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Abstract— We derive a switched output feedback control
law for the class of second order linear systems of relative
degree two which maximizes a quantity that measures the
rate of convergence of the state trajectories to the origin,
After providing a formal definition for the rate of convergence
and formulating an infinite horizon optimization problem, we
explore a corresponding finite horizon problem for the specific
case where the plant is a double integrator (P(s) = 1/s7)
and use qualitative information about the behavior of the
optimal state trajectories to derive a control law for the
corresponding infinite horizon problem. We then derive an
optimal controller for a general second order plant of relative
degree two by relating it to the double integrator case study
through appropriate transformations. We conclude with a
design example,

I. INTRODUCTION

Stabilization of continuous time systems via hybrid [eed-
back (in which a controller which possesses both continuous
and discrete dynamics is employed) is a problem that has
received much attention in the recent literature. Artstein first
raised this question via examples [1]. Litsyn et. al. show in
[3] that the linear system

#t=Ar+Bu, y=Cxr (LL1)

with (A, B) reachable and (', A) observable can be sta-
bilized via a hybrid feedback controller which uses a
countable number of discrete states (and no continuous
states). A natural question arises as to whether a hybrid
feedback controller can be designed which uses a finite
number of states instead. Hu et. al. first gave a partial answer
to this question for second order systems in [4] based upon
the conic switching laws of [7] and [8].

In our prior work [5], we provide necessary and sufficient
conditions on the stabilizability of the system described by
Eqn. L1 under the feedback control law u(2) = v(x)Cx
when Eqn. L1 is second order. The main result, repeated
here, is as follows:

Theorem I.1: Consider the system L1 with 4 €
R**? B € R**!, and C € R'*? where neither C' nor B is
identically 0. Define the root locus of this system to be the
locus of eigenvalues of A + kBC as k varies continuously
over R. Then exactly one of the following statements is
true:
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1) The system is static output feedback stabilizable.

2) The system is not static output feedback stabilizable,
but it has root locus which takes on complex values
for some values of &k € R and is stabilizable by a
control law v(xy,22) of the following form:

ki wz=0

v(xy,x2) = { ky w'z#0

with w'q = 0, where g is the sole stable, real
cigenvector of the matrix A 4+ k) BC', and where k»
is chosen such that the eigenvalues ol A+ ko BC are
complex.

3) The system has a root locus which is real for all values

of € R and is not stabilizable by control of the form
u(x) = v(x)Ca for any choice of v(xy.x2).

When it is possible, the above result provides a con-
structive method of designing a stabilizing controller which
implements either static or switched output feedback: how-
ever, the result is not discriminatory in the sense that, if
a given second order system satisfies either the first or
second item in Thm. 1.1, there are several controllers which
achieve stability. The goal of the current work is to explore
a method of designing controllers which maximize the rate
of convergence (to be defined formally in the following
section) of the state trajectory to the origin.

After we formally define the optimization problem to be
considered, we will begin by finding an optimal controller
for the specific case when the plant under consideration is
a double integrator with transfer function P(s) = 1/s°
We will then find a general controller design for all second
order plants of relative degree two by making appropriate
transformations to change the problem with a given plant
of relative degree two into an optimization problem involv-
ing a double integrator and then transforming the control
design back into the original state space. We conclude by
presenting a design example to illustrate the methodologies
described here.

Due to space constraints, several proofs and discussions
have been curtailed or omitted. The reader is referred o [6]
for a more detailed treatment of the subject matter presented
here.
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II. RATE OF CONVERGENCE: DEFINITIONS

In this section, we introduce the metric of rate of con-
vergence over which our ensuing designs will be optimized.
We begin with some definitions:

Definition [1.1: The autonomous system described by
i = f(x) " is said to be globally exponentially stable if
there exist constants M, 7 > 0 such that, for all solutions
x(t),

[|l2(t)||2 < Me P||2(0)|2 ¥t > 0. (I11.2)

Definition 11.2: A function f(x) is said o be homoge-
neous if for every ¢ € R, flex) = ef(x).

