Proceedings of the American Control Conference
San Diego, California « June 1999

Error bounds in nonlinear control design via Approximate
Policy Iteration

C. I. Boussios, M. A. Dahleh and J. N. Tsitsiklis
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

We consider the optimal nonlinear control problem and
evaluate a computational design procedure which pro-
duces suboptimal controllers (policies), approximate
policy iteration. The method uses an approximation
of the cost (cost-to-go) function of a given closed loop
system in order to produce an updated controller of,
hopefully, improved performance. We develop bounds
on the approximation error such that the resulting con-
trollers are stabilizing and bounds on the approxima-
tion error such that the resulting controllers are of im-
proved performance. !

1 Introduction

We consider the problem of control design for nonlin-
ear dynamic systems with Euclidean state and con-
trol input spaces. We assume a permormance index
(quadratic cost function), and a given stabilizing con-
troller. The objective is designing a state feedback con-
troller, or policy?, of improved performance.

Given a dynamic model in continuous time and the
cost function, we generate a discrete time model for
simulating the original, continuous time system. Ad-
vantages of an optimal control approach include gener-
ality in comparison to several other nonlinear control
paradigms, addressing the issue of performance and
possessing some desirable robustness properties [5]. Al-
though analytical solution of the optimal control prob-
lem is generally difficult, the solution is characterized
by Bellman’s equation {1]. The latter gives rise to
several algorithms for solving the problem which draw
from the idea behind Bellman’s equation and are collec-
tively referred to as Dynamic Programming [1]. Unfor-
tunately, dynamic programming algorithms suffer from
the curse of dimensionality, that is, intractability of

1 This research was partially supported by the AFOSR under
contract F49620-95-1-0219 and the NSF under contracts DMI-
9625489 and ECS-9612558

2The terms policy and controller are used interchangeably
as synonyms throughout the article, both defined as a mapping
from the state to the control input. A policy or controller is
denoted by the letter g. The term “policy” is more commonly
used in the field of dynamic programming, whereas the term
“controller” in the field of control.

0-7803-4990-6/99 $10.00 © 1999 AACC 2837

exact computation due to the fact that the optimal
control has to be computed at each point of the state
space.

Several approaches for nonlinear control using Ap-
proximate Dynamic Programming algorithms [2]
focus on computational feasibility. In this paper, we
evaluate Approzimate Policy Iteration, one of the main
Approximate Dynamic Programming algorithms, as a
nonlinear control design tool. It is an iterative method
that produces a sequence of policies based on off-line
simulation of the dynamic system. It has been suc-
cessfully used in several applications [8, 9], mainly for
problems with discrete state spaces. In Section 2, we
define the nonlinear control problem and present the al-
gorithm. In Section 3 we develop conditions (bounds)
on the allowed approximation error under which the
resulting closed loop system, controlled by the iterate
policy, is exponentially stable, and with improved per-
formance. The development of error bounds offers in-
sight into the design method. By demonstrating that
the allowed approximation error bounds are “large”, as
argued in Sections 3.3 and 3.5, we aim at establishing
the method’s credibility and control engineers’ confi-
dence in it, despite the inevitability of approximation.
Remark: For the case where no stabilizing controller
is known for a system, a semi-globally stabilizing con-
troller may be obtained via a proper modification of
the algorithm (Chapter 4 of [3]).

