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Abstract

We address the problem of robust performance
analysis when the exogenous input is assumed to be
fixed and known . This differs from standard ap-
proaches in the literature which assume that the ex-
ogenous input is an unknown element in a class of
norm bounded signals. When the performance is
measured by the £, norm, and the nominal plant
is perturbed by LTV perturbations of bounded £
induced norm, we propose upper and lower bounds
for the measure of robust performance. Two upper
bounds are derived. The first one can have direct ap-
plication in robust performance synthesis problems.
The second one provides a tighter bound. Both con-
ditions are (usually) much less conservative than the
condition resulting from assuming a worst case ex-
ogenous input. The necessary condition follows from
the result of Khammash for robust steady state per-
formance.

For certain classes of input signals, these upper and
the lower bounds coincide, providing a necessary and
sufficient condition.

1. Introduction

In most control problems the closed loop system
has to be designed to achieve several conflicting ob-
jectives. It has to remain stable in the presence of
unmodeled dynamics, and simultaneously reject un-
known disturbances and track specific (given) com-
mands.

So far, researchers efforts have concentrated mainly
on the problem of robust stability /performance for
disturbance rejection problems in which the distur-
bances are assumed to be unknown signals of bounded
norm (energy or amplitude), [2 — 8]. In such a prob-
lem setup the robust performance problem turns out
to be equivalent to an augmented robust stability
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problem. This equivalence is achieved by adding an
extra uncertainty block between the performance out-
put and the disturbance input. This so called “perfor-
mance block” captures the induced norm performance
specification.

In many cases, as in tracking problems, some of
the exogenous inputs are known fixed signals and the
objective of the closed loop system is to guarantee ro-
bust tracking or rejection of these fixed inputs in the
presence of model uncertainty. In particular we con-
sider the maximum peak amplitude as a performance
measure.

Of course one can neglect this information about
the input, assume that the input is just bounded but
otherwise unknown and use the standard robust sta-
bility results. Clearly, this approach to guarantee ro-
bust performance in this case may be very conser-
vative. In a broader sense, it is unclear how gen-
eral is the equivalence between robust performance
and robust stability for different performance speci-
fications and/or input characteristics of practical in-
terest. This motivate our approach that considers
as separate issues the robust stability and the per-
formance robustness. We will use this approach to
develop (potentially) much less conservative results
for robust performance with respect to fixed inputs.
For the sake of brevity proofs have been omitted but
will appear elsewhere.

2. Problem Statement

In this paper we consider discrete-time systems.
The normed vector space denoted by £7 is the set
of all vector valued sequences {z(k)} with

z(k) € R", such that

N
el = Sup max, EAQIE
The £, -induced norm, denoted by £, — ind, of a
linear dynamic system H is defined as the maximum
peak-to-peak gain of the system:
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Figure 1: Standard Framework.

IHllg, g S sup [Hslly,
ll=ll <1
The notation Hz here is intended as: H operates on
a sequence z by convolution. If H is a linear time-
invariant causal system then ||H||, _;., = IH],.
The quantity ||H||, is called the £; norm of the system
and for a SISO system with impulse response , it is

defined as the absolute sum of the impulse response
of H:

1Hl, = |h(k)|
k=0

For a system with p inputs and ¢ outputs

1A, = max ZnH., I,

We consider the problem being posed in the stan-
dard framework described in Figure 1. M is the gen-
eralized nominal system, assumed LTI, causal and in-
ternally stable. A is a diagonal LTV causal pertur-
bation (A; SISO system) with [|A]| oo <1. We

—ind —

denote by A the set of all such perturba.tlons

A= {A€LTV causal, | ||A| <1,
A =diag{A,...A,}, A; SISO }

where [|A[| stands for [|Allg_ .-

Also denote by Ay the set of all diagonal LTV
non-causal perturbations with ||A]| < 1.

In Figure 1,r is the vector of p inputs that are fixed
and known. For the sake of simplicity, z is assumed
to be a single output on which we want to achieve
a desired level of performance. The presence of the

uncertainty in the nominal model is described by A €
A.

