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Abstract: In this paper we consider the classical binary hypothesis testing problem where the
iid samples are obtained through a channel. Our goal is to study the relationship between the
channel capacity and the goodness of the estimation measured by the Chernoff information in
order to get an upper bound on the estimation performances as well as some insight on the
structure of the optimal channel.
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1. INTRODUCTION

The binary hypothesis testing problem is probably the
simplest estimation problem one can consider. In the
classical setup a sequence of samples xi is drawn from
an unknown n–dimensional probability distribution which
can be either p1 (Hypothesis H1) with prior probability
π1 or p2 (Hypothesis H2) with prior probability π2. The
problem is to infer from the samples which of the two
hypothesis is correct or, to be precise, the most likely.

This problem is very well known and is optimally solved us-
ing the likelihood ratio test (LRT) as shown, for example,
in [1]. Furthermore, applying a large deviation principle,
an asymptotic analysis can be performed to show that the
probability of error in the estimation decays exponentially
in the number of samples with a rate given by the so called
Chernoff Information.

In this paper, we will consider an extension to this problem
motivated by the fact that each collected sample is always
obtained through a measuring system that can affect the
estimation process. To model the effects due to the mea-
suring system we will consider that the observations at the
source are available only through a finite capacity, discrete,
memoryless stochastic channel. Our goal is to address the
question of designing such a channel to maximize goodness
of the estimation as measured by the decay rate of the
probability of error as well as obtaining a relationship
between the capacity of the channel and the quality of
the estimation.

2. BASIC DEFINITIONS

In this section we briefly review some basic quantities de-
fined in Information theory. These quantities will be used
throughout the whole paper and some approximations will
be introduced to make their definitions more tractable.
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The Kullback Leibler distance is one of the most important
quantities in information theory and measure the distance
between two probability distribution p and q defined over
the same alphabet X . The Kullback distance is defined as:

D(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
, (1)

where the logarithm will be always considered in base e.
Since from definition (1) it’s clear that D(p‖q) doesn’t
depend on the alphabet but just on the two distributions
themselves we will usually adopt the notation:

D(p‖q) =
n
∑

i=1

pi log
pi
qi
, (2)

where n is the cardinality of X and we omit the dependence
on the alphabet.

Another measure of the distance between two distributions
p and q which is closely related to the Binary Hypothesis
testing problem, is the so called Chernoff information
whose definition is:

C(p, q) = D(pλ∗‖p) = D(pλ∗‖q), (3)

where pλ is a probability distribution defined as:

pλi =
pλi q

1−λ
i

∑n
i=1 p

λ
i q

1−λ
i

,

and λ∗ is such that D(pλ∗‖p) = D(pλ∗‖q).

We will often consider discrete, memoryless, stochastic
channels mapping the alphabet X into a finite alphabet Y
whose cardinality is m. This kind of channels is completely
described by a conditional probability distribution:

W (y|x) = P(Y = y|X = x), (4)

which can be regarded as an m× n stochastic matrix and
will be often denoted just by W .

To measure the capacity of such a channel we will use the
standard ”information” definition:

C = max
px

I(X;Y ) (5)
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where X is a random variable such that X ∼ px and
Y ∼ Wpx is the corresponding random variable obtained
through the channel. I(X;Y ) is called mutual information
between X and Y and is defined as:

I(X;Y ) = D(pxy‖pxpy) = Ex[D(W (·|x)‖py)]. (6)

3. PROBLEM FORMULATION

The problem we are trying to face is, essentially, an
optimization one and, therefore, to provide a correct
formulation, we have to identify three major components:
optimization variables, cost function and constraints. In
this section we will define these components trying to
motivate the choices made.

3.1 Optimization variables.

We model our sample source as a discrete random variable
X over a finite alphabet X such that |X | = n. The mass
distribution of X depend on the unknown hypothesis:

X ∼
{

p1 under H1

p2 under H2
, (7)

where p1, p2 ∈ Rn and P[H1] = π1, P[H2] = π2.

The channel through which we obtain the measurement is
supposed to be a discrete, memoryless, stochastic channel
W mapping the alphabet X into a finite alphabet Y whose
cardinality is m.

Both the dimension of the output alphabet m and the
channel W itself, will be regarded as optimization vari-
ables, thus allowing a complete flexibility in the choice of
the most suitable channel.