2 Problem formulation and the design
algorithm

2.1 Problem definition
We consider a continuous time nonlinear dynamic sys-
tem of the form

z = f(z) + G(z)u, 1)

where f : R® = R" and G(z) = [91(z), -, gm(z)] €
R™ ™ are continuously differentiable. The origin 0 €
R" is assumed to be the only equilibrium point of (1);
that is, f(0) = 0. The control objective considered
is optimal stabilization. A stabilizing controller u(z)
drives every trajectory of the closed loop system & =
f(z) + G(z)u(x), z(0) = xo, starting off at zo

at time ¢t = 0, asymptotically to the origin, that is,
limg_,00 (t) = 0. An optimal controller x* minimizes
a cost function of the form

/ " @7 Qa(t) + u()TRu()d, ()

for every initial state, over all possible control func-
tions p, where @Q and R are symmetric positive definite
matrices. For a given controller u, the cost function
Ji : R™ = R is defined as Jg(xo) = I)T Qx(t) +
p(z(t))T Ru(z(t)))dt, where z(t) denotes the trajectory
which starts off at z(0) = zo. A more proper notation
should be z,, (), but we simplify it. The superscript °
denotes continucus time.

2.2 Directional Derivatives

Consider a function J : R® — R, a point z in the state
space R", and any direction vector g in R".
Definition: Directional Derivative of J along g:
The directional derivative LyJ of a function J : R" —
R along the direction of the vector g, at a point z € R"
is defined as

J(z +89) — J(z)
ferdg)JE)

LyJ(z) & lim

provided that the limit exists. Consider a set of vectors,
91, 9m, forming a matrix G = [g1,- -, gm]- We de-
note by LgJ(x) the column vector whose i-th element
is Ly, J(x), that is,

LeJ(z) £ (L, J(2), -, L J@)T. (4)

In the next section, we use the concept of the direc-
tional derivative in order to implement approximate
policy iteration.

2.3 Discrete time representation of the system
dynamics

As discussed above, the approximate policy iteration
algorithm requires extensive off-line simulation of the
system (1). The discrete time representation that we
use for (1) is z441 = = + 6(f(x:) + G(xy)ur), ob-
tained via a first order Taylor expansion of the func-
tion z(t). The closed loop system corresponding to a
policy p(z) is represented in discrete time by z;41 =
z; + 0(f(z:) + G(x:)u(z¢)) The integral cost function is
replaced by the infinite sum 3 oo, §(f Qzy + uf Ruy),
and the integral cost function corresponding to a policy
p is replaced by the function J2 (o) £ Yoo 6(zf Qze+
p(x:)T Rp(xt)), where x; denotes the trajectory which
starts off at zg. The superscript ¢ denotes discrete
time. The interval length ¢ is fixed throughout the
policy iteration process. Since the simulations are done
off-line, § may be chosen small enough so that the tra-
jectories of the discrete time representation closely re-
semble the trajectories of (1).

2838

2.4 Policy Iteration

As an introduction to the design method, we describe
the policy iteration algorithm for the discrete time opti-
mal control problem. This is an ezact algorithm; there
is no approximation. We assume that a stabilizing con-
troller pp is available such that J;fo (zo) is finite for
every finite zp € R™. The Policy Iteration algorithm
generates a sequence of policies yy, pa, . . . that provably
satisfy:

d
Jgo(I) > Jp (x) 2 Jg2(z) >..., , forevery ze€R".

Starting from the k-th policy pk, there is a two step
process leading to pp1:

Policy Evaluation: Compute Jl‘i‘,c (x) for every z;
Policy Improvement: Obtain pg(z) as:

Lks1(z) = arg mli{nm {6(z"Qz + uT Ru)
u€
+J,‘f,c (z +6(f(z) + G(z)u))} (5)

At every z, determining pr4+1(z) amounts to a mini-
mization problem over u. Clearly, implementation of
policy iteration is practically impossible, since both
steps of the algorithm involve a computation for every
x € R", and the policy improvement step requires the
solution of a generally nonconvex optimization prob-
lem. This motivates the approximate policy iteration
algorithm. Before proceeding, we state two results en-
suring that exact policy iteration does asymptotically
lead to an optimal controller. This is not a trivial prop-
erty of the algorithm, and there are classes of optimal
decision making problems where it may not be satis-
fied.

Existence of an optimal stationary policy: For
this optimal control problem it can be argued on the
basis of Corollary 14.1 in [7] that there ezists a station-
ary optimal policy p*.