We consider as a performance measure on z its
maximum peak amplitude, ||z||.,, and normalize the

desired performance level to ||2]|,, < 1 by absorbing
all weights into M. We assume that r € €5, , i.e, for
any finite interval [0, T

i(t )
lxggsxpsgpln( N < o0

This allows, among others, input signals with poly-
nomial growth such as ramps or parabolas.

2.1. Problem Statement
The robust performance problem can be stated as
follows:

Definition 2.1 Given the inputs r we say the the
system M has robust performance against A, or sim-
ply has robust performance, if the system is internally
stable and ||z||., <1 for all perturbations A € A.

In order to address the problem above we introduce
the following notation:
The system M is partitioned in the obvious way as:

M* M
M=[M” MP ]

Given a transfer function matrix G, G denotes the
matrix of ¢; norms of the SISO elements of G:

NGiall, - NGy,
G=| :
[Gmally, -+ lIGm.Nll;

3. A First Result

Define the Truncation operator of order N, acting
on the space of all sequences as

HN(z)={ zgc) io;(l)vskgzv

Define the Tail operator of order N as
Iy
Tn(z) = (I - IIN)(z).
The necessary condition we are going to present is
based on the condition for robust steady state perfor-

mance presented in [1]. The steady state value of a
vector valued sequence z is defined as

AL,
llzll,s = limsup [|Tk(2) o
k—o0
A necessary condition for robust performance is

given by the next theorem.
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Theorem 3.1 The system has robust performance

only if A
Ms||MePr,, ) .
(L )< @

‘We recall the following property of nonnegative ma-
trices:

Fact 3.1 [9] For a nonnegative matriz A, (i.e., a;; >
0), p(A) > 1 +f and only if there exists a non trivial
solution z > 0 to the system of linear inequalities
Az >z

A sufficient condition for robust performance is
given by the following theorem.

Theorem 3.2 The system M has robust perfor-

mance if
([ iz @

Note that in general, if |ir||,, <1
M®|\MePr) Me  MoF
M < - N .
oL oermiz)) <2 (i r))- ©
The RHS of (3) is the necessary and sufficient
condition for robust performance against worst case
bounded inputs.Therefore the new condition, al-
though only sufficient for robust performance with
the fixed input r, is potentially much less conservative

than the condition available so far which guarantees
robust performance for the worst case input.

4. Main Result

In this section we derive a less conservative (though
more computationally expensive) condition to ensure
robust performance than the one derived in Theorem
3.2. To simplify the treatment we consider the system
M being 2 x 2, i.e., there is only one SISO A and we
look for robust performance of the output z to the
fixed input r. Generalization to problems of higher
dimension will appear elsewhere. We assume zero
initial conditions.

Before we present the new condition we need some
preliminary results.

Definition 4.1 Consider a linear time-invariant
SISO system H with impulse response h, a fized sig-
naln € ., and an unknown but bounded amplitude
input signal w with |lw|| , < . Define the following
function of H, n and v as

JaN
fHyHn) = sup  [|Hw+nll.
lhwll .. <~

fy(H,n) will be referred to as the worst-case per-
formance for a level v or simply as worst-case perfor-
mance.

This measure is also important in the solution of
the mixed ¢; /¢, problem that will be presented else-
where. The next theorem describes how the worst-
case performance can be computed.

Theorem 4.1 Under the setup of Definition 4.1,
N

fv(H,n)=;t§%{WZIh(k)l +|7I(N)|}- 4)

k=0

Note that for n = 0 the worst-case performance co-
incides with || H||,.
Moreover the worst-case performance is bounded for
any level 4 < o0, if and only if H is BIBO stable and
M€ oo

Let n = Gr, r being the fixed input r € £, and
G a causal LTI system. From now on we are going to
assume that: G is asymptotically stable and maps r
into n € £,,. We assume also that H is asymptotically
stable. These assumptions imply that for any finite
level v, fy(H,Gr) < 0.

In what follows we presents some properties that
characterize the worst-case performance as a function
of the level 4. Some of them are immediate conse-
quences of the definition.

