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SUMMARY

In this paper, we study finite-length signal reconstruction over a finite-rate noiseless channel. We allow

the class of signals to belong to a bounded ellipsoid and derive a universal lower bound on a worst-

case reconstruction error. We then compute upper bounds on the error that arise from different coding

schemes and under different causality assumptions. When the encoder and decoder are noncausal, we

derive an upper bound that either achieves the universal lower bound or is comparable to it. When

the decoder and encoder are both causal operators, we show that within a very broad class of causal

coding schemes, memoryless coding prevails as optimal, imposing a hard limitation on reconstruction.

Finally, we map our general reconstruction problem into two important control problems in which the

plant and controller are local to each other, but are together driven by a remote reference signal that

is transmitted through a finite-rate noiseless channel. The first problem is to minimize a finite-horizon

weighted tracking error between the remote system output and a reference command. The second
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problem is to navigate the state of the remote system from a nonzero initial condition to as close to the

origin as possible in finite-time. Our analysis enables us to quantify the tradeoff between time horizon

and performance accuracy which is not well-studied in the area of control with limited information as

most works address infinite-horizon control objectives (eg. stability, disturbance rejection).
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1. INTRODUCTION

Signal reconstruction over noisy channels has been well studied under stochastic settings, where

performance criteria are typically characterized by asymptotic properties of the probability

of error given stochastic descriptions of the input signal and channel. The main objective

of signal reconstruction is to design computationally efficient coding schemes to optimize

performance [18, 26]. Recent work by Voulgaris investigates reconstruction of infinite-length

discrete-valued signals that are filtered via noisy channels using a deterministic framework [29].

In contrast, we study finite-length real-valued signal reconstruction filtered via finite-rate but

otherwise noiseless channels using a deterministic framework. In particular, we are interested

in minimizing reconstruction error in finite-time, whereas in most communication settings

questions about asymptotic reconstruction are typically addressed. We study finite-time

performance because we are ultimately interested in understanding how the reconstructed

signal can be used to drive or control a system.

Control over noisy channels is a research area of growing interest. Today new problems in

control over networked systems, whose components are connected via communication links that

can be very noisy, induce delays, and have finite rate constraints, are emerging. Applications

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 00:1–19

Prepared using rncauth.cls



SIGNAL RECONSTRUCTION IN THE PRESENCE OF FINITE-RATE MEASUREMENTS 3

include remote navigation systems (deep-space and sea exploration) and multi-robot control

systems (eg. aircraft and spacecraft formation flying control, coordinated control of land robots,

control of multiple surface and underwater vehicles), where robots exchange data through

communication channels that impose constraints on the design of coordination strategies.

Much work in the area of control with limited information has focused on stability under

finite-rate (or countable) feedback control, where the only excitation to the system is an

unknown (but bounded) initial state condition [2, 3, 4, 5, 7, 11, 17, 19, 21, 24, 25, 27, 28, 30].

The questions posed involve conditions on the channel rate that will guarantee that the state

of the system (or some function of the state) approach the origin/remain bounded as time goes

to infinity. More recently, disturbance rejection limitations were derived for the same setting,

assuming stochastic exogenous signals entering the system [22, 23]. Although these studies

greatly contribute to our understanding of the interplay between communication and control,

few studies have addressed finite-horizon performance limitations under communication

constraints.

A handful of recent studies explore the tradeoffs between finite-horizon performance and

control complexity for linear systems and finite automata systems [6, 8, 12, 13]. A navigation

problem similar in spirit to that which is presented here is described in [13]. In [13] Fagnani

et al. consider the closed-loop system shown in Figure 1.

G is a single-input multi-output discrete-time causal LTI system with unknown initial

condition x0 ∈ IRn, which is a random vector with uniform probability density over a given

bounded set W ⊂ IRn. The feedback control law, u ∈ IR, must be generated over a finite-rate

link that transmits exactly R bits per time step. Fagnani et al. ask the following question:

Given a subset V of W, find the minimum expected time, E{T(W,V )} that “traps” the state xt
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Figure 1. Equivalent Closed-Loop System

in V for all t ≥ T.

Fagnani et al. show that for any given β > 0,

E{T(W,V )}
ln(C) ≤ β ⇒ LN

ln(C) ≥ δ(β),

where C = µ[W ]
µ[V ] (µ is the Lebesgue measure in IR

n) is a contraction rate that describes how

small the target set is with respect to the starting set. L is a measure of the complexity of the

coding scheme (E,D) and δ(β) = H1βw
1
β , for some w > 1 and constant H1, which depends

on the plant dynamics. See [13] for details. This result shows that demanding smaller values

of the expected minimum time to reach set V requires more complex coding.

In this paper we introduce and analyze a general signal reconstruction framework which

enables us to compute universal lower bounds for finite-horizon tracking and navigation

objectives under finite-rate feedforward control. In our tracking problem, we compute the

smallest allowable worst-case performance over a class of reference signals. In our navigation

problem, we compute the smallest allowable ball around the origin that the state of the system

can reach in T time steps, given that the initial condition lies in an ellipsoid. We also construct

quantization/coding schemes to derive upper bounds on both performance objectives, and

illustrate how imposing causality on the quantizer limits achievable performance. Our
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framework is deterministic and our lower bounds are independent of the complexity of the

coding scheme.

2. GENERAL RECONSTRUCTION PROBLEM

In this section, we define a framework to study finite-length signal reconstruction under finite-

rate measurements. We consider the cascade of SISO discrete-time systems shown in Figure 2.

^r
E D

r Rz
L

Figure 2. General Reconstruction Set Up

Specifically,

• z ∈ IRT s.t. ||z||2 ≤ 1,

• r ∈ Cr ! {r ∈ IRT , z ∈ IRT |r = Lz, ||z||2 ≤ 1},

• L : IRT → IRT is an invertible linear operator,

• E : IRT → {0, 1}RT is an arbitrary operator (encoder) that maps a real vector to a

sequence of 2RT binary symbols,

• R is the channel rate for the finite-rate noiseless channel that maps {0, 1}RT → {0, 1}RT ,

and

• D : {0, 1}RT → IRT is an arbitrary operator (decoder) that maps a sequence of 2RT

binary symbols to a real vector.

Note that L defines a class of finite-length signals, Cr, that is generated from a unit ball

in IRT . Since L is linear, it maps the unit ball to a bounded ellipsoid. We assume L and the
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channel rate R are given, and we want to find an encoder E and decoder D to minimize

a reconstruction error over all signals, r, in this class (worst-case analysis). Since the input

and output signals have finite length, the following performance metric is computed over a

finite-horizon: ||W (r − r̂)||22, where W ∈ IR
T × IRT is a given full-rank weight matrix.

