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Abstract—The paper proposes a mathematical model for
the dynamic evolution of supply, demand, and clearing prices
under a class of real-time pricing mechanisms characterized by
passing on the real-time wholesale prices to the end consumers.
The effects that such mechanisms could pose on the stability
and efficiency of the entire system is investigated and several
stability criteria are presented. It is shown that relaying the real-
time wholesale electricity prices to the end consumers creates
a closed loop feedback system which could be unstable or lack
robustness, leading to extreme price volatility. Finally, a result
is presented which characterizes the efficiency losses incurred
when, in order to achieve stability, the wholesale prices are
adjusted by a static pricing function before they are passed on
to the retail consumers.

I. INTRODUCTION AND MOTIVATION
The increasing demand for energy and growing environ-

mental concerns have created the need for a more efficient,
modern power grid that will accommodate distributed and
renewable energy resources, storage, and real-time demand
response technologies. In this paper, we are concerned with
the analysis, and to a lesser extent, the design of a particular
class of dynamic pricing mechanisms for real-time retail
pricing of electricity in modern power grids. Our focus will
be almost entirely on the stability and efficiency properties
of the ensuing closed loop feedback system.
There is an existing body of literature on dynamic pric-

ing in communication or transportation networks. See for
instance [5], [2], [7] and the references therein. However,
the specific characteristics of power systems arising from the
close interaction between physics and economics, along with
the safety-critical nature of the system and the uncertainty
in consumer behavior, raise very unique challenges that need
to be addressed.
In [1], Borenstein et. al. study both the theoretical and the

practical implications of various forms of dynamic pricing
such as Critical Peak Pricing, Time-of-Use Pricing, and
Real-Time Pricing. They argue in favor of real-time pricing,
characterized by passing on a price, that best reflects the
wholesale market prices, to the end consumers. They con-
clude that real-time pricing delivers the most benefits in the
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sense of reducing the peak and flattening the load curve. A
similar conclusion is reached in a study conducted by Energy
Futures Australia (EFA-IEADSM) [3].

The appeal of dynamic retail pricing is not limited to
theoretical research and academic studies. In California, the
state’s Public Utility Commission (CPUC) has enacted a
series of new energy regulations which set a deadline of
2011 for the state utility PG&E to propose a new dynamic
pricing rate structure, specifically defined as an electric rate
structure that reflects the actual wholesale market conditions,
such as critical peak pricing or real-time pricing. CPUC
defines the real-time price as a rate linked to the actual
hourly wholesale energy price [13]. In this paper, we show
that directly linking the consumer prices to the wholesale
market prices creates a close-loop feedback system in which
the prices may oscillate or diverge to unacceptable limits.
We do not argue against the idea of real-time pricing in
power grids in its entirety, nor do we suggest that it cannot
fulfill its purposes. The message that we intend to deliver is
that the design of a real-time pricing mechanism must take
system stability issues into consideration, and that successful
design and implementation of such a mechanism entails
careful analysis of consumer behavior in response to price
signals. Whether or not directly linking consumer prices to
the wholesale market prices will cause instability depends
on the utility functions of consumers and producers.

The organization of this paper is as follows. In Section
II, we present a simple model for dynamic evolution of
real-time wholesale electricity prices. It is assumed that the
consumers are price-taking agents who respond to price
signals by adjusting their consumption, so as to maximize
a quasi-linear concave utility function. It is also assumed
that supply always follows demand, in the sense that at each
instant of time, the amount of electricity demanded by the
consumers must be matched by the producers, and the per-
unit price associated with this exchange is the marginal cost
of supplying the demand. The consumers then adjust their
usage (myopically) by maximizing their utility functions for
the next time period based on the new given or predicted
price. Their adjusted demand is then a feedback signal to
the wholesale market and affects the prices for the next time
step. Section III contains the main theoretical contributions
of this paper. We analyze the stability and efficiency of the
closed loop system arising from the setup and present several
stability criteria based on the cost functions of the producers
and the value functions of the consumers.



II. PRELIMINARIES
A. Notation
The set of positive real numbers (integers) is denoted by

R+ (Z+), nonnegative real numbers (integers) by R+ (Z+).
The class of real-valued functions with a continuous n-th
derivative on X ⊂ R is denoted by CnX. For a differentiable
function f, we use ḟ to denote the derivative of f with
respect to its argument: ḟ (x) = df (x) /dx. Since throughout
the paper time is a discrete variable, this notation would not
be confused with derivative with respect to time. Finally, for
a measurable set X ⊂ R, μL (X) is the Lebesgue measure
of X.

