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Global Analysis of Piecewise Linear Systems Using
Impact Maps and Surface Lyapunov Functions

Jorge M. Gonçalves, Alexandre Megretski, and Munther A. Dahleh

Abstract—This paper presents an entirely new constructive
global analysis methodology for a class of hybrid systems known
as piecewise linear systems (PLS). This methodology infers global
properties of PLS solely by studying the behavior at switching
surfaces associated with PLS. The main idea is to analyze impact
maps, i.e., maps from one switching surface to the next switching
surface. Such maps are known to be “unfriendly” maps in the
sense that they are highly nonlinear, multivalued, and not con-
tinuous. We found, however, that an impact map induced by an
linear time-invariant flow between two switching surfaces can be
represented as a linear transformation analytically parametrized
by a scalar function of the state. This representation of impact
maps allows the search for surface Lyapunov functions (SuLF) to
be done by simply solving a semidefinite program, allowing global
asymptotic stability, robustness, and performance of limit cycles
and equilibrium points of PLS to be efficiently checked. This new
analysis methodology has been applied to relay feedback, on/off
and saturation systems, where it has shown to be very successful
in globally analyzing a large number of examples. In fact, it is still
an open problem whether there exists an example with a globally
stable limit cycle or equilibrium point that cannot be successfully
analyzed with this new methodology. Examples analyzed include
systems of relative degree larger than one and of high dimension,
for which no other analysis methodology could be applied. This
success in globally analyzing certain classes of PLS has shown the
power of this new methodology, and suggests its potential toward
the analysis of larger and more complex PLS.

Index Terms—Hybrid systems, surface Lyapunov functions
(SuLF), impact and Poincaré maps, global stability.

I. INTRODUCTION

YBRID systems are systems characterized by an interaction
between continuous and discrete dynamics. The reason why
we are interested in studying this class of systems is to capture
discontinuity actions in the dynamics from either the controller
or system nonlinearities. On one hand, a wide variety of phys-
ical systems are naturally modeled this way due to real-time
changes in the plant dynamics like collisions, saturations,
walking robots, cell cycle, etc. On the other hand, an engineer
can introduce intentional nonlinearities to improve system
performance, to effect economy in component selection, or to
simplify the dynamic equations of the system by working with
sets of simpler equations (e.g., linear) and switch among these
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simpler models (in order to avoid dealing directly with a set of
nonlinear equations).
An important class of hybrid systems is piecewise linear sys-

tems (PLS). PLS are characterized by a finite number of linear
dynamical models together with a set of rules for switching
among these models. Therefore, this model description causes
a partitioning of the state space into cells. These cells have
distinctive properties in that the dynamics within each cell are
described by linear dynamic equations. There are two main
reasons why PLS are important. First, PLS are natural models
for many applications like hopping robots, neural oscillators,
and linear systems in feedback with static nonlinearities like
relays and saturations. Second, PLS are much better approx-
imations of nonlinear or hybrid systems than linear systems.
A common practice in control is to study a linearization of a
nonlinear system. Linear systems, however, only approximate
the true dynamics in small regions around equilibrium points,
and do not capture important properties of nonlinear systems
like limit cycle oscillations.
Unlike linear systems, checking stability of general PLS is a

very hard problem. For instance, it is not sufficient (nor neces-
sary) that all linear subsystems are stable to guarantee stability
of PLS [1]. Until very recently, very few results were available
to analyze PLS. The work in [2] represents the first rigorous
results to analyze general PLS. There, piecewise quadratic Lya-
punov functions are constructed by solving a set of linear matrix
inequalities (LMIs). This approach, however, can be inefficient
or even unable to analyze many PLS, as discussed in detail in
Section II, and motivates the need to develop new tools.
In [3], an entirely new methodology to globally analyze

limit cycles of relay feedback systems (RFS) was introduced.
The idea consisted of efficiently finding Lyapunov functions
on switching surfaces to prove that Poincaré maps associated
with the system were contracting. This paper generalizes
these ideas to globally analyze PLS. The notion of Poincaré
maps is generalized to impact maps, which are maps from
one switching surface to the next switching surface, and not
necessarily back to the original surface. The novelty of this
work is in expressing impact maps induced by an LTI flow
between two hyperplanes as linear transformations analytically
parametrized by a scalar function of the state. Furthermore,
level sets of this function are convex subsets of linear manifolds
with dimension lower than that of the switching surfaces. This
allows the search for surface Lyapunov functions (SuLF) to be
done by solving sets of LMI’s using efficient computational
algorithms. Contractions of certain impact maps of the system
can then be used to conclude about global stability, robustness,
and performance of PLS.
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We will show that this new methodology can be used to
not only globally analyze limit cycles but also equilibrium
points of PLS. For that, on/off and saturation systems are
analyzed, including those with unstable nonlinearity sectors
for which classical methods like Popov criterion, Zames–Falb
criterion [4], integral quadratic constraints (IQCs) [5]–[8], fail
to analyze. In addition, the results in [9] and [10, Ch. 8]
show that this methodology can also be efficiently applied to
analyze robustness and performance of PLS. Thus, the success
in globally analyzing stability, robustness, and performance
of certain classes of PLS has shown the power of this new
methodology, and suggests its potential toward the analysis
of larger and more complex PLS.
This paper is organized as follows. The next section moti-

vates the need for new analysis tools for PLS by explaining how
available methods can be inefficient or even unable to analyze
many PLS. Sections III and IV are dedicated to the development
the main tool that relaxes the problem of checking contraction
of impact maps to solving a semidefinite program. Then, Sec-
tion V explains how this is used to globally analyze PLS. These
results are applied to globally analyze asymptotic stability of
on/off and saturation systems, in Sections VI and VII, respec-
tively. Section VIII shows how less conservative global stability
conditions can be obtained. Conclusions and future work are
discussed in Section IX and, finally, technical details are con-
sidered in the Appendix.

II. MOTIVATION

As discussed in introduction, there exist several tools to
analyze PLS. One of the most important consists of con-
structing piecewise quadratic Lyapunov functions (PQLFs)
in the state–space [2], [11], [12]. This method relaxes the
problem to a solution of a finite-dimensional set of LMIs.
There are, however, several drawbacks with this approach that
motivates the need for alternative methods to analyze PLS.
These drawbacks are as follows.
• PQLF cannot analyze limit cycles since PQLF constructs
Lyapunov functions in the state space.

• For most PLS, it is not possible to construct PQLF with
just the given natural partition of the system. In order to
improve flexibility, a refinement of partitions is typically
necessary. The analysis method, however, is efficient only
when the number of partitions required to prove stability
is small. Example 2.1 below shows that even for second
order systems, the construction of PQLF can be computa-
tionally intractable due to the large number of partitions
in the state–space required for the analysis.

• In general, for systems of order higher than 3, it is
extremely hard to obtain a refinement of partitions in
the state-space to efficiently analyze PLS using PQLF.
In other words, the method does not scale well with the
dimension of the system. In fact, only a few and specific
examples of PLS of order higher than 3 analyzed with
this method have been reported.

• Existence of PQLF implies exponential stability of the
system. Thus, PQLF cannot prove asymptotic stability of
PLS that are not exponentially stable.

Fig. 1. PLS composed of an unstable and a stable linear systems.