It is worth commenting that in the ideal case of perfect communication (R = ∞), it is

possible to construct an encoder and decoder (E = I and D = I) such that ||W (r − r̂)||22 =

0 ∀r ∈ Cr. However, with a finite-rate constraint the decoder output, r̂, can only take 2RT

values over a horizon of T time steps. Therefore, it is not clear how well signals can be estimated

under such constraints.

To understand reconstruction limitations under finite-rate measurements, we compute γLB

and γUB , such that

γLB ≤ min(E,D) supr∈Cr ||W (r − r̂)||
2
2 ≤ γUB .

Knowledge of γLB tells us that regardless of the encoder and decoder that we select, we can

do no better than this universal lower bound. The upper bound tells us that there exists a

coding scheme such that the worst case performance is always less than or equal to γUB . To

compute γUB , we construct an encoder and decoder and compute the corresponding worst-case

performance. In the following sections, we compute a universal lower bound and three upper

bounds corresponding to three types of coding schemes.

3. UNIVERSAL LOWER BOUND

In this section we derive a universal lower bound on worst-case reconstruction using a standard

counting or sphere-packing type argument.
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Theorem 3.1. Given the signal reconstruction set up defined above, assume that det(W ) += 0,

det(L) += 0. Then,

γLB = 2−2R{|det(L)| |det(W )|}
2
T .

Proof.

The set of all possible signals, Cr ! {r ∈ IRT |r = Lz, z′z ≤ 1} = {r ∈ IRT | (L−1r)′(L−1r) ≤

1} is a bounded ellipsoid in IRT centered at the origin with volume η det{((L−1)′(L−1))−0.5} =

η|det(L)|, where η is the volume of a unit ball in IRT . Over a horizon T , the channel sends a

total of RT bits which limits the decoder output, r̂, to take on no more than 2RT

Consider a selection of reconstructed estimates r̂1, r̂2, ..., r̂2
RT

. We must then map each

r ∈ Cr to exactly one r̂i, i = 1, 2, ..., 2RT . Such a mapping induces a partition on Cr. In

particular, define Pi = {r ∈ Cr| r → r̂i} for i = 1, 2, ..., 2RT . Now, suppose that the selection

r̂1, r̂2, ..., r̂2
RT

were chosen such that ||W (r − r̂i)||22 ≤ γ for all r ∈ Pi, and for all i. Then

necessarily Pi ⊆ Sγr̂i ! {r ∈ IR
T | (r − r̂i)′W ′W (r − r̂i) ≤ γ}. Note that Sγr̂i is a bounded

ellipsoid in IRT centered at point r̂i with volume η(
√
γ)T det{(W ′W )−0.5} = η

√
γT

|det(W )| . See

Figure 3 for an illustration.

rC

σmax(L)

r
^

ySr̂

Figure 3. Bounded Ellipsoids Cr and S
γ
r̂
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Since Pi ⊆ Sγr̂i for each i = 1, 2, ..., 2
RT , it is necessary that 2RT bounded ellipsoids (Sγr̂ )

cover the set Cr. This implies that 2RT × volume(Sγr̂ ) ≥ volume(Cr). Equivalently,

2RT ≥ volume(Cr)
volume(S

γ)
r̂

= |det(L)| |det(W )|
(
√
γ)T .

After rearranging terms, we get that γ ≥ 2−2R{|det(L)| |det(W )|} 2T .

In control settings, we often consider classes of signals generated from LTI systems, i.e., L

is LTI. We compute the lower bound for this case in the following corollary.

Corollary 3.1. Assume that det(W ) += 0, det(L) += 0, and H is a one-to-one mapping. If L

is a causal SISO LTI system with state-space description L = ss(Al, Bl, Cl, Dl), then

||W (r − r̂)||22 ≥ 2−2R(Dl)2{|det(W )|}
2
T .

Proof. If L is a SISO causal LTI with state-space description L = ss(Al, Bl, Cl, Dl), then for

T time steps, it can be represented as a T × T lower triangular Toeplitz matrix operator, with

all T eigenvalues equal to Dl. This implies that the {det(L)}
2
T = (Dl)2.

As expected, γLB depends on L (class of signals), W (performance weights), T (signal

length), and R (channel rate). It is helpful (as we will see when we compute upper bounds) to

rewrite the lower bound in terms of the singular and eigenvalues of the matrix WL as follows:

γLB = 2−2R{
∏T−1
i=0 σi(WL)}

2
T = 2−2R{

∏T−1
i=0 |λi(WL)|}

2
T .

When computing the lower bound, we made no assumptions on whether the encoder and

decoder are causal or noncausal operators. If both the encoder and decoder are noncausal,

then at time t = 0 the decoder “knows” the future. That is, at t = 0 it can compute r̂k

for k = 0, 1, ..., T − 1 which are represented by TR bits over a horizon of T steps and our
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SIGNAL RECONSTRUCTION IN THE PRESENCE OF FINITE-RATE MEASUREMENTS 9

reconstruction problem reduces to a vector quantization (VQ) problem with a deterministic

error metric [1, 15]. If we consider our signal r to be a correlated Gaussian random vector

with covariance matrix Mr, then the lower bound on the minimum mean-squared error

(E(r − r̂)T (r − r̂)) is 2−2Rdet(Mr)
1
T [16], which is identical to our lower bound if we replace

WL with M
1
2
r . This makes sense as the mean-squared error lower bound is for every possible

realization r̂ and hence considers the worst case.

We still, however, find it useful to derive γLB in our deterministic setting and compare it to

upper bounds computed under various coding schemes such as when coding must be done in

a causal manner.

Recall that if If E and D are causal, then at time k the encoder can only operate on

r0, r1, ..., rk and decoder can only reconstruct r̂0, ..., r̂k where r̂k is represented by at most

(k + 1)R bits. In the following sections, we compute three upper bounds. The first bound is

computed by constructing a noncausal encoder and decoder (γNN ), the second is computed

by constructing a noncausal encoder and a causal decoder (γNC), and the third is computed

by constructing a causal encoder and decoder (γCC).

