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ABSTRACT
In this paper, we study finite-length signal reconstruction over
a finite-rate noiseless channel. We allow the class of signals to
belong to a bounded ellipsoid and derive a universal lower bound
on a worst-case reconstruction error. We then compute upper
bounds on the error that arise from different coding schemes
and under different causality assumptions. We then map our
general reconstruction problem into an important control problem
in which the plant and controller are local to each other, but are
together driven by a remote reference signal that is transmitted
through a finite-rate noiseless channel. The problem is to navigate
the state of the remote system from a nonzero initial condition
to as close to the origin as possible in finite-time. Our analysis
enables us to quantify the tradeoff between time horizon and
performance accuracy which is not well-studied in the area of
control with limited information as most works address infinite­
horizon control objectives (eg. stability, disturbance rejection).

I. INTRODUCTION

Signal reconstruction over noisy channels has been
well studied under stochastic settings, where performance
criteria are typically characterized by asymptotic properties
of the probability of error given stochastic descriptions of
the input signal and channel. The main objective of signal
reconstruction is to design computationally efficient coding
schemes to optimize performance [14], [20]. Recent work
by Voulgaris investigates reconstruction of infinite-length
discrete-valued signals that are filtered via noisy channels
using a deterministic framework [24]. In contrast, we
study finite-length real-valued signal reconstruction filtered
via finite-rate but otherwise noiseless channels using a
deterministic framework. In particular, we are interested in
minimizing reconstruction error in finite-time, whereas in
most communication settings questions about asymptotic
reconstruction are typically addressed. We study finite­
time performance because we are ultimately interested in
understanding how the reconstructed signal can be used to
drive or control a system.

Control over noisy channels is a research area of
growing interest. Today new problems in control over
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networked systems, whose components are connected via
communication links that can be very noisy, induce delays,
and have finite rate constraints, are emerging. Applications
include remote navigation systems (deep-space and sea ex­
ploration) and multi-robot control systems (eg. aircraft and
spacecraft formation flying control, coordinated control of
land robots, control of multiple surface and underwater
vehicles), where robots exchange data through communi­
cation channels that impose constraints on the design of
coordination strategies.

Much work in the area of control with limited informa­
tion has focused on stability under finite-rate (or countable)
feedback control, where the only excitation to the system is
an unknown (but bounded) initial state condition [2], [3],
[4], [5], [8], [15], [19], [21], [23]. The questions posed
involve conditions on the channel rate that will guarantee
that the state of the system (or some function of the
state) approach the origin/remain bounded as time goes
to infinity. More recently, disturbance rejection limitations
were derived for the same setting, assuming stochastic
exogenous signals entering the system [17], [18]. Although
these studies greatly contribute to our understanding of the
interplay between communication and control, few studies
have addressed finite-horizon performance limitations un­
der communication constraints.

A handful of recent studies explore the tradeoffs be­
tween finite-horizon performance and control complexity
for linear systems and finite automata systems [6], [7],
[9], [10]. A navigation problem similar in spirit to that
which is presented here is described in [10]. In this paper
we introduce and analyze a general signal reconstruc­
tion framework which enables us to compute a universal
lower bound for finite-horizon navigation under finite-rate
feedforward control. That is, we compute the smallest
allowable ball around the origin that the state of the system
can reach in T time steps under finite-rate constraints,
given that the initial condition lies in an ellipsoid. We also
construct two quantization/coding schemes to derive upper
bounds on our performance metric.
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III. UNIVERSAL LOWER BOUND

In this section we state a universal lower bound on
worst-case reconstruction which can be proved using a
standard counting or sphere-packing type argument (proof
is given in [22]) and can also from a proof given in [23].

rDB = 2- 2RT/n { ldet (L )I Jdet (W )I}~ .

In this section, we derive an upper bound, rN N , on
worst-case performance assuming that the encoder and
decoder are both noncausal. The upper bound is computed
using a coding scheme that transmits information about the
signal r in terms of a basis derived from the singular value
decomposition (SVD) of the matrix W L . This scheme is
identical to that proposed for a Gaussian source signal
in [13], however in [13] the corresponding upper bound
was not computed exactly. Whereas, here we compute rNN
exactly for this scheme.