Fig. 2. State–space partitioned in 16 equal cells (left). Maps from one switch
to the next switch (right).

Example 2.1: Consider the PLS in Fig. 1 composed of two
linear subsystems. On the left side of the vertical axis there
is an unstable linear system and on the right side a
stable linear system parametrized by . For this
simple second order PLS, the goal is to show that the origin is
globally asymptotically stable.
This PLS has no global quadratic Lyapunov function due to

the unstable subsystem. We then turn to find PQLF. Starting
with just the natural partition of the system, as expected no
PQLF can be found, by the same reason there is no global
quadratic Lyapunov function. A refinement of the state–space
is then required. We decided to further partition the state space
with equally separated lines through the origin, including the
axis, resulting in equally sized partitions (see the left of

Fig. 2 for ). Using the software developed by [2], for a
given we tried successively until
the system could be successfully analyzed. The table in the
center of Fig. 2 shows the smallest required to analyze the
system as a function of .
This table clearly shows that as decreases, the required

number of partitions for the analysis of the PLS increases. For
, the number of required partitions is too high and

it becomes computationally intractable to prove stability of
the origin using this method. Note that even for large values
of , the smallest number of required partitions is already 16,
although the original system was only divided in two partitions.
On the other hand, this system can easily analyzed on the

switching surface without the need of extra complexity. In fact,
it is easy to show that the maps from one switch to the next are
contracting for any (see the right side of Fig. 2). Given

and . Thus,
. Since for all , the origin is

globally asymptotically stable for all .
As we will see later, all the drawbacks of PQLF discussed

above are not an issue for the classes of PLS analyzed so far
using SuLF. First, SuLF can analyze both limit cycles [3] and
equilibrium points (Sections VI and VII). Second, it is suffi-
cient to consider only the natural partition of the system, with
no extra complexity added. Third, our new method scales with
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the dimension of the system, and, finally, SuLF can be used to
prove global asymptotic stability of PLS that are not exponen-
tially stable (see example 7.3).
Also, the construction of PQLF for PLS proposed in [2] im-

poses continuity of the the Lyapunov functions along switching
surfaces. This means that the intersection of two quadratic
Lyapunov functions with a switching surface—one from each
side—defines a unique quadratic Lyapunov function on the
switching surface. Therefore, existence of PQLF guarantee
the existence of SuLF. The converse, however, is not true. For
instance, SuLF exist to analyze limit cycles [3], but no PQLF
exist in the state–space.
Analysis of PLS at switching surfaces requires the under-

standing of system trajectories. When a trajectory leaves a
switching surface it will either not switch again or switch
in finite time (see Fig. 3). If the trajectory does not switch
again then its behavior from thereon is simply governed by
a linear system. Thus, linear analysis tools can be applied to
this trajectory to check whether or not this will converge to an
equilibrium point.
Things become more interesting when a trajectory leaving a

switching surface does switch in finite time. This raises several
questions: what happens to the trajectory after it switches? Will
it switch again? Will it converge to some equilibrium point or
limit cycle? These are the type of questions we address in this
paper. To answer them, we must first fully understand a single
map from one switching surface to the next switching surface
(Sections III and IV). Then, PLS can be analyzed by carefully
combining the analysis of all switching maps associated with
the system (Section V).

III. IMPACT MAPS

Analysis of oscillations in nonlinear or hybrid systems
systems is typically done with the so-called Poincaré map. A
Poincaré map reduces the study of an -dimensional system
to a discrete -dimensional system in a manifold (see, for
example, [13]). The problem with Poincaré maps is that, in
general, they cannot be found explicitly and are typically non-
linear, multivalued, and not continuous. Thus, global analysis
of PLS is rarely done using these maps. Next, we explain how
these difficulties inherent to Poincaré maps can be overcome
to globally analyze PLS.
First, we need to understand the behavior of the system as

this flows from one switching surface to the next switching sur-
face. A useful notion that will be used throughout this paper
is that of impact map, which is a generalization of a Poincaré
map. An impact map is a map from one switching surface to
the next switching surface, and not necessarily back to the orig-
inal switching surface as in Poincaré maps. Only after we un-
derstand how to efficiently analyze a single impact map can we
look at PLS as a whole, by combining all impact maps associ-
ated with the PLS, to conclude about stability, robustness, and
performance properties of the system.
Consider the following affine linear time-invariant system

(1)

Fig. 3. Possible scenarios for a trajectory entering a cell: not convergent or
unstable, stable, and switching trajectory.

Fig. 4. Impact map from to .

where , and . Note that there are no
restrictions on . Thismatrix is allowed to have stable, unstable,
and pure imaginary eigenvalues. Assume (1) is part of some
larger PLS, and that (1) is defined on some open polytopical set

. Consider the following hyperplanes in the boundary
of :

Assume a trajectory arrived at in a subset of and the
PLS switches to system (1). The impact map of interest is a map
from some subset of to some subset of .
More rigorously, let denote the closure of . Let be

some polytopical subset of where any trajectory starting at
satisfies , for some finite , and on
. Let also be the set of those points .

The set can be seen as the image set of (see Fig. 4).
We are interested in studying the impact map, induced by (1),

from to . Since both and belong to
switching surfaces, they can be parametrized in their respective
hyperplanes. For that, let and ,
where , and are any vectors such
that and . In this case,

. Note that and do not need to belong to
and , respectively. In fact, as explained later, in many cases
is convenient to choose so that . Define also

as the trajectory of (1), starting at , for all . The
impact map of interest reduces to the map from to (see
Fig. 4)
Note that, in general, the impact map from to

defined above is multivalued and not continuous.
This is illustrated in the following example.
Example 3.1: Consider a third-order system given by

with the switching surfaces defined previously given by
, and . Let
. In the state space, the switching surfaces are

parallel to each other. Let . The
resulting can be seen on the left of Fig. 5.
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Fig. 5. Existence of multiple solutions (left). Map from to is not
continuous (right).

When and . At this
point, the trajectory can return to (dashed trajectory), or it can
switch. This means that a switch can occur at either or

, showing that the impact map is multivalued.
Now, let and . The impact map from
to , as defined previously, is also not continuous since

there is no neighborhood of that is mapped to a small enough
neighborhood of (see the right-hand side of Fig. 5).
Definition 1: Let . Define as the

set of all times such that the trajectory with initial
condition satisfies and on .
Define also the set of switching times of the impact map from

to as

For instance, in Example 3.1, for .
Besides from being multivalued and not continuous, impact

maps are also typically nonlinear. Given an initial condition
, finding a requires first to

find an associated switching time . Solving for such
, however, involves solving a transcendental equation, which
cannot, in general, be written in a closed form. Thus, numerical
procedures are typically the only way to solve for . This “non-
friendly” nature of impact maps and Poincaré maps in general is
the main reason why global analysis of such maps has not been
done before. The following result, however, shows that impact
maps have a special structure that opens the door to analysis of
PLS at switching surfaces.
Theorem 1: Assume for all . Define

Then, for any there exists a such that the
impact map is given by

(2)