Let z = Hw + Gr. For any finite integer L > 0,
and any finite level v consider

sup [z (2)ll
flwll <+

Clearly
sup | TL(2)lly = f(IL(H),DL(Gr))

llwll o<
It is easy to see that

Jim sup N2(3)llee = £2(H,Gr)
flwll <1

The equation above can be used as definition of the
worst-case performance. This definition is often pre-
ferred since it allows us to define some important
quantities.

Note that for L finite, the “sup” is actually a “max”
in Equation (4). This implies that for some N < L

N
max |Mz(2)ll =7 D IR(R)  + |(Gr) (W)

ol <~ —

For such N, (which is function of v) let oz ,(H) =
N

> |h(k)| and Br (Gr) = [(Gr)(N)|.

k=0
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Define A
7,2 Jim ag,(H)

= A .
Gry = 1}113:’,0'31"7(Gr)'
Note that { max |IIp{(z)|]|]} converges to
wil<v

fy(H,Gr) as L goes to oo, and {ay ,(H)} also con-
verges as L goes to oo, since a ,(H) < ||H||, and is
monotonically non-decreasing for all L > 0. There-
fore {8L,4(Gr)} is also a convergent sequence, and so
the above limits are well defined.

From the above definition it follows that for any
720, _ .
fy(H,Gr) = Hyy + Gry

In particular , denote H, and Gro, by

Hy = lim lim ar,(H)
. L—ooy—00 (5)
Gro =limsup lim B ,(Gr)

Looco Y0

It can be shown these limits are well defined.
Then we have the following results.

Lemma 4.1 Hy = ||H||,, and Groo < IGrll .- If
H has an Infinite Impulse Response then Gro, =
||G7'”u'

Lemma 4.2 For firted H, G and r, consider the
worst-case performance as function of 1. Let

Fro(H,Gr) = Hoyvo + Gy for some 4o > 0. Then
f+(H,Gr) > Hayy + Gry
for any ¥ > 0.

An implicit consequence of the above Lemma is
that the worst-case performance is a convex function
for v > 0, as stated in the next Lemma.

Lemma 4.3 For fired H, G and r, consider the
worst-case performance as function of v. f,(H,Gr)
is monotonically nondecreasing and convez for v > 0.

Remark 4.1 In  particular it is true that
f“/(H: Gr) > Hyy + Greo.

An important result is given by next theorem:

Theorem 4.2 If Hy, < 1 then f,(H,Gr) is a con-
traction in v for v > 0, i.e., there exists § < 1 such
that

|frs(H,Gr) = fr,(H,Gr)| < 8|7 — 72| (6)

for all vy 2 0,72 > 0. Moreover there ezists a unique
Y* > 0 such that v* = f.,«(H,Gr).

We are now ready to apply the worst-case perfor-
mance measure to derive sufficient conditions for ro-
bust performance. As already mentioned we consider
a two-inputs two-outputs system M.

| _ | Mu M w
V4 - le M22 T
Theorem 4.3 Define the set C as

C={w|lwle < I}

If M is robustly stable and ||zl < 1 for allw € C
then M has robust performance to the fired input r.

Note that the above condition is necessary and suf-
ficient for robust performance if A € Ay is allowed
to be non-causal.

This is because the set C is exactly the one gen-
erated by such perturbations. It is also worthwhile
recalling that the condition for robust stability of M
is the same for both A and Ayc.

We now present necessary and sufficient conditions
for robust performance against the class of pertur-
bations Ayc. The above theorem says that these
conditions will be sufficient for robust performance
against A.

Theorem 4.4 Consider the following positive ma-
triz obtained by computing (5) for each row of M.

M. = Mitoo Migry
o = | Pl Miar,
Mo Mooty

Then the system M has robust performance against
Anc if and only if

1) p(Me) <1

(M
2)  fye(Ma, Mpr) <1

where v* > 0 is the unique solution of the equation
Y = f+(M11, Myar).

Notice that condition (1) derives mostly from the
robust stability specification, while condition (2) de-
rives from the performance robustness specification.