B. Market Participants
We begin with developing a simple electricity market

model with three participants: 1. The suppliers, 2. The
consumers, and 3. An independent system operator (ISO).
The suppliers and the consumers are price-taking, profit-
maximizing agents. The ISO is an independent, profit-neutral
player in charge of clearing the market, that is, matching
supply and demand subject to the network constraints with
the objective of maximizing the social welfare, i.e., the
aggregate surplus of consumers and producers. When the
demand is fixed, the objective is to minimize the total cost
of production. Below, we describe the characteristics of each
agent in detail.
1) The Consumers and the Producers: Let D =

{1, ..., nd} and S = {1, ..., ns} denote the index sets of
consumers and producers respectively. Each consumer j ∈ D
is associated with a value function vj (·) : R+ → R,
where vj (x) which can be thought of as the dollar value
that consumer j derives from consuming x units of the
resource, electricity in this case. Similarly, each producer
i ∈ S, is associated with a cost function ci (·) : R+ →
R+ representing the dollar cost per unit production of the
resource.
Assumption I: For all i ∈ S, the cost functions ci (·) are

in C2(0,∞), strictly increasing, and strictly convex. For all
j ∈ D, the value functions vj (·) are in C2(0,∞), strictly
increasing, and strictly concave.
Let dj : R+ → R+, j ∈ D, and si : R+ → R+, i ∈

S denote C1 functions mapping price to consumption and
production respectively. In the framework of price-taking,
utility-maximizing agents, each agent maximizes the net
benefit that they can derive from the market. Therefore,

dj (λ) = arg max
x∈R+

vj (x)− λx, j ∈ D, (1)

si (λ) = arg max
x∈R+

λx− ci (x) , i ∈ S. (2)

Remark 1: Under Assumption I, when λ ∈ (0,∞), the
maximization problems defined in (1) and (2) have a unique
solution in R+ and the functions dj (·) and si (·) are well-
defined. Furthermore,

dj (λ) = max {0, {x | v̇j (x) = λ}}
si (λ) = max {0, {x | ċi (x) = λ}}

In the interest of simplicity and in order to avoid distracting
details, for the rest of this paper, we assume that dj (λ) =
v̇−1 (λ) and si (λ) = ċ−1 (λ) . This can be mathematically
justified by adding the assumptions v̇ (0) =∞, and ċ (0) = 0
to Assumption I, or by assuming that λ ∈ [ċ (0) , v̇ (0)] .
Definition 1: The social welfare S is the aggregate benefit

of the producers and the consumers:

S =
X
j∈D

(vj (dj)− λjdj)−
X
i∈S

(λisi − ci (si))

When the system is at the equilibrium in the sense that the
total supply equals the total demand and there is a unique
clearing price λ for the entire system, then:

S =
X
j∈D

vj (dj)−
X
i∈S

ci (si)

2) The Independent System Operator (ISO): The ISO is a
non-for-profit entity whose primary function is to optimally
match supply and demand (adjusted for reserve require-
ments) subject to network constraints. The network con-
straints include power flow constraints (Kirchhoff’s laws),
transmission line constraints, generator capacity constraints,
local and system wide-reserve capacity requirements and
potentially some other ISO-specific constraints [12], [10],
[11]. For real-time market operation, the constraints are
linearized near the steady state operating point and the ISO
optimization problem is reduced to a linear program, often
referred to as the Economic Dispatch Problem (EDP). A set
of Locational Marginal Prices emerge as the dual variables
corresponding to the nodal power balance constraints of this
optimization problem. These prices vary from location to
location as they represent the marginal cost of supplying
electricity to a particular location. We refer the interested
reader to [9], [11], [10] for more details. However, we would
like to point out that the spatial variation in the LMPs is a
consequence of congestion in the transmission lines. When
there is sufficient transmission capacity in the network, a
uniform price will materialize for the entire system. With
this observation in sight and in order to develop a tractable
mathematical model, we make the following simplifying
assumptions:

1) Resistive losses in the transmission and distribution
lines are negligible.

2) The line capacities are high enough, so, congestion will
not occur.

3) There are no generator capacity constraints.
4) There are no reserve capacity requirements.

Under the first two assumptions, the network parameters
become irrelevant in the supply-demand optimal matching
problem. The third and fourth assumptions are made in the
interest of keeping the development in this paper focused.
They could, otherwise, be relaxed at the expense of a more
involved technical analysis. See [8] for results on dynamic
pricing in electricity networks with transmission line and
generator capacity constraints.



The following problem then characterizes the ISO’s opti-
mization problem:

max
X
j∈D

vj(dj)−
X
i∈S

ci(si)

s.t.
X
j∈D

dj =
X
i∈S

si

(3)

The following lemma which is adopted from [6], provides
the justification for defining the LMPs as the Lagrangian
multipliers corresponding to the balance constraints.
Lemma 1: Let d∗ =

£
d∗1, · · · , d∗nd

¤
, and s∗ =£

s∗1, · · · , s∗ns
¤
where d∗j , j ∈ D and s∗i , i ∈ S, solve (3).

There exists a price λ∗ ∈ (0,∞) , such that d∗ and s∗ solve
(1) and (2). Furthermore, λ∗ is the Lagrangian multiplier
corresponding to the balance constraint in (3).