Such is the switching time associated with .
This theorem says that maps between switching surfaces, in-

duced by LTI flows, can be represented as linear transformations
analytically parametrized by the correspondent switching time.
At first, (2) may not seem of great help in analyzing the impact
map. is a linear function of and a nonlinear function of
the switching time . The switching time, however, is a non-
linear function of and a transcendental equation still needs

to be solved in order to find . Thus, by this reasoning, it seems
(2) does not bring anything new.
This is, however, just one way of thinking about (2). Fortu-

nately, there is another way to approach this equation. Assume,
for now, the switching time is fixed. The result: impact map
(2) is linear. Hence, the question is: what does it mean to have
the switching time fixed? In other words, what are the set of
points in with the same switching time of ? In that
set, impact map (2) is linear.
It turns out that the set of points in that has the same

switching time is a convex subset of a linear manifold of di-
mension (see Fig. 6). Let be that set, that is, the set of
points such that . In other words, a trajec-
tory starting at satisfies both and
on . Note that since the impact map is multivalued, a point
in may belong to more than one set . In fact, in Example
3.1, there existed a point in that belonged to both and

.
Now, as changes, covers every single point of ,

i.e., . This follows since every point
can switch for the first time at , and therefore

is always a nonempty set. In other words, is an equiva-
lence class of all initial conditions in the domain of the impact
map with the same switching time. These results are summa-
rized in the following corollary, which, as explained in the next
section, is fundamental to relax the problem of stability, robust-
ness, and performance analysis of PLS using SuLF to the solu-
tion of a semidefinite program.
Corollary 1: Under the assumptions of Theorem 1, for a

given , the impact map from to
, given by , is linear. Moreover, is

a subset of a linear manifold of dimension , and
.

Before proving the above results, it is important to understand
the meaning of the assumption in Theorem 1. This says the tra-
jectory cannot intersect the switching surface for all

. Note that no assumptions have been made on (the
initial condition of ), except that . In many cases,
a careful choice of is enough to satisfy the assump-
tion (see Sections VI and VII). In some cases, however, either
cannot be freely chosen (like in [3]) or there is simply no

choice of that satisfies the assumption. This means
there exist at least one such that . In such
cases, the results in this paper still hold but with a slightly more
complicated proof. For some PLS, like in [3], at is
defined as the limit when (see [3] for details). If this is
not the case, at the impact map can still be written as a
linear transformation but parametrized by an extra variable, i.e.,

, with .
Proof of Theorem 1: Let . Integrating the

differential equation (1) gives

Since and ,
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Fig. 6. Every point in has a switching time of .

From the fact and

(3)

Since, by assumption, for all , the last
expression can be written as

(4)

which means reduces to

which proves the desired result.
Note that if is invertible, can be written as

.
Proof of Corollary 1: The only thing left to prove is that
is a subset of a linear manifold of dimension . Let

. Since must satisfy
(3). Also, since . Thus, since both
equalities are linear on has at most dimension
and is a subset of a linear manifold .

IV. SURFACE LYAPUNOV FUNCTIONS

As explained before, there are some results to construct piece-
wise quadratic Lyapunov functions for PLS [2]. Although these
results are able to analyze equilibrium points of certain classes
of PLS, many important PLS cannot be analyzed this way be-
cause they either have limit cycles or the method is computa-
tionally too expensive.
An alternative to construct Lyapunov functions in the state

space is to construct Lyapunov functions on switching surfaces
(SuLF). Define then two Lyapunov functions and on the
switching surfaces and , respectively. If

(5)

then the impact map from to is a contraction. Checking
(5) is, in general, very hard due to the nonlinear nature of impact
maps. However, by using the results from the previous section
and choosing the Lyapunov function candidates to be poly-
nomial, contraction of impact maps can be relaxed to a matrix
inequality. Let on stand for for all nonzero

.
Theorem 2: Let be polynomial Lyapunov functions. There

exists a matrix parametrized by the switching time
such that the impact map from to
is a contraction if

on (6)

for all switching times .

The idea of the proof is simple. Substitute (2) in (5), use the
fact that the impact map is linear in , and that, as ranges over

covers every point in .
If the SuLF and are chosen quadratic of the form

(7)

for , where , and are parameters to be
found, then Theorem 2 reduces to the next corollary. As a short
hand, denote for and for .
Corollary 2: Let be quadratic Lyapunov functions as in

(7) and define

where . The impact map from to
is quadratically stable if and only if there exist

and such that on for all
switching times .
Condition (6) is not yet an LMI, which can be efficiently

solved using available software. There are several ways to relax
(6) to an semidefinite program. A more conservative condition
than (6) results when the set of initial conditions is relaxed to

If this condition is satisfied then (6) follows since .
A trivial way to obtain a set of LMIs is to further relax the set
of initial conditions. Although it results in a more conservative
condition, this is also computationally more efficient.
Corollary 3: The impact map from to

is a contraction if

(8)

for all switching times .
We have then relaxed the problem of contraction of impact

maps to the solution of an infinite dimensional set of LMIs.
As shown in several examples in Sections VI and VII, and also
in [3], although condition (8) is more conservative than (6), in
many situations it is enough to efficiently and successfully glob-
ally analyze PLS. Section VIII explains how to relax condition
(6) to less conservative sets of LMIs.
For all , condition (8) is an infinite set of LMIs. Com-

putationally, this set is gridded to obtain a finite subset of LMIs,
consisting of (8) on the switching times . For some
large enough set , it can be shown that (8) is also satisfied
for all . The idea is to find bounds on the derivative of the
minimum eigenvalue of over , and then use these
bounds to show nothing can go wrong in the intervals ,
i.e., that (8) is also satisfied on each interval (see [3]
for more details).
Note that, for a given , condition (8) reduces to an
-dimensional LMI. Thus, an increase in the dimension of the
system only results in proportionally larger LMIs. Hence, the
stability condition (8) scales with the dimension of the system.
Next is the proof of corollary 2 (quadratic SuLF). The proof

of Theorem 2 (polynomial SuLF) follows similarly using the
results from [14] to efficiently express positivity of polynomials
as sum of squares.
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Proof of Corollary 2: From (5) and (7), and using The-
orem 1

Finally, using (4), we have

Condition (6) follows from corollary 1.

V. GLOBAL ANALYSIS OF PLS

In the previous section, we showed how a single impact map
can be efficiently globally analyzed using SuLF. This section
briefly explains how impact maps associated with PLS are com-
bined to globally analyze the system (details are left to Sec-
tions VI andVII). There are basically threemain steps to achieve
this goal: characterization of impact maps, definition of SuLF,
and solution of stability conditions.
Step 1) Impact Maps

a) Identification of all impact maps associated
with the PLS. If the system has switching
surfaces then there are at most impact
maps. The actual number of impact maps
required to analyze the system is typically
smaller due to certain properties of a system
like symmetries or just the fact that not all
switches are possible.

b) In order to reduce conservatism, it is important
to characterize the domain of each impact
map, as explained in Section VIII.A. Impact
maps that have an empty domain do not need
to be further considered, neither those points
in switching surfaces that converge asymp-
totically to an equilibrium point without
switching (see the middle of Fig. 3). Also,
certain necessary conditions must be checked
to guarantee that a trajectory, starting in a
switching surface, does not grow unbounded
without switching (as in the left of Fig. 3).

c) For each impact map find the set of switching
times .

d) For each impact map, find an belonging to
the hyperplane where the domain of an im-
pact is defined, such that the assumption of
Theorem 1 is satisfied. If this is not possible,
characterize the switching times where the as-
sumption is not satisfied and then proceed as
explained in Section III.