3.2 Constraints.

Without any further assumption on the class of feasible
channels, any optimization problem would be solved by the
choice m = n and W = I that makes the random variable
X perfectly measurable as if there was no channel at all. To
make the scenario more realistic we decided to introduce
a constraint in the capacity of the channel as measured by
the usual mutual information between X and Y :

max
px

I(X;Y ) ≤ C. (8)

We made this choice because the capacity of a channel is a
reasonable abstraction of its quality and is often the most
critical specification for a communication system.

3.3 Cost function.

Since the random process observable after the channel yn is
still i.i.d. with a distribution that can be either q1 = Wp1
or q2 = Wp2 depending on the true hypothesis, it is
reasonable to measure the quality of the estimation using
a standard technique for binary hypothesis testing applied
to the process yn.

We chose to optimize the asymptotic performance of the
system in terms of the probability of error. Specifically
it is well known that for a Binary hypothesis testing
problem there exist a sequence of optimal estimators

Ĥn : Yn &→ {1, 2}, designed using a log-likelihood ratio,
such that they minimize the probability of error given n
samples:

Pe(n) = P(Ĥn(y1, . . . , yn) = 2|H = 1)π1 +

P(Ĥn(y1, . . . , yn) = 1|H = 2)π2.

Moreover it has been shown that Pe(n) decays exponen-
tially with n at a rate given by the Chernoff information
C(q1, q2), that is:

− lim
n→∞

1

n
logPe(n) = C(q1, q2).

Our goal is then to maximize the Chernoff Information
C(q1, q2) = C(Wp1,Wp2) in order for the probability of
error to decay as fast as possible. The complete formula-
tion of the optimization problem can be written as:



























max
W,m

C(Wp1,Wp2)

s.t.
max
pX

I(X;Y ) ≤ C

1
TW = 1

T

Wi,j ≥ 0

(9)

In section 5 we will assume that the capacity C is small
enough so that the cost function and the constraints in (9)
can be approximated by more tractable expression thus
leading to an approximating optimization problem valid
for small capacities. By explicitly solving this problem
we will gain some insight regarding the structure of the
solutions of (9) in the small C regime. In the next section
we will introduce some basic tools useful to perform the
required approximations.

4. EUCLIDEAN APPROXIMATIONS

In this section we present some approximations to the
quantities defined in section 2. To obtain these approxima-
tions we follow the idea known as Euclidean Information
theory and presented in details in [2]. We start consider-

ing a simple Taylor expansion log(1 + x) = x− x2

2 + ϕ(x),
where ϕ(x) = o(x2) when x tends to 0. Applying this
expansion to the definition of the Kullback distance (2)
we get

D(p‖q) =−
n
∑

i=1

pi log
qi
pi

=−
n
∑

i=1

pi log

(

1 +
qi − pi

pi

)

=
1

2

n
∑

i=1

(qi − pi)2

pi
−

n
∑

i=1

pi ϕ

(

qi − pi
pi

)

=
1

2
‖p− q‖2[p]−1 −

n
∑

i=1

pi ϕ

(

qi − pi
pi

)

(10)

where [p] is a diagonal matrix whose diagonal elements are
given by pi, i = 1, . . . , n.

We can simplify the expression in (10) by noticing that
the last summation is an infinitesimal of a superior order
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with respect to ‖p − q‖2
[p]−1 as proved by the following

inequality:

∣

∣

∣

∑n
i=1 pi ϕ

(

qi−pi

pi

)
∣

∣

∣

‖p− q‖2
[p]−1

≤

∣

∣

∣
ϕ
(

qj−pj

pj

)
∣

∣

∣

pj
(qj−pj)2

p2

j

p→q−→ 0,

where j is the index such that
∣

∣

∣
ϕ
(

qj−pj

pj

)
∣

∣

∣
is maximum

and can be regarded as a function of p. Furthermore the
quantities ‖p− q‖2

[p]−1 and ‖p− q‖2
[q]−1 are infinitesimal of

the same order as p → q since from the inequalities 1 :

min
i

qi
pi

≤
‖p− q‖2

[p]−1

‖p− q‖2
[q]−1

≤ max
i

qi
pi
,

it follows that

lim
p→q

‖p− q‖2
[p]−1

‖p− q‖2
[q]−1

= 1 (11)

simply applying the squeeze theorem.