Consider Figure 2. Let the SVD decomposition of W L
be defined as W L = UI;V* , where U is an n x n unitary
matrix, I; is an n x n diagonal matrix containing the
singular values of W L , and V is a n x n unitary matrix.
The encoder consists of rotator and quantizer operators, p
and q, respectively which are defined as follows:

• p : R " -+ IRn such that p(r) = V* Lr,

IV. NONCAUSAL ENCODING AND DECODING

Theorem 111.1. Given the signal reconstruction set up
defined above, assume that det(W) #- 0, det(L) #- o.
Then,

When computing the lower bound, we made no as­
sumptions on whether the encoder and decoder are causal
or noncausal operators. If both the encoder and decoder
are noncausal , then at time t = 0 the decoder "knows"
the future. That is, at t = 0 it can compute rk for
k = 0, 1, .. ., n -l which are represented by T R bits over a
horizon of T steps and our reconstruction problem reduces
to a vector quantization (VQ) problem with a deterministic
error metric [1], [12]. If we consider our signal r to be a
correlated Gaussian random vector with covariance matrix
M r , then the lower bound on the minimum mean-squared
error (E(r - r)T(r -r)) for T = n is 2- 2Rdet (Mr ) -:, [13],
which is identical to our lower bound if we replace W L

1

with u» . This makes sense as the mean-squared error
lower bound is for every possible realization r and hence
considers the worst case.

We still, however, find it useful to derive rLB in our
deterministic setting and compare it to upper bounds
computed under various coding schemes such as when
decoding must be done in a causal manner. Recall that if
If E and D are causal, then at time k the encoder can only
operate on ro,rl , ..., rk and decoder can only reconstruct
f a, ... , f k where rk is represented by at most (k +1)R bits.
In the following sections, we compute two upper bounds.
The first bound is computed by constructing a noncausal
encoder and decoder (r NN ), and the second is computed
by constructing a noncausal encoder and a causal decoder
(r Nd. In [22] we construct a causal coding scheme and
compute Cred and show how imposing causality imposes
severe performance constraints.

R

Fig. 1. General Reconstruction Set Up

z

Specifically,

• z E IRn s.t. Jl zl12::::; 1,
• r E c, £. {r E IRn , z E IRn Jr = Lz, Jl zl12::::; I},
• L : IRn -+ IRn is an invertible linear operator,
• E : IRn -+ {O, 1}RT is an arbitrary operator (encoder)

that maps a real vector to a sequence of 2RT binary
symbols where T 2: n ,

• R is the channel rate for the finite-rate noiseless
channel that maps {O, 1}RT -+ {O, 1}RT, and

• D : {O, 1}RT -+ lRn is an arbitrary operator (decoder)
that maps a sequence of 2RT binary symbol s to a real
vector.

Note that L defines a class of finite-length signals , Cr ,

that is generated from a unit ball in IRn
. Since L is linear, it

maps the unit ball to a bounded ellipsoid in R" , We assume
L and the channel rate R are given, and we want to find
an encoder E and decoder D to minimize a reconstruction
error over all signals , r , in this class (worst-case analysis).
Since the input and output signals have finite length, the
following performance metric: II W (r - r) I I ~, where W E
IRn x IRn is a given full-rank weight matrix.

To understand reconstruction limitations under finite­
rate measurements, we compute r L B and rUB , such that

r L B ::::; min (E,D) SUPrECr IJ W (r - r) I J~ ::::; rUB ·

Knowledge of r L B tells us that regardless of the encoder
and decoder that we select, we can do no better than
this universal lower bound. The upper bound tells us
that there exists a coding scheme such that the worst
case performance is always less than or equal to rUB.

To compute rUB, we construct an encoder and decoder
and compute the corresponding worst-case performance.
In the following sections, we compute a universal lower
bound and two upper bounds corresponding to two types
of coding schemes.

II . GENERAL RECONSTRUCTION PROBLEM

In this section, we define a framework to study finite­
length signal reconstruction under finite-rate measure­
ments. We consider the cascade of SISO discrete-time
systems shown in Figure I.

460

Authorized licensed use limited to: MIT Libraries. Downloaded on February 25,2010 at 18:26:45 EST from IEEE Xplore.  Restrictions apply. 