Step 2) SuLF
a) Define all SuLF on the respective domains of

impact maps.
b) Characterize constraints on SuLF related with

continuity across boundaries, and with equi-
librium points or limit cycles that belong to or
intersect the domain of impact maps.

Step 3) Stability Conditions
a) For each impact map, Theorem 2 provides sta-

bility conditions (6) that can be relaxed to
LMIs like (8). The stability conditions must
then be solved simultaneously to find the pa-
rameters of the SuLF.

b) Bounds on switching times. For many impact
maps, it is sufficient to check the associated
stability condition (6) on a bounded subset of
switching times , instead of all .

c) Improvement of stability conditions. If the
LMIs provided by Corollary 3 fail to find
a feasible solution then less conservative
conditions can be used, as explained in Sec-
tion VIII.

d) An alternative to solve the above set of LMIs is
to consecutively add new LMI’s until the sta-
bility conditions are satisfied, since checking
an LMI is much easier than solving it. The fol-
lowing algorithm can be used instead.

i) Initialize the SuLF with some parame-
ters. The set of LMIs is an empty set at
this time.

ii) Check if the stability conditions are
satisfied for all switching times (or
switching times bounds).

iii) If not, take a switching time where it
was not satisfied and add a new LMI
to the set of LMIs. Solve this new set
of LMIs, get new parameters for the
SuLF, and go back to ii). If yes, the
algorithm ends.

To better understand each of the above steps in analyzing PLS
with SuLF, several classes of PLS are considered. Each of these
classes was carefully chosen to separately deal with different
issues in each step of the algorithm, and to illustrate with exam-
ples the efficiency of this newmethodology. By increasing com-
plexity, we first analyzed limit cycles of relay feedback systems
(RFS) [3]. For symmetric unimodal limit cycles there is only
a single impact map that needs to be studied. This means that
global analysis of symmetric unimodal limit cycles of RFS fol-
lows directly from Theorem 2.
Then, Section VI analyzes on/off systems to explain how

this new methodology is used to globally analyze equilibrium
points, and how more than one impact map is simultaneously
analyzed. Finally, Section VII considers saturation systems to
show how to deal with multiple switching surfaces. The suc-
cess in globally analyzing a large number of examples of these
classes of PLS demonstrated the potential of these new results
in globally analyzing other, more complex classes of PLS using
a combination of the ideas discussed above.

VI. ON–OFF SYSTEMS (OFS)

This section addresses the problem of global stability anal-
ysis of OFS. An OFS can be thought of as an LTI system that
switches between closed (on) and open (off) loop, or as a lower
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bound saturation. OFS can be found in many biological and en-
gineering applications. In biology, concentrations of substrates
have a lower bound saturation since they must always be posi-
tive. In electronic circuits, diodes can be approximated by on/off
nonlinearities. Also, transient behavior of logical circuits that
involve latches/flip-flops performing on/off switching can be
modeled with on/off circuits and saturations. In aircraft control
[1], a max controller was designed to achieve good tracking of
the pilot’s input without violating safety margins.
As in RFS, a large number of examples is successfully

proven globally stable, including systems with unstable sub-
systems, systems of relative degree larger than one and of high
dimension, and systems with unstable nonlinearity sectors,
for which classical methods like small gain theorem, Popov
criterion, Zames–Falb criterion [4], and integral quadratic
constraints [5]–[8], fail to analyze. In fact, it is still an open
problem whether there exists an example with a globally stable
equilibrium point that could not be successfully analyzed with
this new methodology.

A. Problem Formulation
This section starts by defining OFS and giving some neces-

sary conditions for the global stability of a unique locally stable
equilibrium point. Consider a SISO LTI system

(9)

where , in feedback with an on/off controller (see Fig. 7)
given by

(10)

where . By a solution of (9) and (10), we mean func-
tions satisfying (9) and (10). Since is continuous and
globally Lipschitz, is also globally Lipschitz. Thus,
the OFS has a unique solution for any initial state.
In the state–space, the on/off controller introduces a

switching surface composed of an hyperplane of dimension
given by

On one side of the switching surface , the system is
given by . On the other side , the system is
given by , where

and . The vector field is continuous along
the switching surface since for any .
OFS have either zero, one, two, or a continuum of nonisolated

equilibrium points. To be globally stable, an OFS needs to have
a unique locally stable equilibrium point. Next are necessary
conditions for the existence of a single locally stable equilibrium
point for different values of .
If there is at least one equilibrium point at the origin. In

this case, it is necessary that is Hurwitz to guarantee the origin
is locally stable. If is invertible, the subsystem
has an equilibrium point at . To guarantee the OFS
has only one equilibrium point at the origin, it is necessary that

. It is also necessary that has no real unstable

Fig. 7. OFS.

eigenvalues or, otherwise, the system will have trajectories that
grow unbounded (with possible exceptions occurring when an
eigenvector associated with an unstable real eigenvalue is per-
pendicular to ).
When , the origin is the only equilibrium point. For the

same reasons as before, it is necessary that both and do not
have real unstable eigenvalues. In this case, there is no “easy”
way to check if the origin is locally stable.
When , it must be true that is Hurwitz and has no

real unstable poles. It is also necessary that or
otherwise the system will have no equilibrium points.
Assume, without loss of generality, that . If and

all necessary conditions are met, with an appropriate change of
variables the problem can be trans-
formed to one of analyzing the origin with . In this
case, , and

.
Define , the set of points in

that can be reached by trajectories starting at any such that
(see the left of Fig. 8). Similarly, define

. Note that .
From here on, assume . In terms of stability analysis,

is a special case of when , and will be considered
separately in Section VI.E.
Since is Hurwitz, there exists an such that any

trajectory starting in that set does not switch again and converges
asymptotically to the origin. In other words, if and only
if does not have a solution for all . Note that
is not empty. To see this, let satisfy .

Then, an obvious point in is the point obtained from the
intersection of with the level set , where is
chosen such that the ellipse is tangent to (see the
right-hand side of Fig. 8).

B. Impact Maps for OFS
Consider a trajectory starting at some point

(see Fig. 9). If all necessary conditions are met, eventually
switches at . If , the trajectory converges
asymptotically to the origin without switching. If ,
the trajectory switches again at , and then at , and
so on. The idea is to check if the sequence is getting
closer and eventually enter . If so, then for some
large enough , and prove the origin is globally asymptotically
stable.
Let , and ,

where , and . Define as the
trajectory of , starting at , for
all . Since can be any points in , choose them such that

for all . As explained in Appendix I.A, this is
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Fig. 8. Both sets and in (left). How to obtain (right).

Fig. 9. Possible trajectories for an OFS.

always possible, even when is unstable (as long as it has at
least one stable eigenvalue with an associated eigenvector that
is not perpendicular to ). The reason for this particular choice
of and is so that for all . This will
be necessary in proposition 1.
There are two impact maps of interest associated with an

OFS. Impact map 1 takes points from (the departure set of
impact map 1) and maps them into (the associated arrival
set). Impact map 2 takes points from (the departure set
of impact map 2) and maps them back to (the associated ar-
rival set). Note that does not belong to the domain of either
impact map since every trajectory starting in does not switch
again.
As in definition 1, define the sets of switching times and
associated with the respective impact maps. For each

and define also and similarly
as was defined in Section III. For instance, for impact map 1,

is the set of points in that have an associated switching
time , i.e., is the set of all initial conditions such
that on , and . Note that both
and are subsets of linear manifolds of dimension .