4. NONCAUSAL ENCODING AND DECODING

In this section, we derive an upper bound, γNN , on worst-case performance assuming that the

encoder and decoder are both noncausal. The upper bound is computed using a coding scheme

that transmits information about the signal r in terms of a basis derived from the singular

value decomposition (SVD) of the matrixWL. This scheme is identical to that proposed for a

Gaussian source signal in [16] and we repeat it here to compare to the coding scheme described

later in section 6.
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Consider Figure 4. Let the SVD decomposition ofWL be defined as WL = UΣV ∗, where U

is a T ×T unitary matrix, Σ is a T ×T diagonal matrix containing the singular values ofWL,

and V is a T × T unitary matrix. The encoder consists of rotator and quantizer operators, p

and q, respectively which are defined as follows:

• p : IRT → IRT such that p(r) = V ∗Lr,

• q : IRT → {0, 1}RT is parameterized by the bit-allocation strategy denoted in R =

(R0, R1, ..., RT−1) as shown in Figure 4 where α̂i = qi(αi) and qi(αi) is a uniform

quantizer from [-1, 1] with 2Ri levels for i = 0, 1, ..., T − 1 (α = (α0 α1 ... αT−1).

The decoder first employs the bit-allocation strategy R to reconstruct α̂ from the binary

string that it receives. It then rotates the vector to compute r̂. Specifically, r̂ = L−1V α̂. We

call this E −D construction the “SVD Coding Scheme.”

r α
qp

W,L ( R_0, R_1, ..., R_{T-1} )

ENCODER

R α r
q -1p-1

^ ^
W,L( R_0, R_1, ..., R_{T-1} )

DECODER

Figure 4. SVD Coding Scheme

Note that for the above SVD coding scheme,
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SIGNAL RECONSTRUCTION IN THE PRESENCE OF FINITE-RATE MEASUREMENTS 11

sup
r∈Cr

||W (r − r̂)||22 = sup
{z| ||z||2≤1}

||WL(ẑ − z)||22

= sup
{z| ||z||2≤1}

||UΣV ∗(ẑ − z)||22

= sup
{α| ||α||2≤1}

||Σ(α̂ − α)||22 (1)

= sup
{α| ||α|2≤1}

T−1
∑

i=0

(α̂i − αi)
2σ2i (2)

≤ sup
{α| ||α|2≤1}

T−1
∑

i=0

2−2Riσ2i |αi|
2 (3)

≤ max
i
2−2Riσ2i sup

{α| ||α|2≤1}

T−1
∑

i=0

|αi|
2 (4)

= max
i
2−2Riσ2i . (5)

To derive the upper bound γNN using the above SVD coding scheme, we construct R =

(R0, R1, ..., RT−1) to solve the following optimization problem:

min
R

maxi 2−2Riσ2i (6)

s.t.
∑T−1
i=0 Ri ≤ TR

Ri ≥ 0 ∀i.

Problem (6) is equivalent to the following optimization problem:
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min
R,γ

γ (7)

2−2Riσ2i ≤ γ

s.t.
∑T−1
i=0 Ri ≤ TR

Ri ≥ 0 ∀i.

γ ≥ 0.

† Now note that a lower bound to the optimal cost of (7) is the optimal solution to

min
R,γ

γ +
∑T−1
i=0 λi(−2Ri + 2log(σi)− log(γ)) + µ(

∑T−1
i=0 Ri − TR) (8)

Ri ≥ 0 ∀i.

γ ≥ 0,

where µ ≥ 0 and λi ≥ 0 for all i. We rearrange terms to get

min
γ≥0

[γ −
∑T−1
i=0 λilog(γ)] + minRi≥0 [

∑T−1
i=0 Ri(µ− 2λi)] + [2

∑T−1
i=0 λilog(σi)− µRT ]. (9)

†We allow the rates to take on non-integer values to solve for an optimal bit-allocation strategy. The resulting

non-integer valued rates can be interpreted as average rates over time.
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The minimization over nonnegative Ri (second term in (9)) is as follows

R∗i =















0 µ− 2λi ≥ 0 ∀i

−∞ o.w.

which gives us

min
γ≥0

γ −
∑T−1
i=0 λilog(γ) + 2

∑T−1
i=0 λilog(σi)− µRT. (10)

s.t. 0 ≤ λi ≤ µ
2 ∀i

since we know a finite solution to (7) exists. Now, if we minimize over γ by taking the derivative

of the cost function with respect to γ and setting it equal to 0, we get that

γ∗ =
∑

i

λ∗i
ln(2)

, (11)

and the dual to (7) is obtained by maximizing the lower bound as follows

max
λ0,λ1,...,λT−1,µ

∑

i λi(
1
ln(2) − log(

∑

i
λi
ln(2) )) +

∑

i 2λilog(σi)− µRT (12)

s.t. 0 ≤ λi ≤ µ
2 ∀i

µ ≥ 0.

It is fairly straightforward to show that the cost to (12) is a convex function of λ0, λ1, ..., λT−1

over a bounded set, and therefore the optimal solution occurs at a boundary. That is,
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14 SARMA S.V., DAHLEH M.A.

λ∗i =















µ
2 i ∈ I

0 i ∈ Ic,
(13)

where I ⊂ {0, 1, ..., T − 1}. Plugging (13) into (12), the dual becomes

max
µ

µ|I|
2 (

1
ln(2) − log(

µ|I|
2ln(2) ) + µ

∑

i∈I log(σi)− µRT (14)

µ ≥ 0.

One can compute the solution to (14) as

µ∗ = 2ln(2)
|I| 2

−2RT
|I|
∏

i∈I σ
2
|I|

i .

Finally, we plug µ∗ into (13) and then (9) to get

γ∗ = γNN = max {2
−2RT
|I|

∏

i∈I

σ
2
|I|

i ,maxi∈Ic
σ2i }. (15)

One can show that the dual cost equals the primal cost when

R∗i =















log(σi) + RT|I| −
1
|I|
∑

i∈I log(σi) for i ∈ I

0 o.w.

Since λ∗i = 0 for all i ∈ Ic, necessarily R∗i = 0 for i ∈ Ic since the 2nd term in (4)

must equal 0. As expected, the optimal rate allocation places more bits to components

of α whose corresponding singular values are larger. Surprisingly, if |I| = T, then R∗i =
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R + log(σi) − 1
T

∑T−1
j=0 log(σj) for i = 0, 1, ..., T − 1 and the resulting upper bound is

γNN = 2−2R{
∏T−1
i=0 σj}

T
2 = γLB.