7th ASCC, Hong Kong, China, Aug. 27-29 , 2009 ThB7.5

1 Now note that a lower bound to the optimal cost of (7)
is the optimal solution to

• q IRn -+ {O, 1} RT is parameterized by
the bit-allocation strategy denoted in R
(Ro, R1, ...,Rn - 1) as shown in Figure 2 where ai =
qi( ai) and qi( ai) is a uniform quantizer from [­
I , 1] with 2R i levels for i = 0,1 , ... , n - 1 (a =
(ao a 1 . . . an-d·

The decoder first employs the bit-allocation strategy R
to reconstruct a from the binary string that it receives.
It then rotates the vector to compute i . Specifically, r =

L - 1Va. We call this E - D construction the "SVD Coding
Scheme."

min
R "

2- 2R i cr2 < 'V, _ I

s.i . L:~==-01 u. < T R
u; ~ 0 'Vi .

'Y ~ O.

(7)

E!\COI)ER ])ECO DER

min 'Y + L:~==-01 Ai( - 2Ri + 21og(cri) - 10gb )) + (8)
R "

JL(L:~==-Ol u;- T R)
u, ~ 0 'Vi .

'Y ~ 0,

R

Fig. 2. SVD Coding Scheme

.------------------------------, ---------------------------

~1 ;' I ':c~- ' " " l--l n--J: 7-): -E===r!_IR---j-'"-' "-" : ' 1;', I:; -
~ -- --- --- -- --- -- --- --- -- --- ----

Note that for the above SVD coding scheme,

where JL ~ 0 and Ai ~ 0 for all i. We rearrange terms to
get

sup IIW(r - f ) l l~ = sup IIWL(z- z ) l l~
r EC r {a ] Il zl12:O; l }

sup II U~V' (z - z ) l l~
{ a] Il z11 29 }

sup II ~ (& - Q) I I~
{o ] I lo1129 }

n - l

= sup 2)&; - Q; )217;
{ o ] Ilo129 } ; = 0

(I)

(2)

min
/~o

b - L:~==-01 Ai1ogb) ] +

minRi ~o [L:~==-01 Ri(JL - 2Ai) ] +
[2 L:~==-01 Ai1og(cri) - JLRT].

(9)

The minimization over nonnegative R; (second term in (9»
is as follows

n -l

< ""' 2- 2R
· 21 1

2_ sup L..... ' 17; Q;

{o l lIol 2:O; l } ; = 0
(3)

(4)

(5)

u; = {

which gives us

o
- 00

JL - 2Ai ~ 0 'Vi
O.w .

To derive the upper bound 'YN N using the above SVD
coding scheme, we construct R = (Ro,R1,...,Rn - 1) to
solve the following optimization problem:

min
/~o

s.t .

(10)

'Y - L:~==-01 Ai1ogb) + 2 L:~==-01 Ai1og(cri) - JLRT.

0 ::::; x, < ~ 'Vi

since we know a finite solution to (7) exist s. Now, if we
minimize over 'Y we getmin maxi 2- 2 R i cr;

R

s.i . L:~==-01 u, <T R
u, ~ 0 'Vi .

(6)

* "Ai
'Y = L.J 1n(2) ,,

(II)

Problem (6) is equivalent to the following optimization
problem:

1We allow the rates to take on non-integer values to solve for an
optimal bit-allocation strategy. The resulting non-integer valued rates can
be interpreted as average rates over time.
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and the dual to (7) is

One can compute the solution to (14) as

where I C {O,I , ..., n - l }. Plugging (13) into (12), the
dual becomes

It is fairly straightforward to show that the cost to (12) is
a convex function of AO , AI , ..., An-l over a bounded set,
and therefore the optimal solution occurs at a boundary.
That is,

max ¥(In(2) - log ( 2f~g) )+ (14)
f.1

/12:iEI log((J"i) - p,RT
p, ? o.

' : ~ a ~ : ~ : ~ n ~ ~_,
~l_~_Ji -~-L:::J i -

~ ----------------------------- ' ~ -- --------------- ------------------- ----_.:

ENCODER.-----------------------------

V. NONCAUSAL ENCODING AND CAUSAL
DECODING

In this section, we derive an upper bound, "IN C, by
constructing a modified SVD Coding Scheme in which the
encoder is noncausal, i.e., has access to the entire signal
r E Cr at time t = 0, but the decoder is causal. The
scheme we propose, sketched in Figure 3, is similar to
that described in section IV with the restriction that the
decoder can only process R bits of information at each time
step. As a result, the rotator operator p remains unchanged
from that defined in section IV (p : R" --+ R" such that
p(r) = V *Lr, where W L = U~V*), but the quantizer
operator q changes.

log((J"i) ? Iii 2:iEI log((J"i) - III 'Vi E I (16)
- 2RT .2-

(J"2 > 2----rr1 n. (J".ll l 'Vi E I .
t - t E l t

Comparing the above inequality to the expression for 'Y*,
we see that in order to minimize "1*, we want to place
all the indices corresponding to the larger singular values
in the index set I until the positivity constraints on the
rates are violated. Note that this scheme is reminiscent of
a water-filling problem in coding.

