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ABSTRACT 
We are interested in developing computational tools for re- 
ducing the state space of irreducible Markov chains. As 
means of decreasing the dimensionality of a given Markov 
chain we study the concept of aggregation. The approxima- 
tion error between the original and the reduced order model 
is captured by a metric that penalizes the asymptotic devia- 
tion of the outputs of the two systems. For the case of nearly 
completely decomposable Markov chains we demonstrate 
how a decomposition approach can be used to derive a low 
order model of good fidelity. 

1. INTRODUCTION AND BACKGROUND 

The motivation of this work comes from problems that are 
faced by decision making autonomous agents embedded in 
complex uncertain environments, and are casted in the gen- 
eral framework of Markov Decision Processes (MDP). The 
associated states spaces are often prohibitive from a compu- 
tational point of view, thus presenting insurmountable dif- 
ficulties for the analysis of the task at hand as well as the 
derivation of optimal policies. In order to handle the in- 
tractability, we seek low order representations of the un- 
derlying Markovian dynamics in terms of fewer aggregated 
states. 
We consider a time homogenous irreducible Markov chain 
which evolves on a finite state space denoted by S, where 
S = {sl,sa, s3, ..., SN}. Let na denote the row vector of 
probability distributions on S at time instant n and let P 
represent the transition probability matrix. The evolution of 
the probability distribution vector is given by "+la = "a P 
and in cases of partial observation we make use of the output 
equation "y = "?r C where C E RN"". 
Under aggregation of the state space we understand a part- 
tion of it in disjoint clusters. Given a positive integer n, typ- 
ically fl << N one forms a collection of aggregated states 
S = {s,,s,,s3, ..., s ~ }  where Si c S i E {l, ..., fl}, 

N -  Si nS, = 0 if i # j and u Si = S. Using the aggrega- 

tion operator L : RN + RNwhere Li, = 1 if si E S j  and 
i= l  

L,, = 0 otherwise, one can relate by "t = "a L the in- 
stantenous probability distributions on s and S respectively. 
Let "A,,,, denote the conditional probability of the state s, 
in cluster S, at instant n i.e., n~,, = &, then the en- 
tries of "p, the aggregated transition probability matrix at 
instant n are given by 

j : a,ES, i : si€% 

the evolution of the probability distribution for the aggre- 
gated system is given by 

(2) n+lt = n- n a P  

Note that the Markovian property is preserved, the chain is 
time inhomogenous though. Computation of the exact value 
of "P requires at each instant a disaggregation stepin order 
to obtain the values of the conditional distributions " X j ,  

in every cluster 3,. From a computational standpoint this 
is equivalent with working with the original system, thus 
exact calculation of the aggregation matrix does not bear 
any benifit. For a given aggregation operator L we define 
the compact set of stochastic matrices PL where 

- -  
PL = IP : P,k = E A,, E Pji; Xjm E [0,1]} 

j:q&" i : s ,ES*  

An equivalent way to equation (2) for describing the evolu- 
tion of the probability distribution of the aggregated system 
is given by: 

(3) 
where 'P E PL Vi  E {1, ..., n}. A low order appmxima- 
tion of the original system by a homogecous Markov chain 
requires a selection of a fixed matrix P where P E PL. 
This is equivalent with fixing the values of conditional pmb- 
abilities in each cluster V n  E Z,. The approximate dy- 
namics on the aggregated state space will be described by: 
n+'b = P. The vector is regarded as an approxi- 
mation to the exact probability distribution "t on the aggre- 
gated state space. 

n+lt= 1- 1 - "p 7r P... 
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2. THE MODEL REDUCTION PROBLEM 

We denote by AI the partially observed Markovian process 
evolving on S and let A? denote a process that evolves on 

which corresponds to the aggregated state space accord- 
ing to according to ”+’+ = ”+ P and ”y = ’% C. We 
assume that P. P are irreducible matrices. We will consider 
a distance function between these two homogenous Markov 
chains that penalizes deviations between their asymptotic 
outputs in the sense 

d ( M ,  A?) = limy lm Dill  (4) 

The model reduction process requires the solution to the fol- 
lowing two subproblems : 1.) Given P. C and the desired 
N establish a selection criterion and an algorithm that pro- 
duces for each L the corresponding 8, C, possibly in an 
inexpensive manner. 2.) Determine the optimal aggregation 
operator in the sense Lo = argminr, d ( M ,  AI). 
For the particular metric proposed in equation (4) one can 
compute for each L matrices 8, C such that d ( M ,  A?) = 0. 
This requires the solution of the Perron eigenvalue problem 
-?i =- ?r P that takes in absence of some special ma- 
trix structure O ( N 3 )  operations. In dealing with very large 
state spaces an algorithm of lower complexity is sought. A 
suboptimal solution to the model reduction problem for the 
case of nearly completely decomposable Markov chains is 
presented in the next section. 