Validity of policy iteration:

Consider any policy i such that Jﬁ(z) < oo for every
. Then, every trajectory under that policy converges
to 0 asymptotically as t — co. Therefore, the optimal
control problem satisfies the assumptions of Theorem
4.4.1in [6]: If J,‘fﬂ+1 = Jﬂn for some n, then p, is op-
timal. In general, limy_so0 Jg, = Jj, pointwise (where
J} is the optimal cost function).

2.5 Approximate Policy Iteration

We consider the case where a stabilizing controller pg is
available. In approximate policy iteration, the “policy
improvement” step changes name and is called “policy
update”, since there are no guarantees that the iter-
ate policy is an improvement (or even stable). At the
(k + 1)-th step of the iteration, given ug, we compute
the (k + 1)-th controller as follows:

Step 1: Approximate Policy Evaluation amounts to

determining a function J,, as an approximator of J| ,‘fk.

We postpone the details of performing this task until

section 2.6. For now, we assume that such an approxi-
mation is available and move to the next step.

Step 2: Policy Update amounts to obtaining the up-
dated policy pr+1 by virtue of (5), where the approxi-
mate cost function is in place of J;fk:

br+1(z) = arg mli{l"‘ {6(z"Qz + uT Ru)
u€
+J8 @+ 8(f(@) + C@w)} (6

At every z, determining pr+3(z) amounts to solving
a minimization problem over u. However, since jgk
is in general a nonconvex function, the minimization
problem is not easy to solve. To alleviate this problem,
notice that differentiability of the architecture allows a
Taylor expansion based simplification:

T2+ 8(4(2) + o)) =
Jmc (z) + 6Lf(z)juk (‘T) + 6LG(a:)juk (IE) * U, (7)

where LG(,)j”k (z) - u is the inner product of a row and
column vector of the same size. By replacing (7) in (6),
a certain amount of imprecision is introduced, but re-
sults in a closed form expression for 1, allowing easy
implementation of the updated policy as:

1 .
Pr+1(Z) = _§R—1LG(x)Juk (z) (8)

The above form of policy update implementation has
been suggested before in {10, 4]. Whereas the impre-
cision introduced in (7) is guaranteed to be small for
small 4, it is questionable whether this is the case after
the minimization operation. However, it turns out in
Chapter 3 of [3] that the amount of imprecision intro-
duced is of order o(4) as § — 0.

2.6 Approximating the cost function

We suggest two alternative ways for generating an ap-
proximation of the cost function J,, .

A. A tuned linear combination of a collection of
functions.

A two stage process is involved in generating J.“k.

(a) The first stage consists of selecting a sample
z!,22%,... of the state space, and computing via sim-
ulation the value of J,‘fk at all those points. To
compute Jg, (z*), the trajectory starting off at z*
is simulated. (b) In the second stage, we select
an architecture to be used for approximation of
J,‘fk. By an approximation architecture we mean
a function structure of the form ry ., hi(z) + -+ +
T, B (), where h;(z) are (twice differentiable) non-
linear functions of z, and r;,, are scalar parameters.
The architecture is used to interpolate between and
extrapolate J¢, (z'), JZ (22),---,J8 (z) throughout
the state space R". The parameters r;,, are se-
lected as the best matching values of the sample
Jg (@), I3 (2%),- -+, J2 (z"), in a least square sense.

2839

Note that the sample covers a bounded region around
the origin (semiglobal control). It is selected based on
the specification and safety limits of the underlying pro-
cess. Furthermore, the sample and basis functions are
to be judiciously selected by the designer. A bad selec-
tion is reflected in the approximation error. The choice
of the basis functions may be based on engineering in-
sight in relation to a given dynamic system and cost
function. A specific case for systems with “partially
linear” dynamics is considered in Chapter 5 of [3].

