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Abstract— The input-to-state stability of a particular non-
linear discrete-time system is investigated using a construct
to which we refer as an R−cycle. Informally speaking, an
R−cycle is a finite subsequence of a state trajectory for which
the first and last elements of the subsequence lie in a given
set R. We first provide a formal definition of an R−cycle,
along with appropriate sufficient conditions to guarantee the
existence of R−cycles for the system under investigation. Next,
we prove a useful bound on the Euclidean norm of the state for
a single R−cycle. By then viewing the full state trajectory as
a concatenatation of R−cycles, we are then able to construct
a bound on the !∞ norm of the full state trajectory.

I. INTRODUCTION

The problem of stabilizing a continuous-time plant via
a hybrid feedback controller with a finite number of states
is a problem that has received much attention in the recent
literature (see, e.g., [1], [7], [8], and [9]). In this paper, we
explore a method of assessing input-to-state stability for a
particular nonlinear discrete-time system which originates
from the analysis of a particular hybrid control scheme. The
dynamics of the system can be described in the following
manner: for each k ∈ Z+,

x[k + 1] = A(z2[k])x[k] (I.1)

z1[k + 1] = sgn(x1[k] + w[k]) (I.2)

z2[k + 1] =






1 z1[k] = sgn(x1[k] + w[k]),
and z2[k] = 1

1 z2[k] = 7000
1 + z2[k] otherwise

(I.3)

where w[k] ∈ R is an exogenous input, x[k] =[
x1[k] x2[k]

]′ ∈ R2 and z[k] =
[

z1[k] z2[k]
]′ ∈

Z+ × Z+ comprise the state, and

A(z2) =






exp
([

0 1
−1 0

]
T

)
! A1, z2 ∈ [1, 6000]

exp
([

0 1
1 0

]
T

)
! A2, z2 ∈ [6001, 7000]

(I.4)
where T = π/8000.

The structure and origin of the above description are
closely related to the system whose block diagram is
depicted in Fig. I.1. In this figure, a continuous-time LTI
plant is placed in a feedback interconnection with a hybrid
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Fig. I.1. Hybrid system which motivates the discrete-time system
described by Eqn. I.1, I.2, and I.3.

controller which operates in the following manner. Assum-
ing for the moment that the exogenous inputs v(t) and w(t)
are both identically 0 for all t, the output of the continuous-
time plant y(t) is sampled uniformly every T seconds to
produce a discrete-time signal yd[k]. The signal yd[k] is
then processed by a quantizer Q(·) to produce a discrete-
time, discrete-amplitude signal ȳd[k] which is then input
to a finite state automaton (FSA) with output gd[k]. The
zero-order hold (ZOH) creates a continuous-time signal g(t)
which is used to select the value of the gain at every time
t via the relation

g(t) = gd[k], kT ≤ t < (k + 1)T. (I.5)

The overall output of the hybrid controller is given
by the relationship u = Kg(t)y(t) where Kg ∈
{K1, K2, . . . , KM}, Ki ∈ R, 1 ≤ i ≤ M , where M is
the number of outputs of the FSA.

The block diagram of Fig. I.1 gives rise to the system
described by Eqn. I.1, I.2, and I.3 when the continuous-time
plant is a double integrator with state-space description

[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

]
u.

For this plant, and for a particular choice of the quantizer
Q(·) and FSA, we are interested in assessing the input-to-
state stability of the system in Fig. I.1 when the input v(t)
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is identically 0 and the input w(t) is bounded. It is clear,
then, that Eqn. I.1 and I.4 describe the dynamics of the
sampled plant state for a sampling interval of T = π/8000
for a scenario in which Kg ∈ {−1, 1}. Eqn. I.2 and I.3
describe the dynamics of the FSA under consideration when
Q(x) = sgn(x), and the discrete-time signal w[k] represents
the bounded input.

The ultimate goal of this document is to prove the
following assertion.