By virtue of the last two observations the expression in
(10) can be finally written as

D(p‖q) =
1

2
‖p− q‖2[q]−1 + o

(

‖p− q‖2[q]−1

)

, (12)

and we can now use this expression to approximate both
the definition of capacity (5) and Chernoff information.

Regarding the Chernoff information we can approximate it
with an easier Kullback distance as stated in the following
proposition:

Proposition 1. If two probability distributions p and q,
defined on the same alphabet X , are close enough then
the following approximation holds:

C(p, q) ≈
1

4
D(p‖q).

More formally we have:

lim
p→q

C(p, q)

D(p‖q)
=

1

4
.

Proof: See appendix A.

Regarding the definition of channel capacity(5), it’s well
known (see [3]) that if p∗ is the optimal input distribution
achieving the capacity and p0 is the corresponding output
distribution, we have D(Wi‖p0) = C ∀i : p∗i > 0
and D(Wi‖p0) < C ∀i : p∗i = 0. By virtue of this
consideration, under the assumption of a small C, all the
conditional distributions Wi will be close to p0 and the
distances are well approximated by the expression (12)
thus obtaining:

1

2
‖Wi − p0‖2[p−1

0
]
≤ C ∀i. (13)

It’s easy to see that the converse is true as well; if we fix
a point p0 on the simplex and choose n probability vector
Wi satisfying the constraints (13), the resulting channel
will have a capacity less than C. Therefore conditions
(13) are an alternative formulation of the channel capacity
constraint (8) and their only disadvantage is that they
require a new arbitrary probability vector p0.
1 For results on bounding a ratio of two quadratic form we refer to
[4]

5. NOISY CHANNEL SOLUTION

With the term ”noisy channel” we mean a channel whose
capacity C is small. In this section we aim to approximate,
under the assumption C << 1, the general problem
(9) with a more tractable optimization problem, whose
solution can be computed explicitly and will allow us to
understand the behavior of (9) in the noisy channel regime.

If C << 1 we can take advantage of the constraints (13)
since they imply that Wp1 and Wp2 are close no matter
what p1 and p2 are. If Wp1 and Wp2 are close, by virtue
of proposition 1 ,we can use the approximation:

C(Wp1,Wp2) =
1

4
D(Wp1‖Wp2)

and therefore maximizing the Chernoff information turns
out to be equivalent to maximizing the Kullback distance
D(Wp1‖Wp2). Finally, using again equation (12), we can
approximate the Chernoff information via an Euclidean
distance:

C(Wp1,Wp2) =
1

4
D(Wp1‖Wp2) =

1

8
‖Wp1 −Wp2‖2[p−1

0
]
.

(14)

Using the approximation for the capacity constraint (13)
and the result in (14), the original problem (9) can be
approximated by:



































max
W,m,p0

1

8
‖W (p1 − p2)‖2[p−1

0
]

s.t.
1

2
‖Wi − p0‖2[p−1

0
]
≤ C ∀i

1
TW = 1

T

Wi,j ≥ 0

, (15)

and the advantage of this formulation is that it leads to an
analytical solution as stated in the following proposition.

Proposition 2. Choose arbitrarily m ≥ 2 and p0 in the
m-dimensional simplex and then consider an arbitrary
probability vector wA such that 1

2‖wA − p0‖2[p−1

0
]
= C as

well as the only other vector wB whose distance from p0
is C and is opposite to wA with respect to p0, that is
wB = 2p0 − wA. Next consider the following channel:

W ∗
i =

{

wA if pi1 ≥ pi2
wB if pi1 < pi2

∀i = 1, . . . , n, (16)

then channel (16) is the optimal solution of (15) and the
associated optimal cost is

1

4
C‖p1 − p2‖21 (17)

Proof:

Let’s consider m and p0 fixed. We will prove the statement
showing first that the expression (17) is an upper bound to
the optimal value and then that W ∗ achieves that bound.

To bound the cost we’ll use the fact that p1 − p2 adds up
to zero and therefore if A is a matrix with all the columns
equal to each others then A(p1 − p2) = 0. Formally we
obtain:
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‖W (p1 − p2)‖[p−1

0
] = ‖(W−[p0| · · · |p0]) (p1 − p2)‖[p−1

0
]

=

∥

∥

∥

∥

∥

n
∑

i=1

(Wi − p0) (p
i
1 − pi2)

∥

∥

∥

∥

∥

[p−1

0
]

≤
n
∑

i=1

|pi1 − pi2| ‖Wi − p0‖[p−1

0
]

≤
n
∑

i=1

|pi1 − pi2|
√
2C

=
√
2C‖p1 − p2‖1

which is equivalent to 1
8‖W (p1−p2)‖2[p−1

0
]
≤ 1

4C‖p1−p2‖21.