Proof: The proof is based on Lagrangian duality and
is omitted for brevity. The proof in [6] would be applicable
here with some minor adjustments.
The implication of Lemma 1 is that by setting the mar-

ket price to λ∗, the system operator creates a competitive
environment in which, the collective selfish behavior of the
participants results in a system-wide optimal condition. In
other words, the aggregate surplus is maximized while each
agent maximizes her own net benefit.
Consider the special case where the consumers do not

bid in the market, that is, they do not provide their value
functions to the system operator. In this case, which is most
relevant to real-time system operation, the demand is taken
as fixed, and (3) is reduced to meeting the fixed demand at
minimum cost:

min
X
i∈S

ci(si)

s.t.
X
j∈D

dj =
X
i∈S

si

(4)

The case of fixed demand can be associated with a non-
differentiable value function and in theory, the completely
inelastic consumers would be willing to pay any price λ ∈
[0,∞). However, we assume that the system operator solves
(4) and sets the price to the marginal cost of production at
the minimum cost solution. This is the model adopted in
this paper. We assume that the retail consumers do not bid
in the market and hence, the demand is taken as fixed over
each pricing interval. The specific details are presented in
Subsection II-C.
3) Representative Agent Model: A representative agent is

a fictitious agent whose response to a signal or an event
is mathematically equivalent to the aggregate response of
a group of agents [4]. In this subsection, we develop an
abstract model of (3)−(4) with only one producer agent
and one consumer agent representing the entire group of
producers and consumers respectively. The rationale is that
it is the aggregate supply or demand that influences the
macroscopic properties of the system. For the purpose of
theoretical analysis of the system of interest in this paper,

such construction is always possible, though, explicit for-
mulae for the representative agent may sometimes be very
complicated or impossible to find. The following lemma
presents a construction for the representative agent model,
applicable to the development in this paper.
Lemma 2: Let functions vj , j ∈ D, and ci, i ∈ S, satisfy

Assumption I, v̇j (0) =∞, ∀j, and ċi (0) = 0, ∀i. Suppose
that there exists functions v and c satisfying Assumption I,
and

λ = v̇
¡Pnd

i=1 v̇
−1
i (λ)

¢
, ∀λ ∈ R+ (5)

and
λ = ċ

¡Pns
i=1 ċ

−1
i (λ)

¢
, ∀λ ∈ R+. (6)

Then:
1) If (d∗, s∗) solves (3), then d̄∗ def=

P
d∗j and s̄∗

def
=
P∗
i s
∗
i

satisfy:
d̄∗ = s̄∗ = x∗

where x∗ solves:
max
x

v(x)− c(x)
(7)

2) If λ∗ and λ̄
∗ are the optimal clearing prices corre-

sponding to (3) and (7) respectively, then λ∗ = λ̄
∗
=

v̇ (x∗) = ċ (x∗) .
Example 1: Consider the case where all agents are iden-

tical: vi1 = vi2 , ∀i1, i2. Then v (x) = ndv1
¡
n−1d x

¢
satisfies

(5). As another example, consider vi (x) = αi log (1 + x) ,
and define v (x) = ᾱ log (nd + x) , where ᾱ =

P
αi. Then v

satisfies (5). However, since v̇i (0) = αi <∞, the response
of the representative is equal the sum of the responses of the
individual agents only when λ ≤ mini αi.

C. Dynamic Supply-Demand Model
In this section we develop a dynamical system model

for the interaction of wholesale supply and retail demand
in electricity markets. The model is consistent the current
practice in real-time balancing markets in the United States,
with the exception that it assumes that the consumers adjust
their usage based on the real-time wholesale market prices.

dk = argmax
x
v(x)− λkx

λk+1 =
d

dx
c (x)

¯̄̄̄
ŝk+1

ŝk+1 = dk

Fig. 1. Exanté Priced Supply/Demand Feedback



In a power grid, the aggregate supply has to match the
aggregate demand at every instant of time. Therefore, in real-
time, supply always follows demand. The real-time market is
cleared at discrete time intervals and the prices are calculated
and announced for each interval1. When the price announced
at time k is calculated based on the actual demand during the
time interval [k − 1, k], it is called the ex-post price. In ex-
post pricing the demand is subject to some price uncertainty
as the actual price will be revealed after the consumption
has materialized. When the price announced at time k is
calculated based on the predicted demand for the interval
[k, k + 1], it is called the exanté price. In exanté pricing
without ex-post adjustment, the ISO faces price uncertainty
as it will have to reimburse the generators based on the actual
marginal cost of production (that is, the ex-post price), while
it can charge the demand only based on the exanté price,
which is only a prediction of the actual price.
1) Price Dynamics under Exanté Pricing: We will use

representative agent models with cost and value functions
c (·) and v (·) to represent supply and demand respectively.
Let λk denote the exanté price corresponding to the con-
sumption of one unit of electricity in the time interval
[k, k + 1] . Let dk be the actual consumption during this
interval:

dk = arg max
x∈R+

v (x)− λkx.