4.1. Computation

From the property of contraction mappings we can
derive a way to compute the condition for robust per-
formance in (7). We use the following

Fact 4.1 [10] Let X equipped with a norm || - || be a
Banach space, and let T : X — X be a mapping for
which there erists a fized constant § < 1 such that

IT@) ~TWl <dllz—yll, VzyeX
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then for any x € X, the sequence {z,}7° in X defined
by
Tit1 = T(z:); To=1

converges to z*. Moreover,
5;‘
le* = zill € 75117 (z0) — ol

Clearly the above result applied to
fy(Myy, Mq2r) allows us to compute v* to any degree
of accuracy.

5. Examples

5.1. Disturbance rejection problem

Figure 2: Disturbance Rejection Problem

We first start with a disturbance rejection problem, as
shown in Figure 2. We want to check if the closed loop
system rejects robustly a unit step input disturbance.
The plant P has the following z — transform:

F4

Plz) = 22-082+.9
The loop is closed by a unity feedback gain. The
weight W) is used normalize the £, —induced norm of
the perturbation A. In this example W; = .04. W2is
used to normalize the output so that when ||z|| <1
the performance is met. Typically W2 should be a
time-varying weight, although for the purposes of the
example we have chosen the constant weight W, =
0.8. The matrix M is:

M= [ wi\T T ]

T | WeWhS WS

where S = (1 + P)~! is the sensitivity function, and
T = (1-S) is the complementary sensitivity function.
First we check that necessary condition for robust
performance from Theorem 3.1.

IMull, |Miarll,, _
? ([ 1Maally Morlls, ]) =09243<1. (8)

so that this condition is met. We now check the first
sufficient condition presented in the paper in Theo-
rem 3.2:

HMully (| Maar|l D
E =1.3633>1
”( IMall, (1Mol

Unfortunately using this condition we are not able to
conclude that M has robust performance. Now we
wish to apply Theorem 4.4. Note that, since Mj;
and M, are IIR systems, from Lemma 4.1 it follows
that condition 1) of Theorem 4.4 is the same as has
the necessary condition already verified in (8). Com-
puting the rest of the condition in (7), we find that
~* =1.1373, and

Fye(Ma1, Maor) = 9891 < 1.

Therefore M has robust performance against A. Note
that the standard robust performance condition for
the worst-case input in this case gives:

IMull, 1Ml 1) _
p([ Mally (1Mol D =10.74.

So that there is a very large difference between ro-
bust performance in the worst-case and robust per-
formance for this fixed input.

5.2. Tracking problem

The scheme of the tracking problem we want to
investigate is shown in Figure 3. In this case the
plant is described as

z
PG)= 3509

Wy = .001 ,, W; = 6 and T is the nominal comple-
mentary sensitivity.

Figure 3: Tracking Problem

The problem is to check if, with the assumed level of
perturbation, and a unit step input, the output of any
possible perturbed closed loop system and the output
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of the nominal closed loop system differ in amplitude
by less than 1/W5 for all times. By computing condi-
tions (1), (2) and (7) we obtain respectively: 0.6618,
0.9892 and 0.8548. In this case the robust perfor-
mance test is already passed by using condition (2).
This suggest that for the same family of perturbations
better performance can be achieved (W, > 6). Again
the standard robust stability test for the worst-case
input is much more conservative, precisely 10.015 in
this case.

6. Conclusions

We have defined a robust performance problem for
fixed inputs, where the performance is measured by
the maximum amplitude over time. The difficulty of
the problem is due mainly to its time-varying nature.
We have presented a necessary condition and two
sufficient conditions for robust performance for fixed
known inputs. Although some results have appeared
for robust steady-state tracking of fixed inputs, the
conditions presented here are, to our knowledge, the
first results for robust tracking or robust disturbance
rejection of fixed inputs for all times (i.e. including
transient behavior). Both conditions are less conser-
vative than using a standard worst case analysis. The
second sufficient condition is less conservative than
the first one we presented and in fact it is necessary
if the perturbation is allowed to be non-causal. How-
ever, at the present time, the first condition seems
to be more suitable for robust performance synthesis
schemes, and this is a topic of current research.
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