Proposition I.1: For any initial condition x[0] =[
x1[0] x2[0]

]′
, z[0] =

[
z1[0] z2[0]

]′
and any

bounded input sequence w[k], the state x[k] described by
the system of Eqn. I.1, I.2, I.3, and I.4 is bounded for all k.
Moreover, the "∞ norm of the sequence x[k], denoted by
||x||∞, has a bound of the form

||x||∞ ≤ max{α||x[0]||2, β||w||∞}

where α and β are positive real constants, and ||·||2 denotes
Euclidean norm.
In addition to proving the above proposition, a method of
determining explicit values for the constants α and β will
be constructed.

In contrast to the method we will use here, it is typical in
problems such as this to attempt to find a storage function
to prove stability. This, however, turns out to be an arduous
task with little-to-no useful results. We introduce here a
method of assessing input-to-state stability that circumvents
the standard Lyapunov/storage techniques [5]. We begin by
introducing a construct that we will refer to as an R−cycle.
Informally speaking, an R−cycle is a finite subsequence
of a trajectory for which the beginning and end points lie
within a certain region R of the state space, and for which
at least one element in the subsequence does not lie in R.
The term R−cycle is, hence, motivated by the notion of
the state leaving the set R and then returning back at a
later time. By developing bounds on ||x[k]||2 for R−cycles
and by viewing system trajectories as concatenatations of
R−cycles, we will be able to find α and β which prove the
existence of the bound of Proposition I.1.

It should be noted that, while much work has been
performed in the recent literature on the study of input-to-
state stability for discrete-time systems (see, for instance,
[2], [3], [6]), all of this work has been formulated under the
more traditional assumption that the system state x lies in
Rn and, thus, does not directly apply to the hybrid system
described here in which the state has both a continuous
component x and a discrete component z. Recent work by
Liberzon et. al. in [4] develops a technique very similar
to the one we will use here, albeit for a different class
of systems. In [4], the systems under consideration involve
quantized state feedback, with a variable quantizer whose
precision can be made arbitrarily accurate around 0; in the
example we examine here, we develop a similar technique
for quantized output feedback where the quantizer is fixed.

For convenience, we use the notation (x[k], z[k]) to refer
to the concatenated state of the system. Also, without loss

of generality, we prove the bound of Proposition I.1 for the
case that ||w||∞ = 1; the proof for an arbitrary bound is
similar and is left to the reader.

We warn the reader at the forefront that many of the
formal proofs presented here are rather technical in nature.
Therefore, it is advised to ignore many of the proof details
on a first pass in order to understand the basic ideas which
lie behind the given technique.

II. CONSTRUCTION OF R−CYCLES

We begin with a definition.
Definition II.1: Consider a trajectory of the system de-

scribed by Eqn. I.1, I.2, I.3, and I.4 and a set R defined
as

R = {(x, z) : x ∈ V1 ∪ V2, z2 = 1}, (II.6)

V1 = {(x1, x2) : |x1| ≤ (1 + ε)} (II.7)

V2 = {(x1, x2) : x2
1 ≤ γx2

2} (II.8)

where γ > 0 and ε = ε(γ) > 0 are given constants. Suppose
there exist two different times m1 and m2 with m2 > m1

such that the following conditions hold:
1) (x[mi], z[mi]) ∈ R for i = 1, 2.
2) There exists a value k ∈ (m1, m2) such that

(x[k], z[k]) /∈ R.
Then the sequence C[i] = (x[m1 + i], z[m1 + i]) for
i = 0, 1, . . . , m2 − m1 is referred to as an R−cycle of
the trajectory (x[k], z[k]).

A graphical depiction of the region V = V1∪V2 described
in Def. II.1 for some values of γ and ε is depicted in
Fig. II.2. In layman’s terms, the above definition defines
an R−cycle as a portion of the state trajectory which lies
in the region R, leaves this region, and then returns back at
some future time. The reasons for defining the set R (which
is tailored to the specific example at hand) in the indicated
manner may not be immediately obvious but will become
more clear in later sections.