Since v (·) is known only to the consumer, at time k, only
an estimate of dk is available to the ISO, based on which the
price λk has been calculated. At time k+1, the ISO needs to
announce λk+1, which will be the marginal cost of predicted
production during the next time interval. We assume that the
ISO’s predicted production for each time interval is equal to
the demand at the previous time interval: ŝk+1 = dk. The
following equations describe the dynamics of the market:

λk+1 = ċ (ŝk+1)

ŝk+1 = dk

dk = arg max
x∈R+

v (x)− λkx

The price dynamics can be obtained from the above equa-
tions and is as follows:

λk+1 = ċ
¡
v̇−1 (λk)

¢
. (8)

Remark 2: ISO’s Risk: The system operator commits to
a price of λk = ċ (dk−1) for the consumers, while the
generators demand the price λk+1 = ċ (dk) . The ISO’s
revenue differential (either excess or shortfall) is:

∆k = [ċ (dk)− ċ (dk−1)] dk ' c̈ (dk) dk (dk − dk−1) .
2) Price Dynamics under Ex-post Pricing: Under ex-post

pricing, the price charged for consumption of one unit of
electricity during the interval [k, k + 1] is declared at the end
of the interval, when the total consumption has materialized.
In this case, the price uncertainty and the associated risks

1In most regions of the United States, such as New England, California,
or PJM, the real-time market is operated in five-minute intervals.

sk = dk

λk =
d

dx
c (x)

¯̄̄̄
sk

dk+1=argmax
x
v(x)−λ̂k+1x

λ̂k+1=λk

Fig. 2. Expost Priced Supply/Demand Feedback

are bore by the consumer. In order to decide on the amount
to consume during [k, k + 1] the consumer needs to make a
prediction about the price for this interval. We assume that
the consumer’s predicted price is equal to the price at the
previous interval: λ̂k+1 = λk. Therefore,

λ̂k+1 = λk

dk+1 = argmax
x
v (x)− λ̂k+1x

λk+1 = ċ (dk+1)

It is observed that the price dynamics is identical to the
case with exanté pricing (8). The difference is that the price
uncertainty affects the consumer.

III. THEORETICAL STATEMENTS
A. Stability Analysis
In this section we present several stability criteria based

on Lyapunov techniques and examine stability properties of
the clearing price dynamics (8).
Theorem 1: Consider a sequence {xk} ∈ R+ satisfying

x0 ∈ X0 ⊂ R+
xk+1 = ψ (xk) (9)

for some function ψ : R+ → R+. There exists a function
x∗ : X0 → R+, satisfying

lim
k→∞

xk = x
∗ (x0) (10)

if either of the following three conditions hold:
1) ψ (x) ≤ x, ∀x ∈ R+.
2) ψ ∈ C1(0,∞), and the following two conditions hold:

(i)
¯̄̄
ψ̇ (x)

¯̄̄
≤ 1. μL

³
{x | ψ̇ (x) = 1}

´
= 0

(ii) limx→∞ {ψ (x)− x} < 0

3) There exist continuously differentiable functions f, g :
R+ → R+, satisfying

g (xk+1) = f (xk) (11)



and

(i)
¯̄̄
ḟ (x)

¯̄̄
≤ |ġ (x)| , μL({x | ḟ (x) = ġ (x)}) = 0

(ii) limx→∞ {f (x)− g (x)} < 0
(iii) either ġ (x) ≥ 0, or ġ (x) ≤ 0, ∀x ∈ R+

(12)
Proof: To prove 1, let V (x) = ψ (x), and note that V

is a Lyapunov function for (9) in the sense that V (xk+1) ≤
V (xk) . Consider the iterative equation (9) and define

k = inf
n
k | V

³
ψk+1 (x0)

´
= V

³
ψk (x0)

´o
If k <∞, then x∗ (x0) def= limk→∞ xk = ψk+1 (x0) . If k =
∞, then {V (xk)} is a strictly decreasing bounded sequence
and must converge to a limit ψ∗ ∈ R+. Then, x∗ (x0) def=
limk→∞ xk = ψ∗. Only 3 needs to be proven as 2 is a
special case of 3 with g (x) = x, and f (x) = ψ (x) . Let
V (x) = |f (x)− g (x)| . Then

∀x, y ∈ R+, x 6= y :

|f (x)− f (y)| ≤
¯̄̄̄Z x

y

¯̄̄
ḟ (τ)

¯̄̄
dτ

¯̄̄̄
<

¯̄̄̄Z x

y

|ġ (τ)| dτ
¯̄̄̄
= |g (x)− g (y)| (13)

(The last equality holds under assumption 3-(iii), though, the
sign-invariance assumption could be relaxed at the expense
of a more involved analysis and the inequality would hold
as long as ġ (·) does not change sign infinitely often over a
finite interval). We have