Finally, we comment on the construction of I that minimizes γ∗. Note that for the rates Ri

to all be nonnegative, we require that

log(σi) ≥ 1
|I|
∑

i∈I log(σi)−
RT
|I| ∀i ∈ I (16)

⇒ σ2i ≥ 2
−2RT
|I|
∏

i∈I σ
2
|I|

i ∀i ∈ I.

Comparing the above inequality to the expression for γ∗ in (10), we see that in order to

minimize γ∗, we want to place all the indices corresponding to the larger singular values in

the index set I until the positivity constraints on the rates are violated.

5. CAUSAL ENCODING AND DECODING

In this section, we derive an upper bound, γCC , assuming that the encoder and decoder are

both causal. Recall that since the encoder is causal, at any time t, it can only operate on

r0, r1, ..., rt (assume it has enough memory to hold past values of r). Similarly, at time t, the

decode can only recover r0, r1, ..., rt.

We consider the causal coding scheme illustrated in Figure 5. In this scheme, the encoder

is a quantizer parameterized by a rate matrix, R, which dictates how bits are allocated to

each component in the encoder’s memory at each time step. Specifically, the rate matrix has

the following lower-triangular form.
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R =





























R00 0 0 ... ...

R01 R11 0 0 ...

R02 R12 R22 0 ...

...
...

...
. . .

. . .

R0,T−1 R1,T−1 R2,T−1 ... RT−1,T−1





























,

such that
∑

j Rij = R for i = 0, 1, ..., T − 1.

Decode
R

Update
Bounds

R

L

r_k

R L

r_k^

ENCODER

Quantizer
r_k^

DECODER

Figure 5. Causal Encoding and Decoding Scheme

To understand how the above rate matrix dictates a bit-allocation strategy, let r̂i(j) be the

quantized estimate of ri at time j. Then, R determines that at time t = 0, R00 bits are used to

quantize r0 to produce r̂0(0). At time t = 1, an additional R01 bits are used to quantize r0 to

produce r̂0(1), and R11 bits are used to quantize r1 to produce r̂1(1), and so on. The accuracy

of r̂i(j) is within ±Mi2−
∑j
k=iRik of ri for all i ≥ 0, where 2Mi is the length of the interval

in which ri belongs to as computed by the decoder at time step j. The decoder computes Mj

from its past inputs and from constraints imposed on r ∈ Cr.

To clarify, we present the following example for horizon length T = 2,

Q ! (L−1)′(L−1) =







q0 0

0 q1







, W ′W =







w00 w01

w01 w11







.
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Note that for this example the signal r = (r0 r1) obeys the following inequality q0r20+q1r
2
1 ≤ 1.

At time t = 0, the encoder receives r0 which has magnitude less than or equal to M0 = 1√
q0
.

Its quantization region is on the interval {−M0,M0} which is divided into 2R00 equal intervals

as shown in Figure 6.

0

x

r_0

-M_0 M_0

r_0
^

Figure 6. Quantization region at time t = 0

The union of the representatives for each region comprises the range of E at time 0. Specifically,

E(r0; t = 0) = r̂0(0) = nM02
−R00

for (n − 1)M02−R00 ≤ r0 < (n + 1)M02−R00 , n = ±1,±3, ...,±2R00 − 1. Thus, when the

encoder receives r0 it outputs the centroid value of the interval in which r0 falls which

is represented by R00 bits. The decoder updates its uncertainty interval for r0 as r0 ∈

[r̂0(0)−M02−R00 , r̂0(0) +M02−R00).

At time t=1, the encoder further quantizes r0 by dividing the interval [r̂0(0) −

M02−R00 , r̂0(0) + M02−R00) into 2R01 equal length intervals, and sends the representative

of the new interval in which r0 lies, denoted r̂0(1). The encoder then uses the remainder

R11 bits to quantize r1. The decoder first updates its uncertainty interval for r0 as r0 ∈

[r̂0(1) −M02−(R00+R01), r̂0(1) +M02−(R00+R01)), and its uncertainty interval for r1 as r1 ∈

[r̂1(1)−M12−R11 , r̂1(1) +M12−R11), where
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18 SARMA S.V., DAHLEH M.A.

M1 = max −1≤ρ≤1

√
1−q0(r̂0(1)+ρ2−(R00+R01)M0)2√

q1

=















√
1−q0(r̂0(0)−2−(R00+R01)M0)2√

q1
r̂0(0) ≥ 0

√
1−q0(r̂0(0)+2−(R00+R01)M0)2√

q1
r̂0(0) < 0

Equivalently,

M1 =
√
1−q0(r̂0(0)−sign(r̂0(0))2−(R00+R01)M0)2√

q1
.

Consider the illustration where T = 2 and R = 3 shown in Figure 7. At time t = 0, the

uncertainty set as computed by the decoder for r shrinks from Cr to one of 2R00 “strips” of

the 2D-ellipsoid. For example, for r0 ∈ [4M02−R00 , 6M02−R00), the uncertainty computed by

the decoder is the shaded strip shown in Figure 7, and the corresponding r̂0(0) = 5M02−R00 .

M_0

r_0

r_1

-M_0 0

4 M_0 2
-(R_00+R_01) -(R_00+R_01)

6 M_0 2

Figure 7. Intervals for r1 when r0 ∈ [4M02
−R00 , 6M02

−R00).

At time t = 1, the encoder further quantizes r0 by dividing the interval

[4M02−R00 , 6M02−R00) into 2R01 equal length intervals as shown in Figure 8. The bound

M1 =
√

1−q0(r̂0(1)−M02(−(R00+R01)))2
q1

.
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M_0

r_0

r_1

-M_0 0

4 M_0 2 6 M_0 2

M_1

-(R_00) -(R_00)

^
r_0(1)

Figure 8. Intervals for r1 when r̂0(1) is received by the decoder.

In general, knowledge of rj impacts the lower and upper bounds on rk for k ≥ j Therefore,

it appears that allocating bits to past signal components may be advantageous. It turns out

however, that when Cr is any bounded ellipsoid in IRT , it is always optimal in our worst-case

setting to allocate all R bits to the current value rk at time k, i.e., it is never optimal to

allocate bits to past values r0, r1, ..., rk−1 to quantize rk. Proof of the following theorem is

given in the appendix.

Theorem 5.1. Consider the reconstruction problem that implements the causal coding scheme

above parameterized by a rate matrix R. Assume that L (and hence Q) is diagonal‡ where

Q ! (L−1)′(L−1) =























q0

q1

. . .

qT−1























, W ′W =























w00 w01 ... w0,T−1

w01 w11 ... w1,T−1

.

.

.

.

.