It is not immediately apparent that R−cycles exist, in
general, for the trajectories of the system under investiga-
tion, a fact which we now show. We begin by establishing
a useful property of the system trajectories.

x2

x1

V

Fig. II.2. Graphical representation of the region V = V1 ∪V2 of Def.
II.1.

Proposition II.2: Consider the system whose evolution
is described by Eqn. I.1, I.2, I.3, and I.4. Then, for any
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sequence w[k] with ||w||∞ = 1, and for any initial condi-
tion (x[0], z[0]), there exists a strictly increasing sequence
{ki}∞i=1 and a region R (as described in Def. II.1) for which
(x[ki], z[ki]) ∈ R for all i whenever γ > 0 and ε > 0 of
Eqn. II.7 and II.8 are chosen sufficiently large.
Before proving this statement, we need the result of the
following lemma whose proof is left to the reader:

Lemma II.1: Suppose that a trajectory of the system
described by Eqn. I.1, I.2, I.3, and I.4 satisfies the condition
that, for some m > 0, z2[m − 1] = 7000 (and, hence,
z2[m] = 1). Let V = V1 ∪ V2 of Eqn. II.7 and II.8. Then
there exists ε > 0 such that if x[m] /∈ V , then

sgn(x1[m − 1] + w[m − 1]) = sgn(x1[m] + w[m])

for all choices of |w[m]| ≤ 1 and |w[m − 1]| ≤ 1.
Proof: [Proof of Proposition II.2] We will begin by

choosing γ and ε to construct the set V , and, hence,
the set R. First, we will choose γ such that γ >
max{tanh2 T, tan2 T }. By construction, there exists a
choice of ε such that the result of Lemma II.1 holds, and
we choose ε accordingly.

We now show existence of k1 which satisfies
(x[k1], z[k1]) ∈ R. If x[0] ∈ V and z2[0] = 1, we may take
k1 = 0. Otherwise, assume that at least one of these two
conditions does not hold. If z2[0] &= 1, then z2[m1] = 1
for some m1 < 7000. If x[m1] ∈ V , then we may take
k1 = m1.

If x[m1] /∈ V , then by the result of Lemma II.1, we have
that sgn(x1[m1]+w[m1]) = sgn(x1[m1−1]+w[m1−1]) for
all |w[m1]| ≤ 1 and |w[m1 − 1]| ≤ 1. This, in turn, implies
that z2[m1 +1] = 1. Because of the rotational nature of the
matrix A1, z2[k] will remain 1 for m1 ≤ k ≤ m2, where
m2 < 15000 satisfies at least one of two conditions:

1) |x1[m2]| ≤ 1 + ε.
2) x2

1[m2] ≤ γx2
2[m2].

Note that if 1 does not occur, 2 must occur via construction
of γ. In either case, we have that x[m2] ∈ V and, hence,
we may take k1 = m2.

If z2[0] = 1 and x[0] /∈ V , then one of two possible
scenarios can occur:

1) z2[k] = 1 for 0 ≤ k ≤ m1 for some 0 < m1 < 8000,
such that x[m1] ∈ V .

2) Item 1 does not occur, then z2[k] > k + 1 for k ≤
6999. Hence, z2[7000] = 1. If x[7000] ∈ V , take
k1 = 7000. Otherwise, we can find k1 < 15000 such
that z2[k1] = 1, x[k1] ∈ V for k1 < 15000 via Lemma
II.1 using an argument similar to the one presented
above.

Now that we have established the existence of k1 with the
desired properties, the time-invariant nature of this system
implies that the same arguments can be made to show
existence of k2 > k1 by applying the same argument
for new initial conditions x̃[0] and z̃[0] given by x̃[0] =
x[k1 + 1], z̃[0] = z[k1 + 1]. Hence, via induction, the
sequence {ki}∞i=1 exists with the desired properties.

Proposition II.2 establishes the fact that all trajectories of
this system must continually pass through a region R when
the parameters γ and ε are chosen appropriately. While it
is certainly possible that a trajectory can enter this region
and never leave, if a trajectory does leave this region, it
must return back at some future time, hence motiviating
the given definition of an R−cycle. Moreover, the result of
Proposition II.2 leads to a new way of viewing the system
trajectories—as concatenations of cycles. We formalize this
result in the following theorem.