To prove that W ∗ achieves this bound let’s start defining
the quantity

α =
∑

i:pi
1
≥pi

2

(pi1 − pi2),

and noticing that, since p1 − p2 adds up to zero, we also
have:

α = −
∑

i:pi
1
<pi

2

(pi1 − pi2),

2α = ‖p1 − p2‖1.

Now, with some algebra we get:

1

8
‖W ∗(p1 − p2)‖2[p−1

0
]
=

=
1

8

∥

∥

∥

∥

∥

∥

wA

∑

i:pi
1
≥pi

2

(pi1 − pi2) + wB

∑

i:pi
1
<pi

2

(pi1 − pi2)

∥

∥

∥

∥

∥

∥

2

[p−1

0
]

=
1

8
‖αwA − αwB‖2[p−1

0
]

=
1

8
‖2α(wA − p0)‖2[p−1

0
]

= α2C

=
1

4
C‖p1 − p2‖21.

Remarkably, the optimal value we obtained considering
m and p0 fixed turned out to be completely independent
of m and p0 and, therefore, problem (15) is solved by a
triplet (W ∗,m, p0) wherem and p0 can be chosen arbitrary
provided that the definition of W ∗ in (16) yields a well
defined stochastic matrix 2 .

!

A graphical depiction of wA and wB , used to construct
the optimal channel, is reported in figure 1; we point out
that, since C is considered small, it’s always possible to
determine such a pair of vectors inside the simplex.

The result just proven shows that for small capacity the
behavior of the Chernoff bound is linear in C and is
proportional to the l1 distance between the two hypothesis.
In the next section we will present some observations,
based just on simulations, regarding the behavior for larger
C.

2 Namely p0 must be chosen far from the simplex borders so that
wA and wB fall inside the simplex.

wA

wB

p0
•

Fig. 1. Position of wA and wB in the simplex with respect
to p0

6. LARGE CAPACITY BEHAVIOR

As the capacity increases the problem (15) is no longer
approximating the original optimization problem (9). In
the general case finding an analytical solution to (9) is
unrealistic but we can still make some remarks. In this
section we will point out some of these interesting features
and we will present a numerical result.

• For each m the solution of (9) as a function of C
is monotone increasing and the optimal channel has
always capacity C. This is true because the cost
function can be shown to be convex and W belongs
to a convex set by virtue of convexity of I(Y,X) with
respect to the channel.

• For each m the performances are not improving for
C ≥ logm because the maximum capacity achievable
with an m dimensional output alphabet is always less
than logm. Moreover if m = n then for C ≥ n we
obtain exactly the Chernoff information since among
the feasible channels there is the identity channel I
which allows to measure the samples directly from the
source. Finally the curves obtained for m > n seem
to be identical to the one obtained for m = n.

• Interestingly, for some choices of the Hypothesis p1
and p2, the Chernoff information is reached (with
m = n) before the limit C = log n

In figure 2 we show the solution of problem (9) where we
keptm as a parameter. Only two different values ofm have
been taken into account but it’s still possible to observe
some of the behaviors just pointed out.

7. CONCLUSIONS AND FUTURE WORK

In this paper we considered a modified version of the
binary hypothesis testing problem where the samples are
measured through a channel. We looked for the best
possible channel among those with a limited capacity and
we showed that, if the channel has a small capacity, this
optimization problem can be approximated by a quadratic
one. The optimal solution for the approximating problem
achieves an error exponent given by

1

4
C‖p1 − p2‖21

where C is the capacity of the channel while p1 and p2
are the two hypothesis. In the small C regime we were
also able to provide an explicit formula for the optimal
channel. It is not yet formally proved, although clearly
supported by simulations, that the optimal solution of the
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Fig. 2. Solution of problem (9) with n = 3,
p1 = [0.53 0.13 0.34]′ and p2 = [0.23 0.42 0.35]′

approximating problem converges to the solution of the
original problem as C tends to 0. We are currently working
on some generalizations to the m-ary case as well as some
non iid-based models like hidden Markov models.