.

wT−1,1 wT−1,1 ... wT−1,T−1























.

Then, the optimal solution (r∗,R∗) to minR supr∈Cr ||W (r− r̂)||
2
2 is r

∗ = 0 (the centroid of

‡We prove the theorem assuming L is diagonal for a simpler read, however, the general case holds and can be

proven using the argument outlined in the appendix.
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20 SARMA S.V., DAHLEH M.A.

Cr) and R∗ = RI. Furthermore, the resulting upper bound is

γCC =
∑T−1
i=0 wii

2−2R

qi
+ 2
∑T−1
i=0

∑T−1
j=i+1 wij

2−2R√
qiqj
.

At first, it may seem surprising that allocating only to the present component of the

signal (memoryless quantization) is optimal. However, recall that our metric is a worst-case

deterministic measure and that the worst case occurs at r = 0. If one inputs reference signal

r = 0 then no information can be extracted from each signal component. However, past

allocation may be useful for signal sets that are non-symmetric or finite, or for different

performance metrics and will be explored in future work.

6. NONCAUSAL ENCODING AND CAUSAL DECODING

In this section, we derive an upper bound, γNC , by constructing a modified SVD Coding

Scheme in which the encoder is noncausal, i.e., has access to the entire signal r ∈ Cr at time

t = 0, but the decoder is causal. The scheme we propose, sketched in Figure 9, is similar to

that described in section 4 with the restriction that the decoder can only process R bits of

information at each time step. As a result, the rotator operator p remains unchanged from

that defined in section 4 (p : IRT → IRT such that p(r) = V ∗Lr, where WL = UΣV ∗), but the

quantizer operator q changes.

At each time step t, the quantizer has R bits that it allocates to the entire vector α. The

bit-allocation is determined by the following rate matrix
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r α
qp

W,L

ENCODER

R α

q -1p-1

^
W,LR R

DECODER

^r_k
Pull out kth
Component

Figure 9. SVD Scheme for Noncausal Encoding and Causal Decoding

RNC =

































R01 R12 ... R0,T−1

R11 R12 R1,T−1

R21 R22 R2,T−1

...
...

...

RT−1,1 RT−1,2 RT−1,3 ... RT−1,T−1

































,

such that
∑

j Rij = R for i = 0, 1, ..., T − 1. More specifically, let Ri(t) =
∑t
j=0 Rji for

i = 0, 1, ..., T −1 and t = 0, 1, ..., T −1. Then, at time t, a total of Ri(t) bits are allocated to αi

to produce α̂i(t) for i = 0, 1, ..., T−1.The decoder then produces an estimate of the entire signal

r̂(t) = L−1V α̂(t) and pulls out the kth component. Note that r̂(t) = (r̂0(t), r̂1(t), ...., r̂T−1(t))

and the worst-case cost is then
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22 SARMA S.V., DAHLEH M.A.

sup
r∈Cr

||W (r − r̂)||22 = sup
{z| ||z||2≤1}

||WL(ẑ − z)||22

= sup
{z| ||z||2≤1}

||UΣV ∗(ẑ − z)||22

= sup
{α| ||α||2≤1}

||Σ(α̂ − α)||22 (17)

= sup
{α| ||α|2≤1}

T−1
∑

i=0

(α̂i − αi(i))
2σ2i (18)

≤ sup
{α| ||α|2≤1}

T−1
∑

i=0

2−2Ri(i)σ2i |αi|
2 (19)

≤ max
i
2−2Ri(i)σ2i sup

{α| ||α|2≤1}

T−1
∑

i=0

|αi|
2 (20)

= max
i
2−2Ri(i)σ2i . (21)

To derive the upper bound γNC using the above SVD coding scheme, we construct rate

matrix RNC to solve the following optimization problem:

min
RNC

maxi 2−2Ri(i)σ2i (22)

s.t.
∑T−1
j=1 Rij = R for i = 0, 1, ..., T − 1

Rij ≥ 0 ∀i, j.

Note that the above optimization problem is similar to (6) which computes γNN . We note

that there may exist singular values σi for i = 0, 1, ..., T − 1 and channel rates R that may

result in γNC = γNN . In section 7.2, we illustrate a practical navigation control problem that

gives rise to a noncausal encoder and causal decoder pair.
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7. FINITE-HORIZON CONTROL APPLICATIONS

In this section, we show how the above analysis of general finite-length signal reconstruction

enables us to quantify bounds on performance for two finite-horizon finite-rate feedforward

control problems.

7.1. Finite-Horizon Tracking

A direct application for the case where the encoder and decoder are both causal is when one

wants to track a finite-length reference command in real-time (finite-horizon cost) using finite-

rate measurements. We consider the tracking set up shown in Figure 10 where H is a remote

LTI system (invertible) with state-space description ss(A,B,C,D) to be controlled, and would

like to minimize supr∈Cr ||W (r − y)||
2
2.

L E D
r Rz u

H
y

Figure 10. Finite Horizon Tracking Set Up

In section 8, we compute and compare the universal lower bound (γLB) to the non-causal

upper bound (γNN ) and the causal upper bound (γCC) for different system parameters R,L,

and W.

7.2. Finite-Horizon Navigation

A less obvious application for the case where the encoder is noncausal and the decoder is causal

is when one wants to navigate the state of a remote system under finite-rate measurements of

its initial condition.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 00:1–19

Prepared using rncauth.cls



24 SARMA S.V., DAHLEH M.A.

Assume that the remote system has some unknown initial condition x0 which lies in a known

bounded ellipsoid in IRn and we want to steer the state of the remote system as close to the

origin as possible under the constraint that the control input can take on at most 2RT values

after T time steps, i.e., the command is transmitted through a finite-rate noiseless channel.

This navigation problem can be analyzed as the cascade of systems shown in Figure 11.

L E D
Rz ux 0

H
x

Figure 11. Finite Horizon Navigation Set Up

Specifically,

• z ∈ IRn s.t. ||z||2 ≤ 1,

• L : IRn → IRn is a linear operator,

• E : IRn → {0, 1}RT is an arbitrary operator (encoder) that maps a real vector to a

sequence of 2RT binary symbols,

• R is the channel rate for the finite-rate noiseless channel that maps {0, 1}RT → {0, 1}RT ,

• D : {0, 1}RT → IRT is an arbitrary operator (decoder) that maps a sequence of 2RT

binary symbols to a real vector, and

• H is a causal SISO LTI system with state-space representation H = ss(A,B, I, 0) with

(A,B) reachable and A is full rank; and the state vector at time t is xt.