Theorem II.1: Suppose that γ > 0 and ε > 0 are chosen
such that the conditions of Proposition II.2 are satisfied.
Then for any trajectory of the system described by Eqn. I.1,
I.2, I.3, and I.4 with arbitrary initial condition (x[0], z[0])
and input w[k] with ||w||∞ = 1, exactly one of the
following is true:

1) There exists a strictly increasing sequence of times
{ji}∞i=1 along with a set of sequences Ci[k] defined
on the range 0 ≤ k ≤ ji+1 − ji for all i such that

Ci[k − ji] = (x[k], z[k]) ji ≤ k ≤ ji+1,

Ci[ji+1 − ji] = Ci+1[0]

for all i where each Ci[k] is an R−cycle for the given
γ and ε.

2) There exists a nonnegative integer N along with a
sequence of times {ji}N+1

i=1 and a (possibly empty)
set of sequences Ci[k] defined on the range 0 ≤ k ≤
ji+1 − ji for i = 1, 2, . . . , N such that

Ci[k − ji] = (x[k], z[k]) ji ≤ k ≤ ji+1,

Ci[ji+1 − ji] = Ci+1[0]

for all i = 1, 2, . . . , N where each Ci[k] is an
R−cycle for the given γ and ε. Moreover, the tra-
jectory (x[k], z[k]) ∈ R for all k ≥ jN+1.

Proof: Proposition II.2 guarantees for a given state
trajectory an infinite sequence of times {ki}∞i=1 for which
the state trajectory must lie in R. Suppose that for every
integer M , there exists some k > M such that k is not
contained in the sequence {ki}∞i=1. Then it is clear that
there exists a subsequence {ji}∞i=1 of {ki}∞i=1 such that

• (x[ji], z[ji])′ ∈ R for all i
• For every i, there exists k such that ji < k < ji+1 and

such that (x[ji], z[ji]) /∈ R.
In this case, the construction of the R−cycles listed in item
1 immediately follows.

If, however, for a given trajectory, there exists an integer
M for which every k ≥ M is contained in the sequence
{ki}∞i=1, then (x[k], z[k]) ∈ R for all k ≥ M . If the
smallest integer M for which this holds is strictly greater
than k1, then there exists a finite sequence of integers
{ji}N+1

i=1 of {ki}∞i=1 for which
• (x[ji], z[ji]) ∈ R for all i = 1, 2, . . . , N
• For every i = 1, 2, . . . , N , there exists a k such that

ji < k < ji+1 and such that (x[ji], z[ji]) /∈ R
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and a construction of a finite set of R−cycles listed in
item 2 immediately follows. If, however, the smallest M for
which the given property holds is equal to k1, then the state
trajectory (x[k], z[k]) /∈ R for all k < M , and (x[k], z[k]) ∈
R for all k ≥ M , in which case no R−cycles can be
constructed.

In layman’s terms, Theorem II.1 essentially allows us to
view any state trajectory as a concatenation of R−cycles; in
some cases, the trajectory may contain an infinite number of
R−cycles, while in others, it contains only a finite number.

By studying the behavior of the system trajectories
over individual cycles, we can infer properties about the
corresponding full trajectories. Specifically, by developing
bounds on the Euclidean norm of x[k] for a single R−cycle,
we will be able to develop the desired bound on ||x||∞.

III. ANALYSIS VIA R−CYCLES

In order to develop bounds such as the one listed in
Proposition I.1, we must first choose values of γ and ε to
construct a region R which possesses useful mathematical
properties. In order to motivate the methodology which we
use to determine γ and ε, we begin with some preliminary
statements.