8. ACKNOWLEDGMENT

The autors wish to thank Mesrob I. Ohannessian for his
suggestions and help in proving proposition 1.

REFERENCES

[1] Cov:98 T. M. Cover, J. A. Thomas. Elements of
Information Theory. Wiley–Interscience Publication,
1991.

[2] Euc:2008 S. Borade, L. Zheng. Euclidean Information
Theory. Communications, 2008 IEEE International
Zurich Seminar on pages 14–17, 2008.

[3] Gal:1968 R. Gallager Information Theory and Reli-
able Communication Wiley, 1968.

[4] QuadB:1999 F. Caliskan, C. Hajiyev Sensor fault de-
tection in flight control systems based on the Kalman
filter innovation sequence Proceedings of the Insti-
tution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering volume 213, issue
3, pages 243–248, 1999.

[5] BhattB:1943 A. Bhattacharyya, On a measure of
divergence between two statistical populations de-
fined by their probability distribution. Bulletin of
the Calcutta Mathematical Society volume 35 pages
99-110, 1943.

Appendix A. PROOF OF PROPOSITION 1

We have to prove that:

lim
p→q

C(p, q)

D(p‖q)
=

1

4
.

First of all we want to point out that, if some of the
components of q are equal to zero, then D(p‖q) is not
defined unless the same components of p are zero as well
and the limit p → q is taken over the subspace in which
pi = 0 whenever qi = 0. For this reason, without loss
of generality, we can restrict our analysis to the case
qi > 0 ∀i.

Since the definition of the Chernoff information in (3)
is not in a closed form, in this section we’ll provide an
explicit expression to approximate it when p and q are
close enough.

In order to easily deal with equation (3) let us introduce
some notation conventions:

Dq(λ) = D(pλ‖q),
Dp(λ) = D(pλ‖p),

D̂q(λ) =
1

2
‖pλ − q‖2[q]−1 ,

D̂p(λ) =
1

2
‖pλ − p‖2[p]−1 .

In [1] it’s shown that the function Dp(λ) is monotone
decreasing in λ ∈ [0, 1] while Dq(λ) is increasing in the
same interval; moreover there exist a unique λ∗ ∈ [0, 1]
such that Dp(λ∗) = Dq(λ∗).

It is also easy to show that D̂p(λ) is monotone decreasing

and D̂q(λ) is monotone increasing in [0, 1] and that the

unique value of λ satisfying the equation D̂p(λ) = D̂q(λ)
is λ = 1/2. In fact, if we denote with φ =

∑n
i=1

√
piqi the

Bhattacharyya coefficient, we have:

D̂q (1/2) =
1

2

n
∑

i=1

[√
piqi
φ

− qi

]2 1

qi

=
1

2

n
∑

i=1

[

piqi
φ2

+ q2i − 2qi

√
piqi
φ

]

1

qi

=
1

2

n
∑

i=1

[

pi
φ2

+ qi − 2

√
piqi
φ

]

=
1

2

[

1
(
∑n

i=1
√
piqi

)2 − 1

]

, (A.1)

which can be shown, with the same argumentation, to be
equal to D̂p (1/2).

We’ll now show that the expression just found in (A.1)
can be regarded as an approximation of the Chernoff
information whose distance from the latter is infinitesimal
of a superior order with respect to ‖p− q‖2

[q]−1 .

Let us start examining the difference Dq−D̂q which, using
the uniform bound ‖pλ − q‖2

[q]−1 ≤ ‖p− q‖2
[q]−1 ∀λ and by

virtue of equation (12), turns out to be small as p → q:

Dq(λ)− D̂q(λ) = δq(λ)

= o(‖pλ − q‖2[q]−1)

= o(‖p− q‖2[q]−1) ∀λ. (A.2)

Using the same argumentation and the result in (11) we
can derive a similar result for the difference Dp − D̂p:
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Dp(λ)− D̂p(λ) = δp(λ)

= o(‖pλ − p‖2[p]−1)

= o(‖q − p‖2[p]−1) ∀λ

= o(‖p− q‖2[q]−1) ∀λ. (A.3)

If we introduce now the two functions:

f(λ) = Dp(λ)−Dq(λ)

f̂(λ) = D̂p(λ)− D̂q(λ),

keeping in mind that f̂(1/2) = 0, we can obtain the
following bound on f(1/2):

|f (1/2)|=
∣

∣

∣
f (1/2)− f̂ (1/2)