3. CASE OF A NEARLY COMPLETELY 
DECOMPOSABLE MARKOV CHAIN 

The concept of a nearly decomposable Markov chain was 
introduced in [l] for modeling stochastic systems whose 
dynamics exhibit multiple scales. This characteristic is re- 
flected in a decomposition of the transition probability ma- 
trix in the form P = P’ + EA where P is an irreducible 
stochastic matrix Pa is a block diagonal stochastic matrix, 

with P: Vi  E 11, ..., m} being irreducible and E denotes a 
coupling factor that is an otherwise unspecified small num- 
ber and appears once the entries of A are normalized /AzJ I 
1 V i . j  E {l ...., N}. Asitwasshownin[l]thebehaviorof 
such systems can be analyzed in stages. In a first stage one 
considers each cluster that corresponds to a respective block 
in P’ independently until a partial equilibrium is achieved. 
The conditional probabilities in each cluster are determined 
by solving the I? decoupled Perron eigenvalue problems 

- 
m?rl =m x‘ P,’ i = 1, ._., N ( 5 )  

In a second stage each cluster forms a single aggregated en- 
tity and interactions between aggregates lead to the steady 
state distribution for the system as a whole. One considers 
the aggregated state space S = {g1, S,, ..., S,Q} where S, 
contains the states corresponding to the block P;. Let P 
denote the matrix obtained by substituting the conditional 
probabilities obtained by equation (5) in equation (11. By 
solving =m ii P for the Perron eigenvector of P, one 
obtains the following approximation to the steady state dis- 
tribution of P 

1 m- 7r = [ -iil -7T1 ... ma,Q 

An asymptotic result on the associated approximation error 
canbefoundin[2],inpartic~Iar(I~n-~?r/ll = @ e ) .  The 
methods described [I], [2] can be used to derive a reduced 
order model for a nearly completely decomposable Markov 
chain in an analogous fashion provided that the considered 
metric penalizes only deviations in the steady state as it is 
the case in equation (4). Without loss of generality let C = 
I ,  then by using the aggregation operator L compatible with 
the block structure of P* as described above one obtains a 
reduced order Markov chain P with N states and by setting 

-7rl 0 0 

c = [ ;  ‘0 &]  
it is ensured that d ( A f ,  A?) = O(E) 

4. FUTURE WORK 

As part of future work we would like to derive sharp bounds 
for the approximation error of the above model reduction 
procedure. Clustering algorithms are to be considered so 
that an arbitrary matrix can be brought to the form P = 
P’ + EA whith E being minimized. The problem of deter- 
mining the coarsest aggregation for a given error bound is 
also to be addressed, in particular we would like to be able 
to calculate for a given degree of accuracy e > 0, the small- 
est fl : 3L with d ( M ,  &’) 5 E. Finally we would like to 
extend the model reduction procedure to the case of gen- 
eral irreducible Markov chains and for various metrics that 
capture also transient effects. 
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Abstract  

This paper proposes a convex approach to the model 
approximation problem for a class of regionally st* 
ble uncertain nonlinear systems. More specifically, we 
determine an extended bilinear system which approx- 
imates in a given region of the state space the input- 
tc-output dynamics of the nonlinear system with time- 
varying parameters. To this end; we use a suitable 
parametrization of the Lyapunov matrix in order to  
obtain convex model design conditions in terms of lin- 
ear matrix inequalities (LhiIs). The proposed approach 
is also extended to the model reduction case without 
rank constraints. 

1 INTRODUCTION 

The last decades or so have witnessed active research 
in the area of robust model approximation and order 
reduction for large scale linear systems, see e.g. [l] 
and references therein. The basic idea is to  determine 
a linear low order system that approximates the dy- 
namics of a high-order (possibly uncertain) linear sys- 
tem with a (small enough) guaranteed upper-bound on 
the approximation error. A more realistic situation is 
the model approximation of nonlinear systems provid- 
ing simplified procedures for performance analysis and 
design. In general, approximate versions of nonlinear 
dynamics are obtained with the use of (uncertain) lin- 
ear models such as the works of Chao & Fitzsimons in 
[2], Lawrence in [3] and Glad et al in 141. 

On the other hand, starting from the observation that 
a nonlinear system can be approximated by a Taylor 
expansion around an equilibrium point an alternative 
modelling for the identification (and also approxima- 
tion) of nonlinear systems is the class of bilinear sys- 
tems 151 and its extensions (second degree [6] and ex- 
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tended bilinear systems [7]). The usual bilinear ap- 
proximation consists of concentrating all nonlinearities 
in the input dynamics neglecting the quadratic and 
high orders terms of the Taylor expansion. This tech- 
nique achieves good results only if the nonlinearities 
are concentrated in the input dynamics. A natural ex- 
tension of the bilinear representation is to consider the 
quadratic terms of the state vector in the Taylor ex- 
pansion leading to  the extended bilinear systems. i.e. 
the nonlinear map 

y ( t )  = c ( z ( t ) , u ( t ) ) ,  2 E W", 5( t )  = a(z(t ) .u( t ) )  

is approximated by the map 

~ ( t )  = G(g)U(t) + f f ( ~ ) u ( t ) ,  
U ( t )  = E(u)a(t) +F(u)ZL(t), 

where the matrices G(o) ,H(u) ,E(o)  and F ( o )  are 
&ne functions of U E W". The above class of sys- 
tems offers a good compromise between accuracy and 
simplicity of the model, since we obtain a better ap- 
proximation than the bilinear one and we can use the 
standard linear matrix inequality (LMI) framework for 
performance analysis and control [8]. 

The purpose of this paper is to  devise a technique for 
approximating a regionally stable uncertain nonlinear 
system with bounded inputs by a timeinvariant ex- 
tended bilinear systems with the same order of the non- 
linear system (n = m) in an H, sense. To this end, 
we apply a suitable parametrization of the Lyapunov 
matrix obtaining convex conditions in terms of LMIs 
that assure the minimization of the (worst-case) error 
signal e ( t )  = y ( t )  - V ( t ) .  We then extend the proposed 
approach for model reduction, i.e. m < n, by imposing 
a constraint on the structure of the Lyapunov matrix. 

The rest of this paper is as follows. Section 2 formal- 
izes the problem of concern and Section 3 presents some 
preliminary results. The model approximation condi- 
tions are stated in Section 4 and Section 5 extends these 
results for model reduction. Finally, Section 6 ends the 
paper. 
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