(13)
i E I

i E I C
,

A~ = { ~
t °

max 2:i Ai(ln(2) - log(2:i 1~2))) + (12)
AO ,>\1 ,... ,An- l ,}1,

2:i2Ai1og((J"i) - p,RT

s.t . °< Ai < ~ 'Vi
P, ? 0.

- 2 R T .2-
* - 2In(2) 2- ITI- n ITI

p, - III iEI (J"i'

Finally, we plug p,* into (13) and then (11) to get

Fig. 3. SVD Scheme for Noncausal Encoding and Causal
Decoding

RO,n-1
RI ,n -1

R2 ,n- 1

-2RT 2

"1* = "INN = max {2- IT1- II (J",TIT , max (J"7} . (15)
, i ElC '

iEI

One can show that the dual cost equals the primal cost
when Ri =

At each time step t, the quantizer has R bits that
it allocates to the entire vector a . The bit-allocation IS

determined by the following rate matrix

R OI Rl2

Rll Rl2

R2 1 R 22

Since Ai = °for all i E I C
, necessarily Ri = °for i E I C

since the 2nd term in (4) must equal 0. As expected, the
optimal rate allocation places more bits to components of
a whose corresponding singular values are larger. Surpris­
ingly, if III = n , then Ri = R+log((J"i) - ~ 2:7~~ log((J"j)
for i = 0,1 , ... , n - 1 and the resulting upper bound is

_ - 2RT/n{ n n- l }£ _
"IN N - 2 i=O(J"j n - "IL B ·

Finally, we comment on the construction of I that min­
imizes "1*. Note that for the rates R, to all be nonnegative,
we require that

sup IIW (r - f) l l ~ :s: m axT2Ri Ci lo';.
r ECr t

such that 2:j R i j = R for i = 0, 1, ... , T - 1. More

specifically, let Ri(t) = 2:~=0 Rj i for i = 0,1 , .. ., n - 1
and t = 0,1 , ... ,T - 1. Then, at time t, a total of Ri(t) bits
are allocated to a i to produce &i(t) for i = 0, 1, ... , n - 1.
The decoder then produces an estimate of the entire signal
f'(t ) = L - 1V&(t ) and pulls out the kth component. Note
that f'(t) = (f'O(t) ,f'I(t) , ....' f'n- l (t )) and one can show
that the worst-case cost is then

{ log((J"i) + Wi -i T2:iEI log((J"i) for i E I
O.w .

R T - I ,l R T - I ,2 R T - I ,3 R T -I ,n- l
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To derive the upper bound rNC using the above SVD
coding scheme, we construct rate matrix n N C to solve the
following optimi zation problem:

Note that the above optimization problem is similar
to (6) which computes rN N . We note that there may exist
singular values CTi for i = 0, 1, ... , ti - 1 and channel rates
R that may result in rNC = rNN . Next, we illustrate a
practical navigation control problem that gives rise to a
noncausal encoder and causal decoder pair.

min
R N C

s.t. LJ: / Ri j = R f or i = 0, 1, ... ,n - 1

Ri j ~ 0 Vi,j.

(17)

Our navigation metric is min(E,D) SUPxoECxo Il xT II ~
and we next compute a universal lower bound for it in a
similar fashion as that computed in section III. First note
that XT = ATxo+Mu, where Mu = LJ=~l A-(Hl) BUi.
Since the system H is reachable, M is a n x T full
rank matrix , and if we know Xo exactly then we can
construct a control input u such that M u = _ AT Xo which
would make XT = O. Under finite-rate constraints, we
must construct u such that M u = - ATxo, where Xo
can take on at most 2RT values in ex o ' The correspond­
ing metric is then min(E,D) SUPxoECx II AT(xo - xo ) I I~ ,
which looks like our general reconstr~ction error metric
min(E,D) sUPr EC

r
IIW(r - r) l l~ with W replaced with

AT and r replaced with xo.
Now, we show how we implement the coding scheme

described in section V to compute an upper bound,r~~v .
Specifically, we consider the following navigation error

where n N c is a rate matrix introduced in section V. Note
that XT = AT Xo + M u = AT(xo - xo) + M u + AT xo,
where again Mu = LJ=~l A- (Hl)Bui' Therefore,