V (xk+1)− V (xk)
= |f (xk+1)− g (xk+1)|− |f (xk)− g (xk)|
= |f (xk+1)− f (xk)|− |g (xk+1)− g (xk)|
< 0. (14)

Therefore, {V (xk)} is a strictly decreasing bounded se-
quence and converges to a limit c ≥ 0. We show that c > 0
is not possible. Note that the sequence xk is bounded from
below as ψ (xk) > 0, ∀k. Furthermore, it can be shown—
using an argument similar to the one in the proof of statement
1—that the condition limx→∞ {f (x)− g (x)} < 0 implies
that

∀x0 : ∃ M < sup
x∈R+

g (x) , N ∈ Z+ : g (xk) ≤M, ∀k ≥ N.
(15)

Subsequently, (15) along with xk > 0 and continuity of g (·)
imply that {xk} is a bounded sequence. Therefore, either
limk→∞ xk = 0 (in which case x∗ (x0) = 0) or {xk} has a
subsequence {xki} which converges to a limit x∗ ∈ R+. In
the latter case we have

lim
k→∞

V (xk) = lim
i→∞

V (xki) =
¯̄̄
lim
i→∞

{f (xki)− g (xki)}
¯̄̄

= |f (x∗)− g (x∗)|

If g (x∗) = g (ψ (x∗)) then c = |f (x∗)− g (ψ (x∗))| = 0

(due to (11)). If g (x∗) 6= g (ψ (x∗)) then
∃δ, ε > 0, s.t. |g (ψ (x))− g (x)| ≥ ε, ∀x ∈ B (x∗, δ)

Consider the function θ : B (x∗, δ)→ R+, where

θ : x 7→ |f (ψ (x))− f (x)|
|g (ψ (x))− g (x)|

Then θ (x) < 1, ∀x ∈ B (x∗, δ) (cf. 14). Furthermore, the
function is continuous over the compact set B (x∗, δ) and
achieves its supremum θ̄, where θ̄ < 1. Since xki converges
to x∗ there exists k̂ ∈ N, such that xk̂ ∈ B (x∗, δ) . Then
V (xk+1)− θ̄V (xk) =
|f (xk+1)− f (xk)|− θ̄ |g (xk+1)− g (xk)| ≤ 0, ∀k ≥ k̂
Since θ̄ < 1, this proves that c = 0. Finally,

lim
k→∞

f (xk) = lim
k→∞

g (xk) = g (x
∗) = f (x∗)

x∗ = g−1( lim
k→∞

f (xk)) = lim
k→∞

g−1 ◦ f (xk) = lim
k→∞

xk

This completes the proof.
Remark 3: If condition 3-(iii) of Theorem 1 is relaxed,

then the core of the proof remains valid. Only the final step
would need to change as g (·) might not be invertible and
the conclusion would be that {g (xk)} is convergent. Also, if
condition 3-(i) is changed to the more conservative condition:

∃θ ∈ (0, 1) : ∀x ∈ R+ :
¯̄̄
ḟ (x)

¯̄̄
≤ θ |ġ (x)|

then 3-(ii) is not needed, and if it is changed to:

∃θ ∈ (−1, 1) : ∀x ∈ R+ :
¯̄̄
ḟ (x)

¯̄̄
≤ θġ (x) (16)

then 3-(iii) is automatically satisfied. In order to present our
results more concisely and with less technical details, we
will present the rest of our results based on (16).
There are situations in which, a natural decomposition of

system (9) via functions f and g satisfying (11) (or (16))
is readily available. As it was already mentioned, this is the
case for the price dynamics (8), where ψ = ċ ◦ v̇−1, and the
decomposition is obtained with g = ċ−1, and f = v̇−1.
However, f and g obtained in this way may not readily
satisfy (12). We present the following corollaries.

Corollary 1: Consider system (9) and suppose that con-
tinuously differentiable functions f, g : R+ → R+ satisfying
(11) are given. If there exists θ ∈ (−1, 1), and a continuous
function ρ : R+ → R satisfying¯̄̄

ρ (f (x)) ḟ (x)
¯̄̄
≤ θρ (g (x)) ġ (x) , ∀x ∈ R+,

then there exists functions x∗ : X0 → R+, and r : R+ → R+
satisfying

lim
k→∞

r (g (xk)) = x∗ (x0) ,

ṙ (x) = ρ (x) , ∀x ∈ R+.
Furthermore, if r ◦ g is invertible, then (10) holds.