B. A grid-based approximation architecture

It follows from the implementation of ux+1 (8) that it
suffices to approximate the directional derivative of J,,,
in order to generate the (k+ 1)-iterate. The directional
derivative LgJ,, is computed at each vertex of a grid
in the state space via numerical integration of a set of
differential equations [3]. These values are interpolated
throughout the rest of the state space. This approxima-
tion strategy comes with the advantage of generality,
and without the need for selecting basis functions.

3 Conditions for Stability and Cost
Improvement after a Single Iteration

3.1 Assumptions
We assume that we are given an asymptotically stable
closed-loop nonlinear dynamic system of the form

& = f(z) + G(z)p(z), (9)

There is a bounded region X which includes the origin
such that every trajectory of the closed loop system (9)
starting off at some point z¢ € X, asymptotically con-
verges to the origin, which is the only equilibrium point
of (9).

We assume that All trajectories starting inside Xo be-
long to a bounded region Xin, O Xo, which is a subset
of a compact region X D Xiny.

The region X represents our best knowledge of Xy,
since the latter cannot be known exactly. In order
to simplify the arguments made in this chapter, we
assume that all trajectories of (9) starting inside X
asymptotically converge to the origin. We assume that
f(z), G(z), p(z) are continuously differentiable in X,
and that p(0) = 0. We denote by z,(t) the trajec-
tory of (9) which starts off at zp at time 0. That is,
Zzo(0) = zo.

Definition: The system (9) is exponentially sta-
ble if there exist a scalar # > 0 and a scalar v > 0
such that, for all zo € X, the trajectory z,(t) satisfies
|20 (81| < Bllzolle=".

Assumption: The system (9) is exponentially stable.
Lemma: [3] Consider some zo € X. Then, the value
of the cost function Jﬁ(wo) is finite.

We also make an assumption on the rate of convergence
of 4, (t), namely that it is not faster than exponential.
Assumption: There exist positive constants 3; and
71 such that ||z, (£)|| = Bi1llzelle 2.

This is not a restrictive assumption, since 3 is allowed
to be small and ~,; is allowed to be large.

Lemma 3.1 [8] There ezist positive constants ky and
ke such that

kallzl|? < 27 Qz + u(z)T Ru(z) < kollz|l?, (10)
k ﬂ2 . k ﬂz
—gl—lnwuz < JS(z) < —27—nxu2 11)

for all z in the set X.

We define the a-level set of J corresponding to a real
value a > 0 as the locus of points z such that J(z) < a.
It is assumed that there exists a positive a such that
the a-level set of J§ is a superset of X;5, and a subset
of X.

Finally:

Proposition: [3] If f, G, p are continuously differ-
entiable, then the directional derivative of Jg in the
direction of a vector g € R", LyJ5(xo), exists and is
continuous at any xg € X.

3.2 Sufficient Condition for Stability of a Single
Iterate

We consider the case in which an exponentially stable
policy u(z) is given, and we perform an approximate
policy iteration which results in a new policy u/. As
we saw in Section 1, we approximate J; by ju and,
recalling definition (4) and (8), the new controller is
given by

W) = @), (@) = ~ 3R La(m) ()

(12)
Unless J-“ is a “good” approximation of J. e the result-
ing controller, ' is not guaranteed to perform well; it
is not even guaranteed to be stable. The result of this
section provides a sufficient condition on the approx-
imation error such that stability of p’ is guaranteed.
A thorough discussion of the result is given later, in
Section 3.3. Before stating the theorem, note the input
weight matrix R can be written in the form R = RT R;,
where R; is some square nonsingular matrix, by virtue
of being a symmetric positive definite matrix

Theorem 3.1 [3] Assume that f, G, p and ju are
continuously differentiable. Let the square nonsingular
matriz R, be such that R= RTR,. If

%LcJﬁ(z)TR*‘[LGJﬁ(x) —Lad,(@)] <
~Cllall* + 57 Qa + S () Ru(z)
+%[R1u(x) + Ry Lo Ji(2))T [Rip(z) + Ry 'LaJS(2)),

Jor every z € X and for some positive constant {, then
the closed loop system

z = f(z) + G(z)p/ (z), (14)

2840

is exponentially stable (in Xo) and, therefore, the cor-
responding cost function J, is finite.