C. Global Asymptotic Stability of OFS

Before presenting themain result of this section, Theorem 1 is
used to show that each impact map associated with OFS can be
represented as a linear transformation analytically parametrized
by the correspondent switching time.
Proposition 1: Define

and

Let and
. Then, for any there exists

a such that . Such is the switching
time associated with . Similarly, for any
there exists a such that . Such is the
switching time associated with .

Next, define two SuLF and on and , respec-
tively. Global asymptotically stability of the origin follows if
both impact maps are simultaneously contracting

(11)
(12)

If are chosen quadratic as in (7), the next theorem extends
Corollary 2 for the case where we simultaneously prove con-
traction of two impact maps. As a short hand, let
and .
Theorem 3: Let . Define

The origin of the OFS is globally asymptotically stable if there
exist , and such that

(13)

for all switching times and .
As in Corollary 3, a relaxation on and results in com-

putationally efficient conditions.
Corollary 4: The origin of the OFS is globally asymptoti-

cally stable if there exist and such that

(14)

for all switching times and .
For each these conditions are LMIs which can be solved

for and using efficient available software.
As shown next, although conditions (14) are more conservative
than (13), they are enough to prove global asymptotic stability
of many important OFS. Section VIII, and, in particular, Sec-
tion VIII-C, explains how to approximate conditions (13) with
less conservative sets of LMIs than (14).
Each condition in (14) depends only on a single scalar pa-

rameter, i.e., depends only on and depends only on
. Thus, each condition is an infinite dimensional LMI that can

be gridded independently to obtain two finite sets of LMIs. A
less conservative condition, of the form , could be
obtained (representing the contraction of the map from to
in Fig. 9). Obtaining a finite set of LMIs from ,
however, involves griding the two-dimensional set , re-
sulting in a much larger number of LMIs. The problem would
easily become computationally intractable, especially when an-
alyzing other, more complex PLS that may require the analysis
of a large number of impact maps.

D. Examples
Software code has been written in MATLAB to analyze OFS,

where the latest version is available at [15]. The user supplies a
transfer function of an LTI system and the displacement of the
nonlinearity switch . If the OFS is proven globally stable, the
software returns the parameters of the SuLF and in (11),
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(12). TheMATLAB function also plots the minimum eigenvalues
of each in (14) on a finite subset of . Bounds on max-
imum switching times are considered in Appendix I.C. Also,
certain necessary conditions imposed at are discussed in
Appendix I-B.
Example 6.1: Consider the OFS on the left-hand side of

Fig. 10 with . The origin of this system is locally stable.
Using conditions (14), the origin is also proven globally

asymptotically stable. The right side of Fig. 10 shows the
minimum eigenvalue of each condition (14), which are positive
on their respective sets of switching times and

.
An interesting fact about this system is that it has an unstable

nonlinearity sector. If the on/off nonlinearity is replaced by
a linear constant gain of , the system becomes unstable
(Fig. 11). Thus, classical analysis tools like small gain the-
orem, Popov or Zames–Falb criterion, and integral quadratic
constraints, would all fail to analyze OFS of this nature.
Example 6.2: Consider the OFS in Fig. 12 with and

. The origin is locally stable for any .
Since , the small gain theorem can be ap-

plied whenever . When , however, the small gain
theorem fails to analyze the system. Let . Using condi-
tions (14), the origin is proven globally asymptotically stable.
The right side of Fig. 12 confirms that conditions (14) are satis-
fied in some intervals , which are bounds on
the sets of switching times (see Appendix I-C).
Example 6.3: Consider the OFS in Fig. 13 with . The

origin is locally stable. , however, is unstable.
Even if is unstable, for third-order systems it is easy to

find the sets of switching times since the switching surface has
dimension 2. In this case, and . Al-
though is unstable, using conditions (14) the origin is proven
globally asymptotically stable. The right-hand side of Fig. 13
shows how conditions (14) are satisfied on the respective sets of
switching times.

E. Special Case:
When , the stability conditions can be relaxed to a

set of LMIs that are, in general, much less conservative than
conditions (14) and even conditions (27). First, since the origin
belongs to both subsystems and , it is
only required that both systems do not have real unstable poles.
Also, means and .
The impact maps reduce to and

. Thus, the stability conditions are simply

for some , all , and all switching
times . Since

. That is, for fixed values of
and and are restricted to a subspace of dimension

. Let , where are the orthogonal comple-
ments to , i.e., matrices with a maximal number of column
vectors forming an orthonormal set such that . Define

and .

Fig. 10. 3rd-order system with unstable nonlinearity sector.

Fig. 11. Sector (shaded) of on/off controller and constant gain of
(dashed).

Fig. 12. System with relative degree 7 (left). Global stability analysis for
(right).

Fig. 13. System with unstable .

Theorem 4: The origin of the OFS with is globally
asymptotically stable if there exist such that

(15)

for all switching times and .

VII. SATURATION SYSTEMS

In the state–space, OFS are divided in two partitions by a
single switching surface. This section shows how impact maps
and SuLF are used to globally analyze PLS with more than two
state-space partitions and more than one switching surface. To
demonstrate these ideas, a class of PLS known as saturation sys-
tems (SAT) is analyzed. Saturations are present in most biolog-
ical and engineering systems, like in bounds of concentrations
or in available power supply of actuators.
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It is well known that linear feedback laws when saturated
can lead to instability. The problem of stabilizing linear systems
with bounded controls has been extensively studied. See, for
example, [16]–[18] and the references therein.
For analysis of SAT, the Popov criterion is simple but con-

servative. The Zames–Falb criterion [4] can be used when the
nonlinearity’s slope is restricted, but the method is difficult to
implement. IQC-based analysis [5]–[8] gives conditions in the
form of LMIs that, when satisfied, guarantee stability of SAT.
However, none of these analysis tools can be used when a SAT
has an unstable nonlinearity sector.
As in OFS, a large number of examples was successfully

proven globally stable, including high-order systems, systems
of relative degree larger than one, and systems with unstable
nonlinearity sectors for which all classical methods fail to an-
alyze. In fact, existence of an example with a globally stable
equilibrium point that could not be successfully analyzed with
this new methodology is still an open problem.

A. Problem Formulation
This section starts by defining SAT followed by some nec-

essary conditions for global stability of a unique locally stable
equilibrium point. Consider a SISO LTI system (9) in feedback
with a saturation controller (see Fig. 14) given by

(16)

where (if the system is simply linear). By a solution
of (9) and (16) we mean functions satisfying (9) and
(16). The SAT has a unique solution for any initial state since

is globally Lipschitz.
In the state–space, the saturation controller introduces two

switching surfaces composed of hyperplanes of dimension
given by

On one side of the switching surface , the system
is governed by . In between the two switching
surfaces , where

. Finally, on the other side of
. The vector field (9), (16) is continuous along the

switching surfaces since for any , and
for any .