Definition 11.3: For a globally exponentially stable au-
tonomous system of the form & = f(x),x(0) = xq where
f(x) is homogencous and piecewise continuous, we define
the rate of convergence R as

R = min

llxo]l=1

).

it 1 ;s
Ilgvll’l;[.f ~57 In ([|=(T)

Def. 113 finds the largest real number F such that all
solutions of the differential equation satisfy |[|z(1)|| <
Me 7'|2(0)|] for some M > 0. Note that, because of the
assumed exponential stability of the system, R > 0, since
for any initial condition x(0),

R > lim inf -% In (M2e~2T||2(0)||?) = 8.
While for general nonlinear systems, this definition may not
be well-defined (the limit infimum may approach +o0 or
the minimization over the unit circle may not capture the
behavior of all solutions), the assumptions ol homogeneity
and piecewise continuity ensure that the definition of R is
a sensible one. The reader is referred to [6] for a discussion
of this.

A useful property about the rate of convergence that we
will utilize in our optimization study is the following:
Corollary 1: Define the P—rate of convergence Rp as

min lijm inf —217111 (2(T) Pz (T))

||zo||=1
where P = P' > (. Then Rp = R; = R.
Proof: See [6] s

I11. PROBLEM FORMULATION

Now that we have formally defined our optimization
metric, we can formulate the problem under investigation,
Consider a single-input, single-output linear system of the
form Eqn. .1 where the corresponding transfer function
(sl — A)~'B is second order and of relative degree
two. Further consider a feedback control law of the form
u(x) = v(z)Cx where u(zx) is homogeneous so that the
overall interconnected system is an autonomous system
which takes the form

&= Ar+v(x)BCx, x(0) = xq: given. (I11.3)
"We assume throughout this paper that all vector fields are defined such
that a unique solution exists for every initial condition x(0).
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Here, the scalar function v(ir) lies in a set V{(vg), where
Vi(vg) is defined as the set of all v(z)which are bounded
and satisfy v(z) € [—vg + 7,v0 + 7] Yz € R?, with 7y an
appropriately chosen constant and where vy > 0 is large
enough to satisfy the following conditions:

« There exists vy with vy € [—ug+7, vg+7] such that the
eigenvalues of A + vy BC form a complex conjugate
pair,

o There exists va with vy € [—vg+7, v9+7| such that at
least one of the eigenvalues of A + v BC' lies strictly
in the open left hall” plane.

In addition to the above, the assumed homogeneity of u(z)
implies that v(x) satisfies the following property:

Proposition IL1: 1 u(x) is homogeneous and u(z) and

v(x) are related by the transformation u(x) = v(x)Cz, then
v{x) = v(ax) for all z with C'zz # 0 and for all o # 0.
Proof: For any a # (0

ular) = avlax)Cz

av(z)Cx

aulr) =

Since u(ax) = au(x), equating the two expressions and
dividing by aC'z yields the result. [ |
For simplicity, we will examine choices of v(i) for which
v{aw) = o) for all x as this will not affect our choice of
an optimal controller.

It is casily verified that any choice of v(r) that satisfies
the bulleted criteria above will admit a stabilizing controller
as described by Thm, L1, In our main result, we will pose
a condition equivalent to the above two constraints that is
easily verified by checking a simple condition on the value
of vy and the parameters of the transfer function P(s).

The “offset” parameter ~ given above is a function
of the parameters of the corresponding transfer function
C(sI — A) 'B. An exact selection of 7 for each given
transfer [unction will be constructed when we present the
main result.

It is clear that, for each choice of »(x), the autonomous
system Eqn. 1113 has an associated rate of convergence It
For a given plant Eqn. I.1 and given value of vy > 0, the
task at hand, then, is to find a choice of v(x) € V() such
that the corresponding rate R is maximum, Note that the
optimal I is implicitly a function of vy and, hence, we use
the notation

max
v(x)eEV{vg)

R*(w) = R(v(x))
to denote this optimal value.