Proof: If f and g satisfy (11) then so do r◦f and r ◦g
for any r ∈ C(0,∞). The result then follows from Theorem
1 and the discussion in Remark 3.
Corollary 2: The system (8) is stable in the sense defined

in Theorem 1, if there exists θ ∈ (0, 1) and a continuous
function ρ : R+ → R+ satisfying

|ρ (η) η̇| ≤ θρ (σ) σ̇ (17)

where
η = v̇−1 and σ = ċ−1 (18)

Furthermore, if
|c̈| ≤ θv̈ (19)

then (8) is stable.
Proof: The first statement follows from Corollary 1,

and the monotonicity properties of σ and r (r is the integral
of the positive function ρ) which guarantee invertibility of
r ◦ σ. The second statement is proven by taking ρ = c̈ and
using the inverse derivative formulae

d

dx
h−1 (x) =

1

ḣ (h−1 (x))

Stability and convergence analysis of the wholesale market
prices can be as well done using the model of demand (or
supply) dynamics. It can be verified that the price dynamics
(8) is stable if and only if the demand dynamics

dk+1 = v̇
−1 (ċ (dk)) (20)

is stable. The advantage of using (20) instead of (8) is that
application of Theorem 1 to (20) leads to simpler conditions.
We have the following Corollary.
Corollary 3: The system (8) is stable in the sense defined

in Theorem 1, if there exists θ ∈ (−1, 0) and a continuous
function ρ : R+ → R+ satisfying

ρ (ċ) c̈ ≤ θρ (v̇) v̈ (21)

Proof: It is sufficient to prove that (20) is stable, which
in turn follows from (21) and Corollary 1.
Remark 4: It is observed that condition (19), which was

obtained by the choice of ρ = c̈ in (17), can be obtained from
(21) by choosing ρ (x) = 1, for all x ∈ R+. Though the
criteria in Corollary 2 and 3 are mathematically equivalent,
it is a matter of availability of explicit expressions that
determines which of the two is more convenient to apply.
When the cost and value functions are explicitly available,
condition (21) is more convenient to check, whereas, when
explicit expressions are available for the supply and demand
functions (σ and η), it is more convenient to work with (17).
Example 2: Consider (8) with c (x) = xβ, and v (x) =

x1/α, where α,β > 1. Then

λk+1 = β (αλk)
αβ−α
1−α

v̇ (x) = α−1x
1−α
α , v̈ (x) = (1− α)α−2x 1−2α

α

ċ (x) = βxβ−1, c̈ (x) = β (β − 1)xβ−2

It can be verified that there does not exists a constant θ ∈ R
for which |c̈ (x)| ≤ θv̈ (c) , ∀x ∈ R. However, with ρ (x) =
1/x, we have:

ρ (ċ (x)) c̈ (x) = (β − 1)x−1, ρ (v̇) v̈ = (1− α)α−1x−1

Therefore, (21) is satisfied with

θ =
α (β − 1)
1− α , θ > −1 if β < 2− α−1

Hence, the system is stable for β < 2−α−1. It can be shown
that the condition is also necessary and the system diverges
for β > 2−α−1. Moreover, application of Corollary 2 with
the same function ρ (x) = 1/x yields exactly the same result,
though, this need not be the case in general.
Remark 5: Example 2 uses Theorem 1 for analysis of

System (8), which was in turn obtained based on specific
assumptions on demand prediction by the ISO (in the exanté
pricing case), or price prediction by the consumers (in the
ex-post case). As a result, the finding that β < 2 − α−1 is
necessary for stability is valid only under these assumptions.
A natural question arises here regarding the effects of more
sophisticated prediction strategies, e.g., time-series analysis,
on system stability. Not surprisingly, time-series analysis of
demand or price does have a stabilizing effect. However, our
simulations show that the ratio

θ =
α (β − 1)
1− α

is an indicator for hardness of stabilization. For very large
values of θ, the system could not be stabilized using simple
time-series prediction of price and/or demand.

B. Periodic Demand with an Elastic Component
The model that we have used so far in this paper assumes

that the entire demand makes adjustments in response to
price signals, and that the response is completely character-
ized by the value function of the consumer. In this section,
we examine a more generic model in which, the demand is
comprised of inelastic and elastic components. We assume
that the inelastic component is a periodic function of time,
and is insensitive to price variations. As before, the elastic
component is characterized by a concave value function.
More specifically, we have

dk = (1− μ) pk + μv̇−1 (λk) (22)
λk+1 = ċ (dk) ,

where p : Z+ → [ω,∞) is a periodic function representing
the natural fluctuations of demand, ω ≥ 0 is the minimum
demand, and μ ∈ [0, 1] is a parameter. An interpretation of
(22) is as follows. The periodic function p represents the total
population’s demand in the absence of dynamic pricing and
v̇−1 (·) represents the demand when the entire population
is responsive. The parameter μ in this case represents the
percentage of population that has subscribed to real-time
pricing and (1− μ) pk + μv̇−1 (λk) is the entire demand at
time k.