SAT can exhibit extremely complex behaviors. Some may be
chaotic, others have one, three, or a continuum of equilibrium
points, limit cycles, or even some combination of all these be-
haviors. We are interested in those SAT with a unique locally
stable equilibrium point. For that, it is necessary that is Hur-
witz and, if is invertible, that , so the origin
is the only equilibrium point. It is also necessary that has no
eigenvalues with positive real part, or otherwise there are initial
conditions for which the system will grow unbounded (see, for
example, [19]).

Fig. 14. Saturation system.

As in OFS, define
, and also and . Since

must be Hurwitz, there is a nonempty subset of such
that any trajectory starting in that set will not switch again and
will converge asymptotically to the origin. In other words, let

be the set of points such that do
not have a solution for any .

B. Impact Maps for Saturation Systems
The strategy of the proof is similar to OFS. The main differ-

ence is that a trajectory starting in can also switch at
(see Fig. 15). Let be the set of points in

that will switch in . If the tra-
jectory switches at , and then again
at , and so on. The idea is to check if the sequence

is getting closer and eventually enter . If
so, then for some large enough , and prove
the origin is globally asymptotically stable.
Let , , and

, where and . Define
as the trajectory of ,

starting at , for all . Since are any points in
, they are chosen such that for all . This
choice of and is always possible. is found as explained
in OFS. In this case, is given by

where satisfies . Similarly, when
is a stable matrix is given by

where satisfies . If is not stable,
is found as in Appendix I-A.
Just like RFS, SAT are symmetric around the origin. Thus,

for analysis purposes, it is equivalent to consider the trajectory
starting at or (see Fig. 15). This means there are only
three impact maps that need to be analyzed. Impact map 1 takes
points from and maps them into . Impact map takes
points from and maps them back to . Finally, impact map
takes points from from and maps them into . As be-

fore, define the sets of switching times , and . Ap-
pendix II shows how to obtain bounds on these sets. Define also

, and as in Sections III and VI-B.

C. Global Asymptotic Stability of Saturation Systems
The linear representation of impactmaps associatedwith SAT

follows as in Theorem 1 and OFS.
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Fig. 15. Possible trajectories for a SAT.

Proposition 2: Define

Let
, and . Then, for any

, , and , there exist
, such that

respectively. Such are the switching times associated with
.

Next, define two SuLF and on and , respec-
tively. Global asymptotically stability of the origin follows if all
impact maps are simultaneously contracting

(17)

In the last inequality, was mapped into
, taking advantage of the symmetry of the system. If

are quadratic as in (7), we have the following result.
Theorem 5: Let and define

where . The origin of the SAT is globally asymp-
totically stable if there exist and such that

(18)

for all switching times , and .
As in Corollaries 3 and 4, a relaxation on

results in computationally efficient conditions.

Corollary 5: The origin of the SAT is globally asymptoti-
cally stable if there exist and such that

(19)

for all switching times , and .
In many cases, conditions (18) and (19) do not need to be sat-

isfied for all switching times. Appendix II shows how bounds
on switching times can be obtained when is Hurwitz. Basi-
cally, since is a bounded input, there exists a bounded
set such that any trajectory will eventually enter and stay there.
This leads to bounds on the difference between any two con-
secutive switching times. Conditions (18) and (19) can then be
relaxed to be satisfied only on some intervals instead
of all . See Appendix II for details.

D. Examples
Software code has been written in MATLAB to analyze SAT,

where the latest version is available at [15]. The user supplies
a transfer function of an LTI system and the amplitude of the
saturation . If the SAT is proven globally stable, the software
returns the parameters of the SuLF and in (17). The
matlab function also plots the minimum eigenvalues of each

in (19) on bounds of .
Example 7.1: Consider the SAT on the left of Fig. 16 with
. The origin of this system is locally stable.

Using conditions (19), the origin is also proven glob-
ally asymptotically stable. The right side of Fig. 16 shows
the minimum eigenvalue of each condition (19), which
are positive on their respective sets of switching times

, and .
As in Example 6.1, this system also has an unstable nonlin-

earity sector. If the saturation is replaced by a linear constant
gain of , the system becomes unstable (see Fig. 17). Thus,
classical analysis tools would again fail to analyze SAT of this
nature.
Example 7.2: Consider the SAT in Fig. 18 with and

. The origin is locally stable for any .
As seen in example 6.2, and the small gain

theorem can only be applied when . Let . Using con-
ditions (19), the origin is proven globally asymptotically stable.
The right-hand side of Fig. 18 shows how conditions (19) are
satisfied on some bounded sets of switching times. For details
on how to find these bounds see Appendix II.
Example 7.3: Consider the SAT in Fig. 19 with . Popov

criterion (see, for example, [13, pp. 419–420]) can easily show
that this system is globally asymptotically stable. What is in-
teresting about this system is that it is not exponentially stable.
Thus, piecewise quadratic Lyapunov functions [2] fails to ana-
lyze the system.
SuLF, however, can analyze and prove global asymptotic sta-

bility. The right-hand side of Fig. 19 shows how conditions (19)
are satisfied in some intervals . These
intervals cannot be found as before since is not Hurwitz. Al-
ternatively, the analysis must be done for all . The idea of
proof is as follows. Analysis near the origin is done as in Ap-
pendix I-B. For large values of , analysis of impact maps
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Fig. 16. Third-order system with unstable nonlinearity sector.

Fig. 17. Sector (shaded) of a saturation and constant gain of (dashed).

Fig. 18. System with relative degree 7 (left). Global stability analysis when
(right).

Fig. 19. Second-order system not exponentially stable.

and can be done as in Appendix I-C since the matrix is
stable. For impact map 1, the constraint implies that

, which is a requirement since the system is not
exponentially stable. For a large enough , it can be shown
that for all by proving that for all

.

VIII. IMPROVEMENT OF STABILITY CONDITIONS

It is possible to improve condition (8) and, consequently, con-
ditions (14) and (19), at a cost of increased computations. This
section explains how to approximate condition (6) with a less
conservative set of LMIs than (8).

A. Meaning of Condition (6)
As seen in several examples in Sections VI and VII, although

condition (8) is more conservative than (6), this is enough to
prove global asymptotic stability of many important systems.
There are, however, examples where (8) fails to prove stability
[3]. Condition (8) only takes into account that

Fig. 20. Trajectories starting at must remain in .

(or, equivalently, that ), independently of the value
of . Condition (6), however, uses the information that,
for a given . Note that has one
dimension less than .
The main difficulty with condition (6) is that the set is not,

in general, easily characterized. Remember that is the set of
points in that has the same switching time . In other words,
a trajectory starting at satisfies both

(20)

The equality arises from the fact that , or
, and is the same as (3). It automatically excludes points in
that do not intersect , since such points do not have a finite
solution satisfying (3). Note that (3) depends on ,
contrasting with , which is independent of .
The inclusion in (20) ensures that a trajectory , starting at

some point in , stays in the closure of , i.e., in
. Thus, the first switch must occur at (see Fig. 20).