∣

∣

∣

=
∣

∣

∣
Dp (1/2)− D̂p (1/2) + D̂q (1/2)−Dq (1/2)

∣

∣

∣

≤ |δp (1/2)|+ |δq (1/2)| . (A.4)

Using the fact that
∣

∣

∣

dDq

dλ

∣

∣

∣
≤

∣

∣

∣

df
dλ

∣

∣

∣
∀λ and the results in

(A.2), (A.3), (A.4), we can now show that the distance
between D̂q(1/2) and the Chernoff information C(p, q) =
Dq(λ∗) is small as p → q:

∣

∣

∣
D̂q(1/2)−Dq(λ∗)

∣

∣

∣
≤ |Dq(1/2)−Dq(λ∗)|+ |δq(1/2)|

≤ |f(1/2)− f(λ∗)|+ |δq(1/2)|
= |f(1/2)|+ |δq(1/2)|
≤ |δp (1/2)|+ 2 |δq (1/2)|
= o(‖p− q‖2[q]−1) (A.5)

The result found in (A.5) allows us to write the Chernoff
information in an explicit form suitable to our purposes;
more precisely:

C(p, q) =
1

2

[

1
(
∑n

i=1
√
piqi

)2 − 1

]

+ o
(

‖p− q‖2[q]−1

)

= Ĉ(p, q) + o
(

‖p− q‖2[q]−1

)

(A.6)

In order to compute the limit limp→q
C(p,q)
D(p‖q) on the n-

dimensional simplex, let’s first reduce the dimension to an
n-1 dimensional space where we get rid of the constraint
∑n

i=1 pi = 1. In this lower dimensional space the approxi-
mate expression for the Kullback distance becomes:

1

2
‖p− q‖2[q]−1=

1

2





n−1
∑

i=1

(pi − qi)
2 1

qi
+

(

1−
n−1
∑

i=1

pi−qn

)2
1

qn





=
1

2
(p̄− q̄)′

(

[q̄]−1 +
1

qn
11

′

)

(p̄− q̄)

=
1

2
(p̄− q̄)′Mq(p̄− q̄), (A.7)

where p̄ and q̄ are n − 1 dimensional vectors equal to the
first n−1 elements of the vectors p and q while 1 is the n−1
dimensional vector of all 1. The approximate expression for
the Chernoff information becomes:

1

2

[

1
(
∑n

i=1
√
piqi

)2 − 1

]

=

=
1

2

(

∑n−1
i=1

√
piqi+

√

qn
(

1−
∑n−1

i=1 pi
)

)2 −
1

2

=F (p̄, q). (A.8)

Before considering the limit let’s compute a Taylor expan-
sion of the function F around q̄. After some straightfor-
ward computations we obtain:

F |p̄=q̄ = 0,

∂F

∂pi

∣

∣

∣

∣

p̄=q̄

= 0 ∀i = 1, . . . , n− 1,

∂F 2

∂p2i

∣

∣

∣

∣

p̄=q̄

=
1

4

(

1

qi
+

1

qn

)

∀i = 1, . . . , n− 1,

∂F 2

∂pi∂pj

∣

∣

∣

∣

p̄=q̄

=
1

4qn
∀i .= j,

therefore we have:

Ĉ(p̄, q)=
1

2!

1

4
(p̄− q̄)′

(

[q̄]−1+
1

qn
11

′

)

(p̄−q̄)+o(‖p̄−q̄‖2)

=
1

8
(p̄− q̄)′Mq(p̄− q̄) + o(‖p̄− q̄‖2)

Collecting the results obtained so far the limit we want to
compute is trivial:

lim
p→q

C(p, q)

D(p‖q)
= lim

p→q

Ĉ(p, q)
1
2‖p− q‖2

[q]−1

= lim
p̄→q̄

1
8 (p̄− q̄)′Mq(p̄− q̄) + o(‖p̄− q̄‖2)

1
2 (p̄− q̄)′Mq(p̄− q̄)

=
1

4
.

!"#$"%&'()*+)',#)-.',)/012)3*"45)2*&6"#((
7%48&*)9/'84:;)1<6<(')=.)>)?#$'#@A#")=B)=C--

E=.I