Definition 2: Given a periodic function p : Z+ → [ω,∞)
satisfying pk+T = pk, ∀k, a periodic orbit of (22) is a
function λ̄ : Z+ → R+, satisfying

ċ−1
¡
λ̄k+1

¢
= (1− μ) pk + μv̇−1

¡
λ̄k
¢
, ∀k ∈ Z+

λ̄k = λ̄k+T , ∀k ∈ Z+.
Theorem 2: Consider system (22), and suppose that the

function p : Z+ → [ω,∞) satisfies pk+T = pk for some
T ∈ Z+. Let γ = (1− μ)ω ≥ 0. If there exists θ ∈ (−1, 1),
and a function ρ : R+ → R+ satisfying

μρ (ċ (x)) c̈ (x) ≤ θρ

µ
v̇

µ
x− γ
μ

¶¶
v̈

µ
x− γ
μ

¶
, ∀x ≥ γ

(23)
or

μ |ρ (μη (λ) + γ) η̇ (λ)| ≤ θρ (σ (λ)) σ̇ (λ) , ∀λ > 0 (24)

where, η̇ and σ̇ are defined as in (18), then (22) has a periodic
orbit λ̄ with period T . Furthermore, all solutions converge
to the periodic orbit in the sense that

lim
k→∞

¯̄
λk − λ̄k

¯̄
= 0

for all functions λ satisfying (22).
Proof: Omitted for brevity.

The implication of Theorem 2 is that participation of a
small portion of the population in real-time pricing will not
have a severe destabilizing effect on the system as satisfying
either (23) or (24) is typically easier for smaller μ and
larger ω. System stability concerns should arise when a large
portion of the population is exposed to real-time pricing.
Example 3: Consider (8) with c (x) = xβ , β > 1, and

v (x) = log (x). Let ρ (x) = 1/x. Then¯̄̄̄
ρ (ċ (x)) c̈ (x)

ρ (v̇ (x)) v̈ (x)

¯̄̄̄
= β − 1.

Hence, (8) is stable for all β < 2. It can be verified that
β < 2 is also necessary for stability, and (8) diverges for all
β < 2. Now, consider (22), with μ ≤ 0.5, ω = 2. and apply
criteria (23) with ρ (x) = 1/x2. Then¯̄̄̄

¯̄ μρ (ċ (x)) c̈ (x)

ρ
³
v̇
³
x−γ
μ

´´
v̈
³
x−γ
μ

´
¯̄̄̄
¯̄ =

μ (β − 1)x−β
β

≤ μ (β − 1) γ−β
β

<
β − 1
β

< 1

Therefore, for all cost functions c (x) = xβ , β > 1, all
solutions of (22) converge to a periodic orbit when μ ≤ 0.5,
ω ≥ 2.

C. Pricing for Stabilization and Loss of Efficiency
In this section we examine a pricing mechanism in which,

the retail price is a static function of the wholesale price.
Recent results on stabilization of electricity markets via
dynamic pricing functions can be found in [8]. The results

of are applicable to equilibrium analysis of dynamic pricing
mechanisms as well. If the retail market prices are allowed to
be different than the wholesale market prices then achieving
stability is not difficult. For instance, a constant retail market
price is always stabilizing. We are interested in examining
the effects of this type of pricing on the efficiency of the
system. Suppose that the system has reached an equilibrium
state with λ̄

r and λ̄
w as the retail and wholesale market

prices respectively. Then:

S = v (x)− s (x)
= v

¡
v̇−1

¡
λ̄
r¢¢− c ¡ċ−1 ¡λ̄w¢¢

where S is the aggregate surplus. Let us denote by Sφ
the surplus function corresponding to the case where λrk =
φ (λwk ) for some function φ : R+ → R+. We present the
following Theorem.
Theorem 3: Suppose that at any given time k, the whole-

sale price λwk , and the consumer price λrk satisfy λwk =
φ (λrk) , where φ : R+ → R+ is a C1(0,∞) function. Then
the wholesale market price dynamics is give by

λwk+1 = ċ
¡
v̇−1 (φ (λwk ))

¢
(25)

and converges to an equilibrium price λ̄
w satisfying

φ
¡
λ̄
w¢
= λ̄

r provided that there exists a function ρ : R+ →
R+ satisfying: ¯̄̄

ρ (η (φ)) η̇ (φ) φ̇
¯̄̄
≤ θρ (σ) σ̇

where σ = ċ−1, and η = v̇−1. Furthermore, if for functions
φ1 and φ2, either

0 < −λ̄w1 + φ1
¡
λ̄
w
1

¢
< −λ̄w2 + φ2

¡
λ̄
w
2

¢
or

0 > −λ̄w1 + φ1
¡
λ̄
w
1

¢
> −λ̄w2 + φ2

¡
λ̄
w
2

¢
Then

Sφ2 < Sφ1
Proof: The first statement is a corollary of Theorem 1.