A. Preliminaries: Contractive Linear Transformations

We begin with the following proposition:
Proposition III.3: Consider the linear transformations

V1 = A1000
2 A6000

1 and V2 = A1000
2 A6001

1 . There exists
γ > 0 such that ||V1x||2 ≤ ||x||2 and ||V2x||2 ≤ ||x||2
whenever x =

[
x1 x2

]′
satisfies the conic relation

x2
1 ≤ γx2

2.
Proof: To show that existence of a value of γ > 0

for which the above statement holds, first consider the case
when γ = 0. In this case, the statement reduces to showing
that ||V1x0||2 < ||x0||2 and ||V2x0||2 < ||x0||2, where x0

takes the form x0 =
[

0 α
]′

. Simple calculations show
that the both of these inequalities hold strictly for any value
of α.

To show that the above inequalities hold for some γ > 0,
consider the case when α = 1 and consider the vector
x1 =

[
sinφ cosφ

]′
for some φ ∈ (−π, π]. Because V1

and V2 are continuous linear transformations, and because
the Euclidean norm is a continuous function of its argument,
it follows by continuity that, for |φ| sufficiently small,
||V1x1||2 ≤ ||x1||2 and ||V2x1||2 ≤ ||x1||2. Let φ0 be the
maximum value of φ for which the the prior inequalities
hold. If we utilize the fact that the transformations V1 and
V2 are homogeneous, then it follows that V1 and V2 are
contractions whenever x2

1 < γx2
2 where γ = tan2 φ0.

The transformations V1 and V2 in Proposition III.3 can
be interpreted in the following way: for a given vector x,
V1x is the vector which results 7000 time steps later when
the state variable z2 starts to increment, and V2x is the
vector that results 7001 time steps later if z2 remains 1 for
one additional time step and begins incrementing the time
step thereafter. While use of these transformations may not

immediately be apparent, the existence of γ that satisfies
such properties allows us to make a statement which will
be useful:

Proposition III.4: Let V1, V2, and γ be defined as in
Proposition III.3. Consider the region V given by

V = V1 ∪ V2

V1 = {(x1, x2) : |x1| ≤ A}
V2 = {(x1, x2) : x2

1 < γx2
2}

where A > 0. Then for each x ∈ V ,

||Vix||2 ≤ max{||x||2, B}

for i = 1, 2, where B = A
√

γ−1 + 1.
Proof: The proposition holds trivially for x ∈ V2.

Hence, the only points for which the proposition must be
proved are those in the set difference V1\V2. Note that this
region is compact. Moreover, because both V1 and V2 are
homogeneous, the maximum of both ||V1x|| and ||V2x|| for
x in the indicated region occurs along the boundary |x1| =
A, |x2| ≤ A/

√
γ. It suffices to show that the maximum

of each of these transformations along the boundary is less
than or equal to B. To show this, note that Vi can be written
as

Vi =
1
2

[
eT1 + e−T1 eT1 − e−T1

eT1 − e−T1 eT1 + e−T1

] [
cos θi sin θi

− sin θi cos θi

]
,

where θ1 = 3π/4, θ2 = 6001π/8000, and T1 =
1000T . Applying this transformation to the vector x0 =[

A Aα
]′

where α ≥ 0, simple calculations show that
||Vix0||2 is increasing for α > 0 so long as cos 2θi ≥ 0.
Since this is the case for both θ1 = 3π/4 and θ2 =
6001π/8000, we conclude that ||Vix0||2 is an increasing
function of α > 0 for both i = 1, 2, and, hence, the
maximum values of ||Vix0||2 over the constrained set α ≤
1/

√
γ (or, equivalently, |x2| ≤ Aα) occurs where α =

1/
√

γ. But, for this value of α, ||Vix0|| ≤ ||x0|| = B.
Using appropriate symmetry arguments, we can show that
B is an upper bound for ||Vix|| over the entire set |x1| ≤ A,
x2

1 ≥ γx2
2, and, hence ||Vix||2 ≤ B = max{||x||2, B} for

i = 1, 2.
Proposition III.4 shows that a bound exists which is

similar to the ultimate bound of Proposition I.1 that we wish
to establish. Determining an actual value for the bound B
in Proposition III.4 (or, equivalently, γ in Proposition III.3)
can be performed using standard semi-definite programming
techniques. Using a numerical toolbox such as MATLAB’s
iqc beta toolbox, we find that the largest value of γ for
which the constraints ||Vix||2 < ||x||2, i = 1, 2 can satisfied
for x2

1 ≤ γx2
2 is γ = 0.4547. For the value A = 1, the

corresponding value of B is 1.7886.