In the sections that follow, we will find a choice of
©* () which achieves the maximal rate I*(vg) in the above
optimization problem and will also explicitly characterize
the optimal value I?*(vg) in terms of vg and the parameters
of the transfer function C'(s/ — A)~'B. We will prove
optimality of the resulting controllers by first finding an
optimal controller for the specific case in which the plant
under consideration is a double integrator. We will then find
optimal controllers/rates for the problem in which the plant

4128



45th |IEEE CDC, San Diego, USA, Dec. 13-15, 2006

is a general second order system of relative degree two
by using appropriate transformations to relate the optimal
controller and rate [or a given plant (0 the optimal controller
and rate of a double integrator.

IV. OPTIMAL CONTROL OF A DOUBLE INTEGRATOR

In this section, we synthesize the design of an optimal
controller for a plant which acts as a double integrator,
P(s) = 1/s>, with canonical state-space description

.’L’l _ 0 1 & 0 )
2] - (8] [a]e 2]
y = 3 (IV.5)

which, under the feedback law u(z) = v(x)y, yields

2]= Lo o2 ]

We consider here the task of finding the minimal rate R*(1)
when « provided in the description of V' (v} of the previous
section is equal to 0 and when vg is equal to 1. That is, we
wish to find v*(z) with [v*(z)| < 1 Vo € R? 2 such that
the rate

(Iv.6)

min

R(v"(x)) = e

s am 1 * 2
liminf — = In (ll=*(DIF) ,

is as large as possible, where z*(t) denotes a solution to
Eqn. HL3 with v(z) = v*(x), i.e.,

R(v*(z)) = R(v(z)) Yo(z) € V(1).

A. Finite Horizon Optimal Control

In order to make headway into solving the above prob-
lem, we will consider the following relaxed finite horizon
problem: for a given horizon 1" > (), define the set W as

W ={w(t): [0.7] = R : Jw(t)| < 1}.

We are interested in finding a choice of w(t) € W, which
we will refer to as w*(t), such that the corresponding
solution x*(t) of the system equations

Hl w N [ 'w(()t) é] Hl l z(0) = [ [l] ] (IV.7)

is as small as possible, i.e.
[l== ()| < [|l=(T)|

where z(t) denotes the solution corresponding to a partic-
ular choice of w(t).

A few comments are in order. First, it is clear from the
definition of R in Def. IL3 that choosing v(z) € V(1)
to minimize ||z(7T)||> for each fixed T is equivalent to
maximizing R(1). After all, if #*(7T") achieves the minimal
norm for a given initial condition z(0) = xq, ||z*(T)|| <

Vs (t) € W

21t can be easily verified the specific choice of g = 1 and 4 = 0 satisfy
the two conditions listed in the description of V'(vg) of the previous section
for this plant.
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[|z(T)|| for all solutions with v(z) € V(1),z(0) = zo.
Hence,

1 "N12Y 1 g 2
571 ([l2(T)|?) < —5=1n (|l (D))

and the statement follows by noting that the minimization
and limit inferior operations preserve the above inequality.

Also, note that the specific choice of initial condition
z(0) = [ 10 ]" is artificial and is chosen for simplicity.
Once we have solved the given finite horizon problem for
this specific initial condition, we will be able to construct
optimal solutions for several other initial conditions which,
in the end, will lead us to a design for v{x) in the original
optimization problem.

Finally, we notc that the given optimization over the sct
W provides a lower bound for the minimum achievable
value of |[z(T)|| for the original feedback law u(x) =
v(z)y. To see this, for a given initial condition x(0) = xg,
define T as

{an(t) - [0,T) = R ao(t) = v(z(t)),v(x) € V(1),
&= Av +v(x)BCx,x(0) = zo}.

W =

It is clear that W C W, and, hence,

min ||z(T)|| > min_ ||z(T)]].
wew we W

At this point, the reader may wonder why we are even
considering this finite horizon optimization with different
structure than our original infinite horizon optimization. Our
reasoning is twofold. First, by examining the qualitative
behavior of the optimal solutions to this finite horizon
problem, we will be able to invent a form of an optimal
controller v(x) to the original infinite horizon problem
which we will, then, be able to prove is optimal. Second, the
setup for the finite horizon problem fits the framework of
the celebrated Pontryvagin Minimum Principle. The essential
gist of our reasoning, then, is that we solve this finite
horizon problem, for which efficient tools exist to obtain
an optimal solution, so as to gain intuition into the way we
should design v(z) in the infinite horizon case.