The inclusion consists of several infinite dimensional sets of
linear inequalities, one for each boundary of . For instance,
in Fig. 20, it must be true that , for all

, assuming orientations point toward , as in the
figure.
In addition, to reduce conservatism the set can exclude

those points in that cannot be reached by a trajectory of the
PLS starting somewhere in , since such points play
no role in the stability analysis of the system. Note that the
switching surfaces and , together with (1), are part of some
larger PLS.
Example 8.1: Fig. 21 shows PLS with both switching

surfaces and , and defined between them. Above the
switching surface , the system is given by .
The figure shows the vector fields of systems
and (1) along the switching surface (above and below,
respectively), and the vector field of (1) along the switching
surface . The points , and are the points where

, and ,
respectively. Note that must be to the left of in order to
guarantee existence of solutions.
As seen in Fig. 21, points to the left of do not belong

to the domain of the impact map from to . Also, points
in between and cannot be reached by any trajectory
starting somewhere in . Thus, only points to the right of
need to be considered for stability analysis purposes. Note

that those are exactly the points that can be reached by system
. Similarly, only some points to the right of
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Fig. 21. and are some sets defined to the right of and
, respectively.

can be reached by (1). Hence, is some set defined to
the right of .
To exclude points in that cannot be reached by a trajectory

of the PLS we need a linear equality together with a set of linear
inequalities. The equality comes from the fact that

. The inequalities are necessary to ensure that
every point in can be reached by some trajectory of the PLS,
starting in . Such points in are those where the vector
field along points inward, for each system that shares a
boundary with through (thicker segments of line in
in Fig. 22). As in the left of Fig. 22, assume orientation
points toward (if this is not the case, just consider and

). The set of points in where the vector field of system
is parallel to are those where , i.e.,

. Thus, the set of points in that can be
reached by system is some subset of the set of points such that

.

B. Less Conservative Conditions
The aforementioned characterization of shows why con-

dition (6) cannot, in general, be written as an equivalent set of
LMIs. A straightforward transformation of (6) into a set of LMIs
was to use only equality . This resulted in a more
conservative condition (8). To reduce the conservatism, other
inequalities can be incorporate using the S-procedure [20]. The
problem is that the S-procedure only results in equivalent, and
therefore nonconservative conditions when a quadratic function
is subject to a single quadratic constraint. Next, the S-procedure
is used to relax (6) to a set of LMIs using equality (3) and other
inequalities. We start by incorporating a single inequality.
First, we approximate with a larger set. For a given ,

let be the set of points in where . This
can be obtained from (3) yielding

(21)

To see the differences between and , consider again ex-
ample 3.1. Fig. 23 shows the solution for two different
initial conditions in .
On the left-hand side of Fig. 23, . This means

belongs to both , and . On the right-hand side
of Fig. 23, . This figure also shows (dashed) what
would have happened to if there was no switch at .

would have intersect again at . Although is a
solution of (3), it is not a valid switching time since
for . Thus, belongs to , and ,
but not to .

Fig. 22. Points in that can be reached by trajectories of the system.

Fig. 23. (Left) for . (Right) for
.

Since , condition (6) holds if

(22)

for all switching times . To obtain a set of LMIs less con-
servative than (8), consider equality (3) from (20) and any one
of the inequalities discussed before, represented here by some
and such that . Section VIII-C gives a concrete

example with one of these inequalities. A less conservative con-
dition than (22) is then

(23)

for all switching times (see Fig. 24).
satisfies a conic re-

lation (Fig. 24), for some matrix (the construc-
tion of this matrix will be addressed in Appendix III). Using the
S-procedure, condition (23) is equivalent to

(24)

for some scalar function , and for all switching times
. For each , (24) is now an LMI.

By repeatedly using the S-procedure, it is possible to continue
to improve conditions (24). From the last inclusion in (20), for
example, it is necessary that the trajectory stays to the cor-
rect side of all switching surfaces that compose the boundary .
In particular, it must be true that for all ,
i.e.,

for all , which is an infinite-dimensional set of linear
inequalities. For example, at

As before, this inequality together with satisfies a conic re-
lation and (24) is improved to

(25)

for some scalar functions , and for all .
There is an infinite number of constraints that can be added

to condition (25) in order to further reduce the level of conser-
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Fig. 24. Region in , defined by equality (3) and inequality ,
satisfies a conic relation.

vatism. On one hand, the more constraints, the less conserva-
tive the conditions are and, in turn, better chances of finding
SuLF. On the other hand, increasing the number of constraints
will eventually make the problem computationally intractable.
It is interesting to notice, however, that many important PLS are
globally analyzed with just conditions of the form of (8), as seen
in [3] and Sections VI and VII.

C. Application to On–Off
Next, we explain how the ideas discussed in the previous sec-

tion can be used to derive less conservative conditions than (14)
for on/off systems, similar to those obtained in (21) and (25).
Note that all the ideas discussed in this subsection apply analo-
gously to saturation systems.
Define the sets , as in (24). In the case

of OFS these are and
.

The domain of impact map 1 is , which is characterized by
all points in such that . Similarly, the domain of
impact map 2 is a subset of . The set is characterized by
all points in such that . Therefore, conditions
(13) hold if

(26)

for all switching times , which are less conservative condi-
tions than (14).
As explained in the previous sections, satisfies a conic re-

lation , for somematrices (see Appendix III for
details on the construction of such matrices). Using the S-pro-
cedure, we obtain equivalent conditions to (26)

(27)

for some scalar functions , and for all switching times
. For each , these conditions are LMIs.

IX. CONCLUSION

Motivated by the need of new and alternative global analysis
tools for certain classes of hybrid systems, this paper develops
an entirely new constructive analysis methodology for PLS
using impact maps and SuLF. This methodology consists of
inferring global properties of PLS solely by studying their
behavior at switching surfaces. The main idea is to efficiently
construct SuLF to show that impact maps associated with
PLS are contracting. The success and power of this new
methodology has been demonstrated in globally analyzing

equilibrium points and limit cycles of several classes of PLS:
relay feedback systems, on/off systems, and saturation systems.
A large number of examples of these classes of PLS with a
locally stable limit cycle or equilibrium point were successfully
globally analyzed. In fact, it is still an open problem whether
there exists an example with a globally stable limit cycle or
equilibrium point that could not be successfully analyzed with
this new methodology.
For the classes of systems considered so far, there were only

advantages using SuLF comparedwith piecewise quadratic Lya-
punov functions [2]. SuLF analyzed limit cycles for relay feed-
back systems, no extra complexity was added (i.e., no need for
extra partitions), scaled with the dimension of the system, and
could prove global asymptotic stability of PLS that were not ex-
ponentially stable. There are, however, limitations to SuLF. It is
under investigation how to systematically analyze general PLS,
which, at this time, is much simpler in [2]. Also, for equilib-
rium points, if PLS has a large number of partitions such that
the method with [2] does not require extra partitions, then SuLF
may be harder to apply due to the large number of impact maps
associated with the system.