Our navigation metric is

min
(E,D)

sup
x0∈Cx0

||xT ||22. (23)
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We next compute a universal lower bound for (23) in a similar fashion as that computed

in section 3. First note that xT = ATx0 +Mu, where Mu =
∑T−1
i=0 A

−(i+1)Bui. Since the

system H is reachable, M is a n × T full rank matrix, and if we know x0 exactly then we

can construct a control input u such that Mu = −ATx0 which would make xT = 0. Under

finite-rate constraints, we must construct u such that Mu = −AT x̂0, where x̂0 can take on at

most 2RT values in Cx0 . The corresponding metric is then min(E,D) supx0∈Cx0 ||A
T (x0− x̂0)||22,

which looks like our general reconstruction error metric min(E,D) supr∈Cr ||W (r − r̂)||
2
2 with

W replaced with AT and r replaced with x0. The difference is that AT is an n×n matrix while

W is a T × T matrix and r ∈ IRT while x0 ∈ IRn. The time horizon over which the metric is

computed for both problems is T . We state the following theorem.

Theorem 7.1. Given the navigation set up defined above, assume that det(A) += 0, det(L) +=

0. Then,

γNAVLB = 2−2RT/n{|det(L)| |det(AT )|} 2n .

Proof. The proof follows that given in Theorem 3.1. The set of all possible initial conditions,

Cx0 ! {x0 ∈ IR
n|x0 = Lz, z′z ≤ 1} = {x ∈ IRn | (L−1x0)′(L−1x0) ≤ 1} is a bounded ellipsoid

in IRn centered at the origin with volume η det{((L−1)′(L−1))−0.5} = η|det(L)|, where η is the

volume of a unit ball in IRn. Over a horizon T , the channel sends a total of RT bits which

limits the decoder output to take on no more than 2RT values. That is, u is chosen such that

Mu = −AT x̂0, where x̂0 can take on at most 2RT values in Cx0 . Note that is always a solution

u since M is full rank.

Consider a selection of reconstructed estimates x̂0
1, x̂0

2, ..., x̂0
2RT , which correspond to

inputs u1, u2, ..., u2
RT

, respectively. We must then map each x0 ∈ Cx0 to exactly one x̂0
i,
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26 SARMA S.V., DAHLEH M.A.

i = 1, 2, ..., 2RT . Such a mapping induces a partition on Cx0 . In particular, define Pi = {x0 ∈

Cx0 | x0 → x̂0
i} for i = 1, 2, ..., 2RT . Now, suppose that the selection x̂01, x̂02, ..., x̂02

RT

were

chosen such that ||AT (x0 − x̂0i)||22 ≤ γ for all x0 ∈ Pi, and for all i. Then necessarily

Pi ⊆ Sγx̂0i ! {x0 ∈ IR
n | (x0 − x̂0i)′(AT )′AT (x0 − x̂0i) ≤ γ}. Note that Sγ

x̂0i
is a bounded

ellipsoid in IRn centered at point x̂0
i with volume η(

√
γ)ndet{((AT )′AT )−0.5} = η

√
γn

|det(AT )| .

Since Pi ⊆ Sγx̂0i for each i = 1, 2, ..., 2
RT , it is necessary that 2RT bounded ellipsoids (Sγx̂0)

cover the set Cx0 . This implies that 2RT × volume(S
γ
x̂0
) ≥ volume(Cx0). Equivalently,

2RT ≥ volume(Cx0 )
volume(Sγ

x̂0
) =

|det(L)| |det(AT )|
(
√
γ)n .

After rearranging terms, we get that γNAVLB = 2−2RT/n{|det(L)| |det(AT )|} 2n .

We note that this lower bound can be computed from the counting argument presented in [28]

where asymptotic stability under finite-rate measurements is studied for the case T →∞ and

A being unstable. We make a few observations regarding γNAVLB :

• γLB depends on L (class of initial conditions), n (the dimension of the system state), T

(performance horizon), and R (channel rate).

• If A is stable, then necessarily the lower bound approaches 0 and T grows large since AT

is approaching 0. In this case, for large T one does not need to apply a control input u

and the state will approach the origin.

• It is helpful (as we will see when we compute upper bounds in section 8) to rewrite the

lower bound in terms of the singular and eigenvalues of the matrix ATL as follows:

γLB = 2−2RT/n{
∏n−1
i=0 σi(ATL)}

2
n = 2−2RT/n{

∏n−1
i=0 |λi(ATL)|}

2
n .
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Now, we show how we implement the coding scheme described in section 6 to compute an

upper bound,γNAVNC , for (23). Specifically, we consider the following navigation error

min
RNC,u

sup
x0∈Cx0

||xT ||22. (24)

where RNC is a rate matrix introduced in section 6. Note that xT = ATx0 + Mu =

AT (x0 − x̂0) +Mu+AT x̂0, where again Mu =
∑T−1
i=0 A

−(i+1)Bui. Therefore,

min
RNC , u

sup
x0∈Cx0

||xT ||2 = min
RNC,u

sup
x0∈Cx0

||AT (x0 − x̂0) +Mu+AT x̂0||2 (25)

≤ min
RNC

sup
x0∈Cx0

||AT (x0 − x̂0)||2 +min
u
||Mu+AT x̂0||2. (26)

The two terms in the last inequality above is computed by first applying the coding

scheme presented in section 6 to compute the T × n rate matrix, R∗NC , that minimizes

supx0∈Cx0 ||A
T (x0 − x̂0)||2, and then computing the control input u that minimizes ||Mu +

AT x̂0||2 given R∗NC . This would give the following upper bound on the navigation error (24)

minRNC,u supx0∈Cx0 ||xT ||
2
2 ≤ γNAVNC +minu ||Mu+AT x̂0||2,

where γNAVNC is the optimal cost to

min
RNC

maxi 2−2Ri(i)σ2i (27)

s.t.
∑n
j=1Rij = R for i = 0, 1, ..., T − 1

Rij ≥ 0 ∀i, j
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and σi is the i’th singular value of ATL. Finally, minu ||Mu+AT x̂0||2 is solved assuming the

causal decoder computes the control input ut for each time step t by solving the following

optimization problem for t ≥ 0:

min
ut

supα∈St ||AUΣα+
∑t−2
i=0 A

t−1−iBui +But||2 (28)

s.t. St = {α ∈ IRn| |αi − α̂i(t)| ≤ |αi|2−Ri(t) i = 1, 2, ..., n}.