Elements of Proof: Jg is a Lyapunov function
for (14).

3.3 Discussion and interpretation of the stabil-
ity criterion

It is notable that the sufficient condition only involves
directional derivatives, and not the actual difference be-
tween the functions. The importance of approximating
the derivative of, rather than the cost function itself,
has been emphasized before in [10, 4].

Consider the case where there is no approximation er-
ror in the directional derivative. That is, assume that
LgJu(z) = LgJg(x) for every z. In that case, we ex-
pect that the policy u' is exponentially stabilizing. In-
deed, it may be verified that the left hand side of (13) is
a sum of negative terms, and that it is smaller than or
equal to —%1 llz||? according to Lemma 3.1, and thus Jg
is an exponential Lyapunov function for (14). Further-
more, it is obvious that there exists at least a %1||:c||2
positive margin that can be tolerated. Therefore, con-
dition (13) does allow “not small” approximation errors
despite which the updated controller p’ is stabilizing.

Let us now discuss some aspects of the criterion for the
single input case, for simplicity. _
Corollary: If the directional derivative LgJu(z) has
the same sign as LyJ5(x), and |LgJyu(z)| > |LgJ5(2),
then

LyJi(@) (LeJi@) - LeJu(@)) <0, (15)

which in turn tmplies that the sufficient condition (13)
is satisfied at .

This shows that if the assumptions of the corollary
hold, then (13) is satisfied regardless of the size of
LyJu(z). In other words, there is an infinite gain mar-
gin of {1,00) in the approximation of LgJS(x). Let
us discuss this from a Lyapunov function point of
view. Consider the policy u. generated via policy it-
eration over u, assuming zero cost function approxi-
mation error, that is, pe(z) = ~3R™ LyJ5(x). As we
saw above, Jg is a Lyapunov function for the system
& = £(2) + 9(2)pe(e). Let S(z) = {y € R | Jo(y) =
J5(x)}, that is S(z) is a level surface of the Lyapunov
function J§ which goes through z. At the point z, the
vector sum of f(z) and g(z)u.(z) is pointing at the di-
rection where J strictly decreases. According to the
corollary, the vector sum of f(z) and g(z)um(z), for
any pm(z) of the same sign and larger absolute value
than p.(z), would still point towards the direction of
decreasing Ji;. It can be easily verified that ezact pol-
icy iteration generates a policy p. which always pushes
towards the direction of decreasing Jj;. Similar argu-
ments to the above can be made for the multi-input
case.

3.4 Sufficient Condition for Cost Improvement
of a single Iteration

Let a policy u such that Ji(x) < oo be given, let y'
given by (12) be the iterate policy. We have:

Theorem 3.2 [3] Let f, G, p be continuously differ-
entiable, and let j,‘ be selected twice cont. differen-
tiable, so that p' is cont. differentiable. Assume that
the error in approrimating J by j,, is small enough
such that the closed loop system under u' is exponen-
tially stable, and J, (z) <o forallze X. If

(W' (z)T Ry (z) — p(z)" Ru(x)) +
LeJi ()T (i (z) — u(z)) <0 (16)

for x € X, then the performance of the closed loop
system under ' is improved (in Xo) compared to the
performance of the closed loop system under p with re-
spect to the cost functional (2), that is, J5 (z) < Ji(z),
for all x € X. By plugging in the form p'(z) =
—3R™ 1L J,(x), the sufficient condition (16) takes the
form

(%Lcju(m)TR_lLaju(w) - u(x)TRu(z)) +
LgJi(z)T (—%R—ngju(x) — ,u(x)) <0, (17)

forallz € X.