APPENDIX I
TECHNICAL DETAILS FOR ON/OFF SYSTEMS

A. Choice of and
Next, we explain how to choose and such that both

and for all . We start with .
is found as explained in Section VI.A (see the right-hand

side of Fig. 8). In this case, is given by

where satisfies .
The choice of is more tricky since may be unstable. If
is stable then can be found similarly to . Let

satisfy . Then

Assume now that is not stable, but has at least one stable
eigenvalue. The idea is to find an that belongs to a stable
mode of , so that the trajectory starting at converges
to and satisfies for all . If has real
eigenvalues then these must be stable. Let be a real eigenvalue
of with associated eigenvector . Then,
there exists an that only excites this mode

If only has complex poles, pick a stable complex conjugate
pair of eigenvalues with associated eigenvectors , where
stands for the complex conjugate of . Let, and

. Then, any initial condition starting in the hy-
perplane defined by
converges to since it only excites this stable complex
conjugate mode. Let be an orthogonal
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basis in this plane, where . A trajectory
in this basis satisfies , where . We
need to find an such that and

for all . This is a similar
problem to the one we dealt above when finding . In this case,
is given by

where satisfies . Finally,
.

If only has complex unstable eigenvalues, then for any
choice of will have an infinity number of solu-
tions for . In this case, must be chosen such that the
smallest solution of is higher than the max-
imum possible switching time. Note that such may not exist.
If that is the case, the linearization of the impact map must be
parametrized by another variable at those values of where

, as explained in Section III.

B. Constraints Imposed When
Zero switching time corresponds to points in such that

. At those points, the SuLF must be continuous since
this is the only way both and

can be simultaneously satisfied, for all
such that and .

Thus, at those points, , which is equivalent
to . This imposes certain restrictions
on , and . From Section VI-C,
is given by

where , and

Let , and . Since ,
then . This means that in the basis , the
matrix must have the following structure:

for some and , where , with
. Thus, once is fixed, must satisfy

. The same way , or
. Hence, for some

. For a given is then given by

Finally, it must be true that leading to

In conclusion, the constraints imposed when reduce
the free variable in conditions (13) and (14) to ,
and .

C. Checking Stability Conditions for
Just like in RFS [3] and SAT, we would like to obtain bounds

on the set of switching times. With the exception of third-order
systems, however, finding upper bounds on switching
times is, in general, not an easy task. The idea is to first guar-
antee conditions (14) are satisfied in some intervals
and then check if they are also valid for all . Note
that and as . Thus, it is
guaranteed that (13) and (14) are satisfied at since both

and .
For simplicity, we present the case when . The other

cases follow analogously. Assume conditions (15) are satisfied
for all . We would like to easily check if they will
also be satisfied for all . Consider first the second
condition in (15). It is sufficient to show that

for all , and where . Next, we find
an upper bound on the left-hand side of the last inequality. Let

. Since is a stable matrix, it is possible to find
a and a such that . This in
turn implies that , where is the
solution of with initial condition . Using the fact
that

or, simply

Hence, for some

Therefore, we need to guarantee , with the
largest and smallest .
If is stable, a similar condition can be found analogously

for the first condition in (15). However, if (or if ) has
unstable complex poles, this approach will not work since
is unbounded when . How to find bounds on switching
times for such systems of order higher than 3 is currently under
investigation.

APPENDIX II
TECHNICAL DETAILS FOR SATURATION SYSTEMS: BOUNDS ON

SWITCHING TIMES

This section reduces checking (18) or (19) on some bounded
set of switching times , instead of checking them for
all possible switching times. In RFS [3], a bounded invariant set
where all trajectories eventually enter and stay there was charac-
terized. Bounds on the switching times of trajectories inside that
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bounded invariant set were found. The same ideas can be used
for SAT whenever is Hurwitz since is a bounded
input.
First, notice that since the associated impact

maps are defined on the same switching surface and are allowed
to have zero switching time. Analysis of impact maps 1 and
at imposes the same constraints on the parameters of the
Lyapunov functions as in OFS. See Appendix I.B for details.
As for impact map , zero switching never occurs

since there is a “gap” between and , resulting in a nonzero
switching time for every trajectory starting in . For certain
large values of , the switching times can bemade arbitrarily
small. In the invariant bounded set described above, however,
switching times for impact map cannot be made arbitrarily
small, and a lower bound can be found. Using the same
ideas, upper bounds on switching times for all impact maps
can be found. Bounds on switching times for the case where
has unstable imaginary eigenvalues can be found as explained
in Example 7.3.
Before finding bounds on switching times, we need to char-

acterize a bounded set such that any trajectory will eventually
enter and stay there. The following proposition is similar to [3,
Prop. 7.1]. Thus, the proof is omitted here.
Proposition 3: Consider the system ,

where is Hurwitz, , and is a row vector. Then

Remember that, by definition, is given by

As a remark, if and , it fol-
lows the origin is globally asymptotically stable. When

, eventually all trajectories enter and
remain in the set , where the system is linear and
stable. Note that this remark also follows from the well known
small-gain theorem.
We first focus our attention on upper bounds of the switching

times , starting with . A trajectory starting at
is given by . Thus, the

output is given by

Since and Hurwitz, cannot remain
larger than for all . For any initial condition

as , whichmeans
for some . Thus, a switch must occur in finite time. Since for
a sufficiently large enough time enters a bounded in-
variant set (from the above proposition), an upper bound on this
switching time can be obtained. The following proposition
is similar to [3, Prop. 7.2].
Proposition 4: Let be the smallest solution of

If and are sufficiently large consecutive switching times of
the first impact map then .
Next, we find upper bounds on the switching times of impact

maps and . The idea here is to find the minimum
such that , for all and all in
the bounded invariant set. In this derivation, .
Proposition 5: Let be the smallest solution of

(28)

If and are sufficiently large consecutive switching times of
impact maps or , then , and .
We now focus on the lower bound on the switching times

of impact map , i.e, . Remember that if , then
. Since , it must be true that at least

in some interval . Basically, the time it takes to go from
to must always be nonzero. The next result shows that when a
trajectory enters the bounded invariant set characterized before,
cannot be made arbitrarily small. Thus, a lower bound on the
time it takes between two consecutive switches from to can
be obtained.
Proposition 6: Let , and

and define .
Let . If and are sufficiently
large consecutive switching times of impact map , then

.
The proof is similar to the proof of [3, Prop. 7.3].

APPENDIX III
CONSTRUCTION OF CONIC RELATIONS

We now describe how to construct the cones introduced in
Section VIII-B. For each , the cone is defined by two hy-
perplanes in : one is the hyperplane parallel to containing
and the other is the hyperplane defined by the intersection

of and , and con-
taining the point (see Fig. 24). Let and , respec-
tively, be vectors in perpendicular to each hyperplane. Once
these vectors are known, the cone can easily be characterized.
This is composed of all the vectors such that

. The symmetric matrix intro-
duced in (24) is just where .
Remember that the cone is centered at and note that after
is chosen, must have the right direction in order to guarantee

.
We first find , the vector perpendicular to . Looking

back at the definition of is given by

The derivation of is not as trivial as . We actually need to
introduce a few extra variables. The first one is , the vector
perpendicular to the set , given by .
Proposition 7: The hyperplane defined by the intersection of
and , and containing the point is perpendicular to the

vector
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Proof: can be parameterize the following way:

and

The intersection of and occurs at points in such that
. Multiplying on the left by we have

or

(29)

We want to show that

Using (29), we have

The characterization of is not complete yet. The orientation
of must be carefully chosen to guarantee that the cone
contains .
Proposition 8: If

then the cone contains
.

The proof, omitted here, is based on taking a point
and showing that .
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