(18)min sup Il xTII ~.
R N C ,U xoE Cxo

< min s u p II AT(xo - xo)112+
- R N C xoE Cxo

min IIMu+ ATxo112'
U

The two terms in the last inequality above is com­
puted by first applying the coding scheme presented in
section V to compute the T x n rate matrix , nivc, that
minimizes SUPxoE Cxo II AT(xo-xo)11 2, and then computing
the control input u that minimizes IIMu+ ATxol12given
nivc' This would give the following upper bound on the
navigation error (18)

minRN c ,u sUPxo ECxo Il xTII ~ <
rNC + min., IIMu+ ATxo112,

where rNC is the optimal cost to (17), where CTi is the i ' th
singular value of AT L . Finally, min., IIMu+ AT xol12 is
solved assuming the causal decod er computes the control
input Ut for each time step t by solving the following
optimization problem for t ~ 0:

min sup II XT 112= (19)
R N C, U xoE Cxo

min s u p II AT (xo- xo)+ M u+ AT xoI1 2
R N C ,U xo ECxo

R

Fig. 4. Finite Horizon Navigation Set Up

Specifically,

• z E IRn s.t . II zl12:::; 1,
• L : IRn -+ IRn is a linear operator,
• E: IRn -+ {O, 1}RT is an arbitrary operator (encoder)

that maps a real vector to a sequence of 2RT binary
symbols,

• R is the channel rate for the finite-rate noiseless
channel that maps {O, 1}RT -+ {O, 1}RT,

• D : {O ,l}RT -+ IRT is an arbitrary operator (de­
coder) that maps a sequence of 2RT binary symbols
to a real vector, and

• H is a causal SISO LTI system with state-space rep­
resentation H = ss( A , B , I , 0) with (A , B) reachable
and A is full rank; and the state vector at time t is
X t ·

VI. FINITE-HORIZON CONTROL APPLICATION

In this section , we show how the above analysis (in
particular when the encoder is noncausal and the de­
coder is causal) of general finite-length signal reconstruc­
tion enables us to quantify bounds on performance for
finite-horizon finite-rate navigation. Finite-horizon finite­
rate tracking is discussed in [22].

Assume that the remote system has some unknown ini­
tial condition Xo which lies in a known bounded ellipsoid
in IRn and we want to steer the state of the remote system
as close to the origin as possible under the constraint that
the control input can take on at most 2RT values after
T time steps, i.e., the command is transmitted through a
finite-rate noiseless channel. This navigation problem can
be analyzed as the cascade of systems shown in Figure 4.
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performance to deteriorate, which it does. Put another
way, when L has a pole close to the unit disk, then the
ellipsoid set CX Q has more structure, that is knowing some
components of Xo give a lot of information about the
remaining component of xo . When the pole of L is closer
to 0, then CX Q looks more and more like an n-dimensional
sphere.
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Fig. 5. Top: Bounds for L = 88(0 .99,0.99,1,1) Bottom:
Bounds for L = 88(0 .01,0.01,1 ,1)

Figure 5 illustrates the bounds for ditTerent system pa­
rameters from which we make the following observations.
All bounds decay when A is stable as T grows. When the
pole of the system that generates L is closer to the origin,
the singular values of L are all comparable and therefore
using the SVD basis to represent Xo in the causal coding
scheme is less helpful. Therefore , we expect causal coding

VII. PERFORMANCE COMPARISON

In this section, we fix H to be an LTI system and
quantify tradeotTs between time horizon and performance
navigation. Performance analysis for finite horzon tracking
can be found in [22]. We compare the lower and upper
navigation bounds on '"Y to each other for a given causal
LTI stable system H = 88(A,B , C, D), for ditTerent
initial condition ellipsoids (L) and time horizons T . We
consider diagonal 4 x 4 (n = 4) state-transition matrix
A = diag(0 .2, 0.8, 0.9, 0.8), two L matrices that are
generated by LTI system 88(AI, Bi , Ci ,Dl) , and we fix
the rate R = 5.

0.02

where 51 {a E IRn ! la i - O:i(t) ! <
la i!2-Ri ( l ) i 1,2, ... , n} . The solution to (20)
can be computed in a straightforward manner and is

* _ (A UEo,(I) +I:;=6At-l - i Buil'B
ut - (B'B)
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