The above optimization problem can be solved efficiently
using Pontryagin’s Minimum Principle [2]. As the exact
technicalities of utilizing the Minimum Principle to obtain
the optimal choice of w(t) is not the main focus of our
exposition, the interested reader is referred to [6] for a
complete description of how we use the Minimum Principle
to generate the optimal choice of w(t). The end result
of the analysis shows that the optimal choice of w(t) is
a piecewise-constant “bang-bang” controller (i.e., w(t) €
{=1,1} for all ¢). Moreover, examination of the geometric
behavior of the phase portraits for the optimal w(t) as the
horizon time T — oo allows us to hypothesize a form of an
optimal controller in the original infinite horizon problem.

B. Extension to the Infinite Horizon Problem

By examining the geometric behavior of the optimal
trajectories of the finite horizon problem of the prior section,
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(x)=1

Fig. IV.1.  Switching law of Eqn. IV.8

we are able to hypothesize that the function ©* () given by

v (z) = { _1

which is illustrated graphically in Fig. IV.1 will maximize
R(1) for the original infinite horizon optimization problem
described at the beginning of this section. As il turns out,
this feedback law does maximize (1), a property which
we now show in two steps, one which establishes an upper
bound for B*(1) and the other which shows that v* () of
Eqn. IV.8 achieves this bound.

Proposition 1V.2: For the double integrator of Egn, IV.4
and IV.5 with some choice of |v(x)| <1 Ve € R?,

.]"l(.T| + ;.F.'z) i 0

Ty(zy +22) >0 (IV.8)

R*(1) <1.

Proof: Using the notation

A(v) = [ :' llj } ; (IV.9)
we have
1 A : ’
{;—,Il-r{iﬁll’ (1) (A(v(x(t))) + A" (v(x(1)))=(l)
2 mint Ain(A(0) + A'(0)||2(8)]1*
= —2e(t)]?
Hence,

2|2 = e 2||2(0)[|* £ r(t).

Now, for any initial condition z(0},

— 1 2 . 1
of ——In (|| < ——1In(r
1411‘11:,1;2[ 2,].111(||r{T)|| ] & 711131;1 T In(r(T))
= 1
from which it immediately follows that 2°(1) < 1. 1}

Proposition IV.3: For the double integrator with feed-
back law u(x) = v*(x)y with v*(z) as in Egn. IV.8, the
rate of convergence 1 is equal to 1,

Proof: The proof, present in [6], shows that the above
claim is true by explicitly computing the solution for each
initial condition x(0) and by showing that the limit inferior
is always equal to 1. |

ThiIP7.12

V. OPTIMAL CONTROL OF SECOND ORDER SYSTEMS
OF RELATIVE DEGREE TwoO
In this section, we generalize the result of the previous
section to all second order lincar systems with a transfer
function of the form
7
P(s) = ——
) st +as+b
for some a. b, ¢ € R. In particular, we will choose a specific
value for the parameter v as a function of the parameters
of the transfer function P(s) to define the set

(V.10)

V(ve) = {v(z) : v(z) € [—vo + v, v0 + 7]}

and will then obtain explicit expressions for the optimal rate
of convergence R*(vg) along with an optimal controller
v™(x). We will first find an optimal controller v* () for
a particular state-space realization of the transfer function
P(s) when ¢ > 0: optimal controllers for all other state-
space realizations and for the case when ¢ < (0 will be
derived via appropriate transformations.