B. Creating R: Choosing γ and ε

Proposition III.4 will be used as our basis for analyzing
R−cycles. It should come as no surprise, then, that the
value of γ that we wish to use to create the region R
is the value just calculated—the largest value such that
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the linear maps V1 and V2 are contractions in the cone
x2

1 ≤ γx2
2, or, namely, γ = 0.4547. A simple calculation

shows that this value of γ satisfies the necessary lower
bound imposed in the proof of Proposition II.2, hence, the
results of Proposition II.2 and Thm. II.1 hold. Calculations
show that when γ = 0.4547, a choice of ε = 0.001 will
satisfy the necessary requirements for Proposition II.2 and
Thm. II.1 as well. If we define γ∗ = 0.4547 and ε∗ = 0.001,
then we can define a region R∗

R∗ = {(x, z) : x ∈ V , z2 = 1}
V∗ = {(x1, x2) : |x1| ≤ (1 + ε∗)} ∪

{(x1, x2) : x2
1 ≤ γ∗x2

2}.

For convenience, we shall refer to R−cycles for the region
R∗ as R∗−cycles, and we shall, henceforth, examine the
boundedness properties of R∗−cycles.

C. Boundedness Properties of R∗−cycles

We begin by establishing the following result:
Proposition III.5: Consider an R∗−cycle C[i], i =

0, 1, . . .N of the system described by Eqn. I.1, I.2, I.3,
and I.4 with input w[k] that satisfies ||w||∞ = 1. Let
C[i] = (Cc[i], Cd[i]), where Cc[i] represents the portion of
C[i] due to the state x, and Cd[i] represents the portion of
C[i] due to state z. Then the following holds:

||Cc[N ]||2 ≤ max{||Cc[0]||2, B} (III.9)

where B = (1 + ε∗)
√

(γ∗)−1 + 1.
Proof: To begin, note that any R∗−cycle of this

system satisfies the constraint that

Cc[N ] = AM2
1 VjA

M1
1 Cc[0]

for j = 0, 1 or 2 where V1 and V2 are defined as in
Proposition III.3, and V0 = I2, the 2 × 2 identity matrix.
Moreover, M1, M2 ≥ 0, and AM1

1 Cc[0] ∈ R∗. The case
j = 0 corresponds to a trivial case in which the first element
of Cd[i] is constant for i = 0, 1, . . .N and for which the
second element of Cd[i] (which represents the state variable
z2) is equal to 1 for i = 0, 1, . . .N . In this case we have
Cc[N ] = AN

1 Cc[0].
The cases where j = 1 and j = 2 correspond to

cases where z2 (and hence the second component of Cd[i])
increments through the cycle. The term AM1

1 accounts for
rotation of the state x before z2 begins to increment. Note
in this situation that z2 must begin incrementing either
while the continuous portion of the state lies in the strip
|x1| ≤ 1 or one time step after the continuous portion
of the state leaves this strip. Hence, by choosing V1 or
V2 as appropriate, we can always choose M1 such that
AM1

1 Cc[0] ∈ R∗. Finally, the AM2
1 term represents possible

additional rotation after z2 has become 1 again in order to
guarantee that Cc[N ] ∈ V∗ and, hence C[N ] ∈ R∗.

For the case when j = 0, the statement follows trivially
since A1 is a rotation matrix and, hence, ||Cc[N ]||2 =

||AN
1 Cc[0]||2 = ||Cc[0]||2. When j = 1 or j = 2, we have

that

||Cc[N ]||2 = ||AM2
1 VjA

M1
1 Cc[0]||2 = ||VjA

M1
1 Cc[0]||2.