The solution to (28) can be computed easily. First, we use the property that the supremum

of a convex function over a bounded interval occurs at a boundary, which implies that α∗(t),

the solution to supα∈St ||AUΣα +
∑t−2
i=0 A

t−1−iBui + But||2, belongs to the following set of

vectors:
























α̂1(t)± |α1|2−R1(t)

α̂2(t)± |α2|2−R2(t)

. . .

α̂n(t)± |αn|2−Rn(t)

























.

Then, we minimize ||AUΣα∗(t) +
∑t−2
i=0 A

t−1−iBui + But||2 by taking its derivative with

respect to ut and then setting it to 0. The optimal control input at time t is u∗t =

(AUΣα∗(t)+
∑t−2
i=0 A

t−1−iBui)
′B

(B′B) .

8. PERFORMANCE COMPARISON

In this section, we fix H to be an LTI system and quantify tradeoffs between time horizon and

performance for tracking and navigation.
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8.1. Tracking Performance

To analyze finite-horizon tracking performance we fix H and compute γLB, γNN , and γCC

summarized in Table 1 for different rates (R), signal sets (L) and different time horizons T.

Specifically, we consider diagonal matrices L = diag(σ0, σ1, ..., σT−1) when

1. σi =
(0.5)i

(0.5)T for i = 1, 2, ..., T,

2. σi =
(0.9)i

(0.9)T for i = 1, 2, ..., T,

3. σi = (1.1)i for i = 1, 2, ..., T,

and vary the channel rate R ∈ {5, 10, 15} and T = 1, 2, ..., 25. The expressions for each bound

for the case where W = I are given in Table 1 below.

Encoder/Decoder Bound

Universal γLB = 2−2R
∏T−1
i=0 σ

2
T
i

Noncausal/Noncausal γNN = max {2
−2RT
|I|
∏

i∈I σ
2
|I|

i ,maxi σ
2
i }.

Causal/Causal γCC =
∑T−1
i=0 2

−2Rσ2i

Figure 12 illustrates the bounds for these different cases and we make the following
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observations.
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Figure 12. Top: Logarithm of bounds for σi =
(0.5)i

(0.5)T
for i = 1, 2, ..., T, Middle: Logarithm of bounds

for σi =
(0.9)i

(0.9)T
for i = 1, 2, ..., T, Bottom: Logarithm of bounds for σi = (1.1)i for i = 1, 2, ..., T .

• As expected, performance increases as the channel rate R increases since the bounds all

decrease as R increases.

• When the eigenvalues of L are exponentially decaying, i.e., λi = (β)i for i = 0, 1, ..., T−1,

and for some 0 < β < 1, then the lower bound approaches 0 as T → ∞. This can be
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verified by showing that the ratio γLB(T+1)
γLB(T )

=
{
∏T
i=0 β

i}
2

T+1

{
∏T−1
i=0 βi}

2
T
= β < 1. The noncausal

upper bound is larger than both the lower bound and the causal upper bound.

• When the eigenvalues of L are exponentially increasing a similar argument as above

shows that the lower bound approaches∞ as T →∞.

• The upper bound γNN is either equal to or comparable to the lower bound γLB. γNN

deviates from the lower bound when T decays very rapidly (case 1 when the singular

values decay by a factor of 10 as T increases) in our examples. The bounded ellipsoid

signal set in this case is dominated by the major axis. Whereas, when the signal set looks

more symmetric like a sphere, γNN ≈ γLB.

8.2. Navigation Performance

We now compare the lower and upper navigation bounds on γNAV to each other for different

LTI causal systemsH = ss(A,B,C,D), and for different time horizons T.We consider diagonal

4× 4 (n = 4) state-transition matrices A = diag(a0, a1, a2, a3), an L that is generated by LTI

system ss(Al, Bl, Cl, Dl), and we fix the rate R = 5. Under such conditions,

γNAVLB = 2−2RT/n(Dl)2{
∏n−1
i=0 |ai|T }

2
n .

Figures 13 and 14 illustrate the bounds for the following scenarios.

1. L = ss(0.99, 0.99, 1, 1), A = diag([0.2 0.8 0.9 0.8]), and B = [1 1 1 1]′.

2. L = ss(0.01, 0.01, 1, 1), and A and B are the same matrices as those generated in 1.

3. L = ss(0.99, 0.99, 1, 1), A = diag([1.2 1.8 1.9 1.8]), and B = [1 1 1 1]′.

4. L = ss(0.01, 0.01, 1, 1), and A and B are the same matrices as those generated in 3.

We make a few observations.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2008; 00:1–19

Prepared using rncauth.cls



32 SARMA S.V., DAHLEH M.A.

4 5 6 7 8 9 10
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 
Lower_Bound
Causal_(E,D)_UB

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10−3

 

 

Lower_Bound
Causal_(E,D)_UB

Figure 13. Left: Bounds for L = ss(0.99, 0.99, 1, 1) and A stable, Right: Bounds for L =

ss(0.01, 0.01, 1, 1) and A stable
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Figure 14. Left: Bounds for L = ss(0.99, 0.99, 1, 1) and A unstable, Right: Bounds for L =

ss(0.01, 0.01, 1, 1) and A unstable,

• Stability of A: All bounds decay when A is stable as T grows. When A is unstable, then

the causal upper bound only decays when the pole of the system that generates L is

closer to the unit disk.
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• Pole of L: When the pole of the system that generates L is closer to the origin, the

singular values of L are all comparable and therefore using the SVD basis to represent

x0 in the causal coding scheme is less helpful. Therefore, we expect causal coding

performance to deteriorate, which it does. Put another way, when L has a pole close

to the unit disk, then the ellipsoid set Cx0 has more structure, that is knowing some

components of x0 give a lot of information about the remaining component of x0. When

the pole of L is closer to 0, then Cx0 looks more and more like an n-dimensional sphere.

9. CONCLUSIONS

In this paper, we first present a deterministic approach for reconstructing finite-length signals

that are transmitted through a finite-rate noiseless channel. We allow the class of signals to

belong to a bounded ellipsoid and derive a universal lower bound on a worst-case reconstruction

error. We then compute upper bounds on the error that arise from different coding schemes.

In particular, we study how imposing causality on the encoder and decoder impact the

reconstruction error. We then map our general reconstruction problem into two important

control problems in which the plant and controller are local to each other, but are together

driven by a remote reference signal that is transmitted through a finite-rate noiseless channel.

Our reconstruction framework allows us to study finite-horizon control and quantify tradeoffs

between time horizon and performance accuracy.
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APPENDIX

The proof for theorem 5.1 is given below.