The formal statement that we will first prove is the
following:

Proposition V.4: Consider a linear system with transfer
function P(s) with ¢ > 0 given by Egn., V.10 with state-
space description

~—

5 H-

L

—_—
I

where v = (4b—a”)/4c. Then, if
law

g > —a/2, the control

Vo + Y I (Jfl -+ ..!'.'2} S 0

v*(z) = { —w+ a(e +a2)>0 (V.11)

makes the system & = Az + v(x)BCx globally expo-
nentially stable. Furthermore, the given choice of v*(x)
maximizes the rate of convergence R(ip) subject to the
constraints that v(z) € [—vp + 7,19 + 7] V2 € R?, v(x)
piecewise continuous, and v(az) = v(zx) for all z € R?,
a # 0. Moreover, the maximum value R*(vg) is given by

R*(vo) = \/c0o + %

Before establishing this proposition, we need the resull
of the following Lemma,
Lemma V.I: Consider an exponentially stable system de-
scribed by
&= Az +v(z)BCx

where v(x) € [—vg+ 7, vg+ 7] for an appropriate choice of
the parameter 4 and for some value of vy, and where v(x)
is piecewise continuous and satisfies the constraint v(ar) =
v(x) for all =, o # 0. Suppose further that this system has
corresponding rate ol convergence F. Then the following
statements are true:
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1) The system
i=(A+dNz+v(2)BC:z

is exponentially stable for § < I? and has correspond-
ing rate of convergence it' = R — 4.
2) The system

= pAz + pv(2)BCz

is exponentially stable for g > 0 and has correspond-
ing rate of convergence R’ = uR.
Proof: See [6] n
Proof: [Proof of Proposition V.4|
We begin by first making the substitution v(x) =
'(,1!"(.1'_} +7. In terms of the new control v'(z), the problem
reduces to finding »'(:r) such that the system

[2]-[whe FI[2]

is exponentially stable and that the corresponding rate
of convergence is maximized subject to the constraint
[v'(x)| < . where vy = \/cvg. Now, if this system is
exponentially stable and has rate @ < a/2, then the system

;_'-l 0 m Z1
HEFRGI

R —a/2 by item

(V.12)

(V.13)

is exponentially stable and has rate R’ =
| of Lemma V.1. Moreover, the system

iy | _ 0 1 e
we | | v"(x) O e

where v"(2) = v'(x)//eve, |0"(x)] € 1 for all =,
exponentially stable Wllh rate

(V.14)

R" = (r-3)

\/”—‘u 2

by item 2 of Lemma V.1 But this problem is exactly the
double integrator problem of the previous section for which
we have already found an optimal controller given by

" (z) = { _i

with an optimal rate R”*(1) = 1. It follows, therefore, that
the system described by w is exponentially stable for the
control law v'*(x) = /evgr"" (2) and has rate R' = \/cvy.
Now, il \/evg > —a/2, it follows that the original problem
is exponentially stable with rate # = /cvg + § with
corresponding control law

vo+ ¥

,3,*(‘;:.} = { —vg + ~

That R = \/cog + § is indeed the optimal rate of conver-
gence for the original problem, £2*(ug), follows from the
fact that, for each fixed v(x), /7 is an affine transformation
of the rate R", i.e., R = aR" + 3 for some a,5 € R.
Hence, the maximum value of the left-hand side R* is equal
to the aR"* + 5 where R denotes the maximum value

z1(z) +x2) <0
ri(z) +ax2) >0

'.!.T|(.E] : & .17-2) <0
F|(.l‘.‘] +a9) >0

ThiIP7.12

of R", and, thus, the controller of Fqn V.11 is an optimal
controller with optimal rate R*(vg) = /cvg + a/2.
w

To obtain an optimal design for all other state-space
realizations of a given second order transfer function of
relative degree two, essentially, one need only apply a
simple change of coordinates:

Proposition V.5: Consider an exponentially stable system
of the form & = Ax + v(x)BCx with rate B where v(x)

takes the form

o@)={ ' (F\F + FoFl)x <0

T v 2 (FVFL+ FF))e >0
where I, I are column vectors of appropriate dimension,
Then the system # = Az + o(z) BCz with ©(z) given by

;':(z):{ il, 2 (F P +P_;P) <0
with

(ELFS + By F)z > 0
A=T-'AT, B=T"'B,C =CT, F; =

where 7" is an invertible matrix is also exponentially stable
with rate 7.