We present a proof for the second statement. Let xλ̄w denote
the equilibrated supply and demand. Then:

xλ̄w = ċ
−1 ¡λ̄w¢ = v̇−1 ¡φ ¡λ̄w¢¢

S
¡
λ̄
w¢
= v (xλ̄w)−c (xλ̄w) = v

¡
ċ−1

¡
λ̄
w¢¢−c ¡ċ−1 ¡λ̄w¢¢

dS
¡
λ̄
w¢

dλ̄
w = v̇

¡
ċ−1

¡
λ̄
w¢¢

σ̇
¡
λ̄
w¢− λ̄wσ̇ ¡λ̄w¢

=
¡
φ
¡
λ̄
w¢− λ̄w¢ σ̇ ¡λ̄w¢

Since by assumption c (·) is convex, ċ−1 (·) is increasing and
σ̇
¡
λ̄
w¢

> 0. Therefore, dS
¡
λ̄
w¢
/dλ̄

w is zero only when
λ̄
w
= φ

¡
λ̄
w¢
, which immediately implies that there is a

loss of efficiency when the wholesale price and the consumer



φ(λ̄) < λ̄ φ(λ̄) > λ̄

φ(λ̄)− λ̄

Sφ(λ̄)

Fig. 3. The aggregate surplus as a function of the difference between the
wholesale and the retail price.

price at the equilibrium are not identical. Furthermore,

d
¡
S
¡
λ̄
w¢¢

d
¡
φ
¡
λ̄
w¢− λ̄w¢ =

d
¡
S
¡
λ̄
w¢¢

/dλ̄
w

d
¡
λ̄
r − λ̄w¢ /dλ̄w

=

¡
φ
¡
λ̄
w¢− λ̄w¢ σ̇ ¡λ̄w¢
dλ̄

r
/dλ̄

w − 1
=

¡
φ
¡
λ̄
w¢− λ̄w¢ σ̇ ¡λ̄w¢

v̈
¡
σ
¡
λ̄
w¢¢

σ̇
¡
λ̄
w¢− 1

where the last equality follows from λ̄
r
= v̇

¡
ċ−1

¡
λ̄
w¢¢

and taking the derivative. The above derivation shows that
S
¡
λ̄
w¢ is in increasing function of φ ¡λ̄w¢− λ̄w as long as

φ
¡
λ̄
w¢ − λ̄

w ≤ 0 (since v̈
¡
σ
¡
λ̄
w¢¢

σ̇
¡
λ̄
w¢ − 1 < 0 and

σ̇
¡
λ̄
w¢
> 0), and a decreasing function of φ

¡
λ̄
w¢ − λ̄

w as
long as φ

¡
λ̄
w¢− λ̄w ≥ 0.

The above Theorem indicates that when the consumer
price is a (non-identity) function of the wholesale market
price there is generally a loss of efficiency, and furthermore,
the greater the discrepancy between the consumer price and
the wholesale price, the greater the efficiency loss. Since the
system is at the optimum if and only if φ

¡
λ̄
w¢
= λ̄

w, any
function φ that results in an equilibrium with this property
necessarily satisfies:

λ̄
w
= ċ

¡
v̇−1

¡
φ
¡
λ̄
w¢¢¢

= ċ
¡
v̇−1

¡
λ̄
w¢¢

Hence, any such λ̄w should necessarily be the equilibrium
of the original system under direct pricing.
Remark 6: System (25) could as well represent the dy-

namics of an ex-post priced market with φ (·) representing
the consumer price prediction function: λ̂k = φ (λk) . Even
when the price prediction function has memory, the results
of Theorem 3 can be applied for equilibrium analysis. A
larger discrepancy between the wholesale and retail prices,
indicates a more inefficient equilibrium, which could arise
from consumer’s specific price prediction strategy in an ex-
post priced market. A similar analogy can be made for ISO’s
demand prediction function in an exanté priced market.

IV. CONCLUSIONS AND FUTURE WORK

We investigated the effects of real-time pricing on the
stability and efficiency of electricity markets and showed that
exposing the consumers to the real-time wholesale market
prices could create an unstable closed loop feedback system.
In practice, this instability could manifest itself as extreme
price volatility. We presented several criteria characterizing
convergence of the prices based on the relation between the
cost functions of the producers and the value functions of
the consumers. The criteria were extended to the case where
the demand is combination of an inelastic periodic function
and an elastic component. We established that existence
of a positive inelastic component in demand has a strong
stabilizing effect. Our results are consistent with the intuition
that system instability concerns should be greater when larger
portions of the population participate in real-time pricing.
It was further shown that when the consumer prices are a
static function of the wholesale market prices, there can be
a loss of efficiency. The larger the discrepancy between the
wholesale market price and the retail price, the farther is the
system from an optimal equilibrium. Although this result
was obtained for a static pricing function, it is applicable
to equilibrium analysis of other pricing mechanisms. A
discrepancy between wholesale and retail equilibrium prices
indicates inefficiency, regardless of how the equilibrium was
reached. Analysis of the case of time-varying or stochasti-
cally fluctuating cost functions is an important direction for
future research.
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