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Abstract

The problem of stabilizing a second-order SISO LTI system of the form ẋ = Ax + Bu, y = Cx with feedback of the form u(x) = v(x)Cx is
considered, where v(x) is real-valued and has domain which is all of R2. It is shown that, when stabilization is possible, v(x) can be chosen
to take on no more than two values throughout the entire state-space (i.e., v(x) ∈ {k1, k2} for all x and for some k1, k2), and an algorithm for
finding a specific choice of v(x) is presented. It is also shown that the classical root locus of the corresponding transfer function C(sI−A)−1B

has a strong connection to this stabilization problem, and its utility is demonstrated through examples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of hybrid systems is an area that has pervaded
research for more than a decade (see, e.g., [2–6,8,9,11,13,14]).
In particular, stabilization of continuous time systems via hybrid
feedback is a problem that has received much attention in the
recent literature. Artstein first addressed this question through
examples [1]. Litsyn et al. show in [10] that the linear system

ẋ = Ax + Bu, y = Cx (1)

with (A, B) reachable and (C, A) observable can be stabilized
via a hybrid feedback controller which uses a countable num-
ber of discrete states (and no continuous states) and which only
depends upon the output y as opposed to the entire continuous
state x. A natural question arises as to whether a hybrid feed-
back controller can be designed which uses a finite number of
states instead. For the most part, the answer to this question is
still open, though a partial answer has been given by Hu et al.
in [7] based upon the so-called conic switching laws of [15,16].
In [7], it is shown that, for a certain class of single-input,
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single-output (SISO) second-order systems which are reachable
and observable, there exists a feedback control law of the form
u(x) = v(x)Cx where

v(x) =
{

k1 if x1x2 !0,

k2 if x1x2 < 0
(2)

with x = [x1 x2]′ such that the resulting closed-loop system

ẋ = Ax + v(x)BCx (3)

is globally exponentially stable. A control law of the form (2)
is desirable as it can be implemented as a switch between two
static gains which multiplies the output y = Cx. Note that, in
general, the above strategy does not always work as the result of
[10] sometimes requires a more complicated hybrid feedback
structure to achieve stability, even when the system described
by (1) is reachable and observable.

Example 1.1. Consider (1) with

A =
[

2 −1
−1 2

]
, B =

[
0
1

]
, C = [0 1 ] .

This system is reachable and observable, but (3) is not stable for
any real-valued choice of v(x) ≡ v(x1, x2), not just v(x1, x2) of
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the form (2). To see this, first note that the region x1 < 0, x2 > 0
is invariant under the flow of (3) for any choice of v(x1, x2).
Indeed, when x1 = 0, ẋ1 = −x2 < 0, and when x2 = 0, ẋ2 =
−x1 > 0 for all choices of v(x). Moreover, when x1(0) < 0 and
x2(0) > 0, ẋ1 = 2x1 − x2 < 0, which means that x1(t) is strictly
decreasing, and, hence, does not decay to zero regardless of the
choice of v(x1, x2).

The goal of this paper is to answer the following questions:
under what conditions on A ∈ R2×2, B ∈ R2×1 and C ∈ R1×2

can the closed-loop system (3) be made asymptotically stable
for some choice of v(x1, x2)? And, moreover, when stability is
achievable, how may one design v(x1, x2) explicitly? As it turns
out, the answer to the first question has a strong connection
to the classical control notion of root locus. Essentially, if one
considers control laws of the form v(x1, x2)=k for some k ∈ R,
then the system (3) is stabilizable in only one of two situations:

• There exists a value of k such that the matrix A + kBC is
Hurwitz and, hence, (3) is exponentially stabilizable via static
output feedback.

• There is no value of k for which A + kBC is Hurwitz, but
there does exist a value of k for which the eigenvalues of
A + kBC are complex. In this case, v(x1, x2) can be chosen
to take on only two values k1 and k2 throughout the entire
state-space, i.e., v(x1, x2) ∈ {k1, k2}, where k1 and k2 are
appropriately selected real constants, and global exponential
stability can be achieved.