If we let x = AM1
1 Cc[0], then x ∈ R∗, and, hence,

||Cc[N ]||2 = ||Vjx||2, x ∈ R∗

for which the given bound immediately follows as a result
of Proposition III.4.

Proposition III.5 provides a useful bound relating the be-
ginning of an R∗−cycle and the end of the same R∗−cycle.
Since, however, we are interested in computing a bound on
||x||∞ which involves providing a bound for all times (not
just the beginning and end of R∗−cycles), a stronger bound
is desired. The bound of Proposition III.5 can be extended
by making use of the following basic Lemma, whose proof
is immediate and is left to the reader.

Lemma III.2: Consider a linear transformation A which,
for a given vector x satisfies ||Ax||2 ≥ ||x||2. Then
||A2x||2 ≥ ||Ax||2.

We now prove the following stronger assertion.
Proposition III.6: Consider an R∗−cycle C[i], i =

0, 1, . . .N of the system described by Eqn. I.1, I.2, I.3,
and I.4 with input w[k] that satisfies ||w||∞ = 1. Let
C[i] = (Cc[i], Cd[i]), where Cc[i] represents the portion of
C[i] due to the state x, and Cd[i] represents the portion of
C[i] due to the state z. Then the following holds:

max
i=0,1,...,N

||Cc[i]||2 ≤ max{||Cc[0]||2, B} (III.10)

where B = (1 + ε∗)
√

(γ∗)−1 + 1.
Proof: To begin, note that Cc[i] takes one of the

following three forms for any i = 0, 1, . . . , N :

Cc[i] = AM1
1 Cc[0], M1 ≥ 0

Cc[i] = AM2
2 AM1

1 Cc[0], M1 ≥ 6000, M2 ≤ 1000
Cc[i] = AM2

1 A1000
2 AM1

1 Cc[0], M1 ≥ 6000, M2 ≥ 0

When Cc[i] is of either the first or third listed forms, the
result follows from the analysis in the proof of Proposition
III.5. Hence, the desired bound need only be proved when
Cc[i] is of the second listed form.

We consider two cases: one in which ||Cc[N ]||2 ≤
‖|Cc[0]||2, and one in which ||Cc[N ]||2 >
||Cc[0]||2, ||Cc[N ]||2 ≤ B. In the first case, let
x = AM1

1 Cc[0], and note that ||Cc[0]||2 = ||x||2. We
wish to show that ||AM2

2 x||2 ≤ ||x||2 for M2 ≤ 1000.
Suppose that this assertion is not true, i.e. that there
exists some M2 < 1000 such that ||AM2

2 x||2 > ||x||2.
Then repeated application of Lemma III.2 shows that
||A1000

2 x||2 > ||x||2. However,

||A1000
2 x||2 = ||Cc[N ]||2 ≤ ||Cc[0]||2 = ||x||2,

an obvious contradiction. Hence, it follows that if
||Cc[N ]||2 ≤ ||Cc[0]||2 then ||Cc[i]||2 ≤ ||Cc[0]||2 for all
i = 0, 1, . . .N .
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In the second case, again let x = AM1
1 Cc[0], and note

that ||Cc[N ]||2 = ||A1000
2 x||2 > ||x||2. We show now

that ||AM2
2 x|| ≤ ||A1000

2 x|| for all 0 ≤ M2 ≤ 1000.
Assume that there exists 0 ≤ M2 < 1000 such that
||AM2

2 x||2 > ||A1000
2 x||2. Then ||AM2

2 x||2 > ||x||2, and by
Lemma III.2, ||A1000

2 x||2 ≥ ||AM2
2 x||2. From this result, it

then follows that if ||Cc[N ]||2 ≤ B, then ||Cc[i]||2 ≤ B for
all i = 0, 1, . . . , N . Combining both the first and second
cases, we find that ||Cc[i]||2 ≤ max{||Cc[0]||2, B} for all
i = 0, 1, . . . , N as desired.