Proof: Performing the change of coordinates x = T2
shows that the above system defined by z has P-rate of
convergence equal to i with P = 77, But Cor. 1 implies
that the rate of convergence ol the new system defined by
z is equal 10 R, as well. o
The optimal control law v* (i) of Eqn. V.11 takes the form
listed in Prop. V.5 where we lake

e[i]. 5-[1]

Hence, if an arbitrary slate-space description for a plant
P(s) is related to the state-space description given in Prop.
V.4 by the coordinate transformation » = Tz, then we
obtain an optimal control law ©*{z) by finding the vectors
!:'l and ,‘:‘2 in Prop. V.5. That the control law ¢*(2) is indeed
optimal is a simple fact whose proof is left to the reader.

For the case when ¢ < (), we obtain an optimal controller
by solving the optimization problem for ¢/ = —¢ and then
inverting the sign of the feedback, i.e., by setting ¢*(x) =
—v""(x), where v () is the optimal solution when ¢ is
replaced by ¢'. The reader is referred to [6] for a more
complete description.

TR =12

VI. DESIGN EXAMPLE

In this section, we show how to use the result of Prop.
V.4 in the context of a specific example.

Example V1.1 Consider the unstable LTI p]:ml
.l = %1 (1)
2 = 12 3
y = 21
with transfer function

P(s) =

bee 02

|
§2—Ts+12°
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For this particular plant, note that v of Prop. V4 is 7 =
—1/4. The task at hand is to find a choice of v(z) € [~vg—
1/4,v9 — 1/4] such that, under the control law u(z) =
v(2)y, the corresponding rate of convergence is maximized
when vy = 100. Note that Prop. V.4 tells us that we can find
a controller v(2) € [—vg — 1/4,v9 — 1/4] that yields and
exponentially stable interconnection so long as \/vg > 7/2.
Hence, for vy = 100, the previous condition is satisfied, and
we may now go about the business of finding an optimal
controller.

We know that

!"(T) - 99.75 Iy (Il + -l‘.!) S 0
YTl =100.25  xy(ag +a2) >0

is an optimal controller with rate *(100) = 6.5 for the
state-space description

i ] 35 10)[ = 0]
[;.':2] = [u.u:zs 3.5][;;—2]"'[1]”
y = 0.dz;.
By diagonalizing the “A™ matrix for both state-space de-

scriptions, a simple calculation shows that the two descrip-
tions are related via the coordinate transformation x = T'z

where
10 0
¥ [ ~35 1 ]

Using this transformation to compute Fj, i = 1,2 of
Prop. V.5, we establish the following optimal control law
in terms of the original state-space description:

e 00.75 z,(6.5%1 +22) <0
v%(2) _{ ~10025 z1(6.5z, +z2)>0 (YRI5

which is depicted graphically along with a sample trajectory
in Fig. VI.2. Notice that one of the boundaries of the cone in
which v(z) = 99.75 is the stable eigenvector of the matrix

0 1
88.75 7

and that the state trajectory follows this eigenvector for large
time. Notice also that the corresponding stable eigenvalue
of the above matrix is —6.5 which, as we computed carlier,
is our optimal rate /2*(100),

VII. CONCLUDING REMARKS

It should be noted that, for a given plant and control
bound vy, the controller which achieves maximum conver-
gence rate It*(vg) is not unique. Indeed, there are several
controllers, including controllers of the form originally
listed in [5] which achieve maximum rate. Nevertheless, the
work described here does offer several advantages. First,
it provides a methodic way of finding a controller which
achieves minimum rate of convergence. Moreover, ongoing
work indicates that the controllers of the form listed here
possess useful properties in an application setting for a
certain class of plants whereby the controllers here can
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Fig. VL2, Nustration of the optimal control law v* (z) of Eqn. VLI5
along with a sample trajectory z(t).

outperform what can be achieved via any LTT controller,

Also, to compare the controllers listed here to the controllers

listed in our previous work, the controllers given in [5]

are clearly non-robust with respect to time delays, whereas

implementations of the controllers listed here can be made
to be robust with respect to time delays (see [6] for a briel
discussion of this).
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