Proof.

We prove the theorem assuming L is diagonal for a simpler read, however, the general case

holds and can be proven using the argument outlined below.

1. We compute an upper bound, U, for supr∈Cr ||W (r − r̂)||
2
2.

2. We show that r∗ = 0 achieves U and compute ||W (r∗ − r̂∗)||22 as a function of the rate

matrix.

3. We show that minimizing supr∈Cr ||W (r − r̂)||
2
2 = ||W (r∗ − r̂∗)||22 over all possible rate

matrices gives rise to a diagonal rate matrix.

Consider the set up for where L (and hence Q) is diagonal.

Q ! (L−1)′(L−1) =























q0

q1

. . .

qT−1























, W ′W =























w00 w01 ... w0,T−1

w01 w11 ... w1,T−1

...
...

wT−1,1 wT−1,1 ... wT−1,T−1























.

Then, Cr = {r ∈ IR2|
∑T−1
i=0 qir

2
i ≤ 1}. Now, since r is transmitted in a causal manner, the

class of signals forces |ri| ≤
√

1−
∑i−1
k=0 qkr

2
k

qi
for i = 0, 1, 2, , , T − 1. At the decoder end, the
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transmitted signal (r0, r1, ..., ri) at time t = i is not perfectly known. Therefore, it computes

each component’s interval of uncertainty as rj ∈ [r̂j(i)−Mj2−Rj(i), r̂j(i) +Mj2−Rj(i)), where

Mj =

√

1−
∑j−1
k=0 qk(r̂k(i)− sign(r̂k(i))Mk2−Rk(i))2

qj
j ≤ i, (29)

and Rk(i) =
∑i
j=k Rkj .

§ Next, we note that the encoder operator at time t = i is

E(rj ; i) = r̂j(i) = njMj2
−Rj(i) (30)

nj ∈ Sj ! {±1,±3, ...,±2Rj(i) − 1},

for (nj − 1)Mj2−Rj(i) ≤ rj < (nj + 1)Mj2−Rj(i). We now restrict ourselves to this case of

r ≥ 0 due to symmetry in Cr and plug (16) into (15) to get

Mj =

√

1−
∑j−1
k=0 qk((nk − 1)Mk2−Rk(i))2

qj
j ≤ i, nj ∈ Sj. (31)

Note that Mj is a function of (n0, n1, ..., nj−1). Now, we can compute an upper bound on the

cost function. Since the largest error |rj − r̂j(j)| ≤Mj2−Rjj for all j, we get that

§Note that Mi is a function of r̂0(i), r̂1(i), ..., r̂i(i) and Ri, which is the first i × i elements of the full T × T

rate matrix. We suppress these dependencies for an easier read.
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||W (r − r̂)||22 ≤
∑T−1
i=0 wii(Mi2

−Rii)2 +
∑T−1
i=0

∑T−1
j=i+1 wij [Mi2

−Rii ][Mj2−Rjj ]. (32)

=
∑T−1
i=0 C1,iM

2
i + 2

∑T−1
i=0

∑T−1
j=i+1 C2,ijMiMj ,

where C1,i = wii2−2Rii , and C2,ij = 2wij2−(Rii+Rjj). To maximize the upper bound over

all nk ∈ Sk ∀k, we can take partial derivatives of f(n0, ..., nT−1) =
∑T−1
i=0 C1,iM

2
i +

2
∑T−1
i=0

∑T−1
j=i+1 C2,ijMiMj with respect to nk assuming nk is continuous for k = 0, 1..., T − 1,

and set each to zero to see if the corresponding n∗k’s lie in the corresponding sets Si’s. When

we take partial derivatives, we get

∂f
∂nk
= 2
∑T−1
i=k+1 C1,iMi

∂Mi
∂nk
+ 2
∑T−1
i=k+1

∑T−1
j=i+1 C2,ij(

∂Mi
∂nk
Mj +Mi

∂Mj
∂nk
).

After some algebra, one can show that n∗k = 1 ∈ Sk is a unique solution to
∂f
∂nk
= 0 and

∂2f
∂n2k
|n∗k < 0, for k = 0, 1, ..., T − 1. Alternatively, one can show that the Mj ’s (17) are always

positive and concave functions of n0, n1, ..., nj−1 for all j. Furthermore, Mj is maximized for

nk = 1 k = 0, 1, , , , j − 1. Since the upper bound (18) is a positive linear combination of such

functions or positive linear combinations of products of such functions, the upper bound itself

is concave maximizing at nk = 1 k = 0, 1, , , , j − 1.

We then get

sup
r∈Cr
||W (r − r̂)||22 ≤

T−1
∑

i=0

wii(
2−Rii
√
qi
)2 + 2

T−1
∑

i=1

T−1
∑

j=i+1

wij

√

1

qiqj
2−(Rii+Rjj) ! U.

Finally, it is straightforward to show that when r∗i = 0, for i = 0, 1, ..., T − 1, r̂∗i (i) =

Mi2−Ri(i), and ||W (r∗− r̂∗)||22 = U. Therefore, supr∈Cr ||W (r− r̂)||
2
2 for any given rate matrix

occurs at the centroid of the ellipsoid.
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Now, we minimize supr∈Cr ||W (r − r̂)||
2
2 over all rate matrices as follows:

minR
∑T−1
i=0 wii

2−2Rii
qi
+ 2
∑T−1
i=0

∑T−1
j=i+1 wij

2−(Rii+Rjj )√
qiqj

(33)

s.t.
∑i
j=0 Rij = R i = 0, 1, ..., T − 1

Rij ≥ 0 ∀i, j.

Since the off diagonal entries in R do not enter the cost and only enter in the constraints, we

get that a lower bound to the optimal cost of (19) is the optimal cost to

minRii
∑T−1
i=0 wii

2−2Rii
qi
+ 2
∑T−1
i=0

∑T−1
j=i+1 wij

2−(Rii+Rjj)√
qiqj

(34)

s.t. 0 ≤ Rii ≤ 0 ∀i.

It is straightforward to show that the optimal solution to (20) is Rii = R for all i. Finally,

Rii = R and Rij = 0 for all i, j, results in the cost of (19) to achieve the lower bound cost of

(19). Therefore, the optimal rate matrix is diagonal and

γCC =
∑T−1
i=1 wii

2−2R

qi
+ 2
∑T−1
i=0

∑T−1
j=i+1 wij

2−2R√
qiqj
.
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