IV. MAIN RESULT

Proposition III.6 provides a useful bound on the behavior
of the continuous portion of individual cycles. Since, by
Thm. II.1, we can view full state trajectories as concate-
nations of cycles, we can use the boundedness result for
individual cycles to now prove the ultimate bound on ||x||∞.
The remainder of this section is devoted to that proof.

Proof: [Proof of Proposition I.1] Recall from Thm.
II.1 that there exists a finite or infinite sequence of times
{ji} which demark the beginnings and ends of cycles.
We will first show the following intermediate bound: for
each trajectory (x[k], z[k]) of the system with input w[k]
satisfying ||w||∞ = 1,

||x[k]||2 ≤ max{||x[j1]||2, B}, k ≥ j1.

Proposition III.6 proves this assertion for j1 ≤ k ≤ j2.
Assume that the statement holds for all times up to ji, i.e.

||x[k]||2 ≤ max{||x[j1]||2, B}, j1 ≤ k ≤ ji.

Now, for ji ≤ k ≤ ji+1,

||x[k]||2 ≤ max{||x[ji]||2, B}
≤ max{||x[j1]||2, B}

If the sequence {ji} is infinite, then the given bound holds
for all k ≥ j1. If the sequence is finite, then there exists
some time jN such that (x[k], z[k]) ∈ R∗ for all k ≥ jN .
This, however, implies that ||x[k]||2 ≤ (1 + ε∗) for all k ≥
jN (since z2[k] = 1 for all k ≥ jN , ||x[k]|| is constant for
k ≥ jN , and if ||x[jN ]||2 > (1 + ε∗), x[k] /∈ V∗ for some
k ≥ jN ). Since (1+ε∗) ≤ B, the bound for k ≥ j1 follows.

What remains is to find a constant α such that ||x[j1]||2 ≤
α||x[0]||2 for any trajectory of the system with ||w||∞ = 1.
This can be performed by engaging an analysis similar
to that of the proof of Proposition II.2. Without loss of
generality, consider the case where the initial condition
(x[0], z[0]) /∈ R∗. We shall first consider the case where
z[0] &= 1. In this case, there exists some 0 < k1 < 7000
such that z2[k1] = 7000 and x[k1] = A1000

2 AM1
1 x[0] for

some M1 ≥ 0. It follows that

||x[k1]||2 ≤ ||A2||1000||x[0]||2 = exp
(π

8

)
||x[0]||2.

If x[k1] ∈ V∗, then we may take j1 = k1. Otherwise, z2[k]
will remain 1 for k1 ≤ k ≤ k2 where x[k2] satisfies one of
the following two conditions:

1) |x1[k2]| ≤ 1 + ε∗

2) x2
1[k2] ≤ γ∗x2

2[k2]
In either case, x[k2] ∈ V∗ and, hence, we may take j1 = k2

with the bound

||x[j1]||2 ≤ exp
(π

8

)
||x[0]||2.

If z2[0] = 1 and x[0] /∈ V∗, an analysis similar to above
shows that the above bound holds in this case as well so that,
overall, for any trajectory of the system with ||w||∞ = 1,

||x[j1]||2 ≤ exp
(π

8

)
||x[0]||2.

Now, using the fact that ||x[k]||2 ≥ ||x[k]||∞, we find

||x||∞ ≤ max{exp
(π

8

)
||x[0]||2, (1 + ε∗)

√
(γ∗)−1 + 1}.

V. CONCLUDING REMARKS

While the R−cycles constructed here applied to a very
specific case study, preliminary work indicates that for a
large class of systems with the structure depicted in Fig. I.1,
R−cycles can be used to establish input-to-state stability
when either or both inputs v(t) and w(t) are present, and
can also be used to establish asymptotic stability of the
sampled continuous state x[k] when both v(t) and w(t) are
identically 0. Note that while the formal proofs involving
R−cycles to prove stability may be somewhat lengthy, the
computational portion of finding the parameters α and β in
the upper bound are not taxing since it only requires solving
a simple semi-definite program. Hence, for cases when they
are applicable, R−cycles can provide a computationally
efficient way of computing a stability measure for a system.
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