3.5 Discussion of the cost improvement result

To see whether inequality (17) constitutes a meaning-
ful sufficient condition for improvement, we examine if
it holds in the case of no approximation error in the di-
rectional derivatives, that is, Lcjﬂ = LgJj(z). Then,
it turns out that the left hand side of inequality (17) is

equal to

[1 -1 c T 1 -1 (]
- §R1 LGJ#(w)+R1M(:c)] [§R1 LGJ#(:E)J-Rlu(z)],

which is clearly negative. Thus, inequality (17) is
automatically satisfied and shows that policy itera-
tion results in a non-deteriorating policy in the case
where there is no approximation error in the directional
derivative of the cost function. This verifies that The-
orem 3.2 gives a sound sufficient condition.

We give an illustrative example of what the criterion
on improvement predicts. Consider the case where a
system is open loop stable, that is, it is asymptot-
ically stable under the policy ¢ = 0. For simplic-
ity, assume that the input is scalar and R = 1. As-
sume that at some point z, the vector g(z) points to-
wards the direction of decreasing values of Jj;, that is,
L,J5(z) < 0. The improvement criterion (16) for an
updated policy ' is satisfied if ' (x)2+L9Jﬁ(m)u’(z) =

2841

(x) (W' (x) + LgJ5(x)) < 0. Thus, the criterion is sat-
isfied only in the case that 0 < p'(z) < —LgJ5(z).
The improving control is positive, which implies that
the vector g(z)u'(z) points towards decreasing values
of JS. Therefore, the rate of change of J; along tra-
jectories of the closed loop system under the improv-
ing controller u’ is faster than in the open loop case.
However, ¢’ does not result in improvement if its value
exceeds some limit. This is expected, since the size of
the control is penalized in the cost function.

4 Conclusions
We developed error bounds for approximate policy iter-

ation such that the updated controller after a single it-
eration is stable, and approximation error bounds such
that the continuous time closed loop system under the
updated controller after a single iteration is improved
with respect to the cost.

References

(1} D.P. Bertsekas. Dynamic Programming and Op-
timal Control, volume 1. Athena Scientific, Belmont,
MA, 1995.

[2] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-
dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

[3] C. 1. Boussios. An Approach for Nonlinear Con-
trol Design via Approrimate Dynamic Programming.
PhD thesis, M.I.T., Cambridge, MA, 1998. Also M.I.T.
Lab. for Information and Decision Systems Report No.
LIDS-TH-2425.

[4] P. Dayan and S. P. Singh. Improving policies
without measuring merits. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neu-
ral Information Processing Systems 8, pages 1059-
1065. MIT Press, Cambridge, MA, 1996.

[5] S. Torkel Glad. Robustness of nonlinear state
feedback - a survey. Automatica, 23(4):425-435, 1987.

[6] O. Hernandez-Lerma and J. B. Lasserre.
Discrete-Time Markov Control Processes. Springer-
Verlag, New York, 1996.

[7] S. E. Shreve and D. P. Bertsekas. Universally
measurable policies in dynamic programming. Math-
ematics of Operations Research, 4(1):15-30, February
1979.

(8] G. Tesauro, D. S. Touretzky, and T. K. Leen, ed-
itors. Advances in Neural Information Processing Sys-
tems 7. MIT Press, Cambridge, MA, 1995.

[9] D. S. Touretzky, M. C. Mozer, and M. E. Has-
selmo, editors. Advances in Neural Information Pro-
cessing Systems 8. MIT Press, Cambridge, MA, 1996.

[10] P. Werbos. A menu of designs for reinforcement
learning over time. In W. T. Miller IIIrd, R. S. Sutton,
and P. Werbos, editors, Neural Networks for Control,
pages 67-96. MIT Press, Cambridge, MA, 1991.

