution, , of the problem, which
exists under standard assumptions. The sequence
converges to , and for each is an upper bound on

. Thus, all the limit points of will have values greater
than zero and less than . Consider any subsequence ,
converging to one of the limit points. To simplify the notation,
we remove the subindex and denote the subsequence by.
Let be its limit. We are going to show that . Fix
any . Since converges to , there exists an
integer such that, for all .
Consider Problem (9). It is well known that there are finite
support feasible dual sequenceswhose cost, , is arbitrarily
close to , say for . Since is feasible,
it is also true that . Given , for
any , we have that

Now pick any , and let
. Then and .

Moreover, there exists an large enough such that

for all . Hence, for all is feasible for
Problem (6) with cost . Thus we have that, for
all

and

Therefore

for all
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Thus, for any there exists an such that
for all ; hence, converges to . Since any
convergent subsequence converges to, the whole sequence
must converge to , and the result is proved.

C. Proof of Theorem 4.2

For each , let be the optimal primal
solution and the optimal dual solution. We know
that they are aligned. Let

and . The alignment condition
implies that

(17)

Moreover, . Thus, goes to zero if and
only if goes to zero.

To derive a contradiction, assume that is not converging
to zero. This implies that there exist a positive constant

such that for any positive integer it is possible
to find some for which

For simplicity, relabel the sequence as . Then, from
Lemma 4.1, also the sequence is uniformly bounded
by some constant .

Since for all , we have that
for all
Thus, from the alignment condition in (17), we have that

. The convergence of implies that
the sequence is uniformly bounded by some positive
constant . Thus, the sequence is uniformly bounded
because .

It follows from the Banach Alouglu theorem that there is a
subsequence, , converging to some element .

We claim that .
For each . can be seen as an

element of by considering it as an FIR sequence in
. We still denote this extension as . For any ,

there exists an such that for all
. Thus, for the sequence contains

a convergent subsequence . Let denote
its limit point. Then , since the sequence

is convergent to the zero element.
Moreover, we have that

Since can be arbitrarily small, we have that
.

We now show that is a feasible solution to the
problem. This immediately implies that is not the optimal
cost, and this contradiction will prove the assertion of the
theorem.

Let be the linear operator mapping
to . Under the current assumptions,is one-

to-one with closed range in . The proof of the above
statement is left to the reader.

Let . Notice that the norm of
is uniformly bounded since

and is converging to some .
From [10, Lemma 1, pp. 155], we have that ifhas closed

range, then there is a positive constantsuch that for any
in the range of , there is a satisfying ,

with . Thus, if we consider the sequence
of optimal ’s, we have also that the sequence of

norms, is uniformly bounded. Therefore, it contains
a subsequence which is convergent to some

, and moreover, since the
sequence is convergent to
zero. Summarizing, we have a feasible solution with

. But this is impossible; hence,
must go to zeros for .
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