A third situation can exist in which there exists no value of k
for which A+ kBC is Hurwitz and the eigenvalues of A+ kBC
are real for all k. It is precisely these situations for which no
choice of v(x1, x2) will yield asymptotic stability.

Note that, unlike [10], the switching strategies employed here
and in [7] in general require full knowledge of the state x of (1)
rather than just knowing the output y = Cx. While we will not
formally show this here, an appropriate first-order LTI observer
of the plant state x can be designed to implement a slight variant
of the control laws we discuss here (see [12] for details of this
work). The work we discuss here is a necessary precursor to
this more general problem, much like the linear system pole
placement problem via state feedback is a precursor to the pole
placement problem via output feedback.

The structure of the paper is as follows. First, we examine
two particular case studies in which the form of the B and C
vectors have special structure and analyze the conditions on
the matrix A which will guarantee stability. Also, we will de-
rive explicit forms for v(x1, x2) which can be used to achieve
stability when it is possible to do so. Next, we will show that,
through appropriate coordinate transformations, all nontrivial1

problems can be transformed into either one of these two case
studies and then will use this to establish the main result. Fi-
nally, we explore a general method of designing such controllers

1 By “nontrivial”, we refer to problems in which neither B nor C is
identically 0.

(when they exist) and provide several examples to illustrate the
methodology.

2. Case studies

In this section, we explore two specific case studies in which
the A, B, and C matrices of (1) have particular structures. Using
appropriate coordinate transformations, we will then relate the
results of this section to derive the main result for general A,
B, and C.

2.1. Case 1

We first assume a system of the following structure:

A =
[
a b

c 0

]
, B =

[
0
1

]
, C = [0 1 ] , (4)

where a, c ∈ R, and b!0. Here, (3) takes the form
[

ẋ1
ẋ2

]
=

[
a b

c v(x1, x2)

] [
x1
x2

]
. (5)

We summarize the possibilities for stabilizability as a function
of the parameters a, b, and c in the proposition below:

Proposition 2.1. For system (5):

(1) If bc = 0, then (5) is exponentially stabilizable via static
output feedback if a < 0 and is not stabilizable for any
choice of v(x1, x2) otherwise.

(2) If b > 0 and c > 0, when v(x1, x2) = k for some constant
k, then the eigenvalues of (5) are real for all k, and (5) is
either exponentially stabilizable via static output feedback
or is not stabilizable by any choice of v(x1, x2).

(3) If b > 0 and c < 0, when v(x1, x2)= k for some constant k,
then the eigenvalues of (5) are not real for all k, and (5) is
exponentially stabilizable either by static output feedback
or by feedback of the form

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x '= 0

for some appropriate choice of w1, k1, and k2.

We prove each part separately below.

Proof of Part 1. Note that if b = 0, the system described by
(4) has an uncontrollable mode. In this case, stabilizability is
possible if and only if a < 0 and can be achieved via v(x1, x2)=
k, where k < 0. In a similar vein, if c=0, (4) has an unobservable
mode. Noting that any initial condition with x2(0) = 0 satisfies
x2(t)=0 for all t, it is again clear that stabilizability is possible
if and only if a < 0 and can be achieved by setting v(x1, x2) to
a negative real constant.

Proof of Part 2. If we set v(x1, x2) = k for some constant k,
the characteristic polynomial of (5) is given by

s2 − (a + k)s + ak − bc. (6)
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First note that both roots of (6) are real for any value of k since
the discriminant (a + k)2 − 4ak + 4bc = (a − k)2 + 4bc > 0 for
all k. Now, both eigenvalues of (5) can be placed in the open
left half plane if and only if there exists a value of k such that
a + k < 0 and ak − bc > 0. When a < 0, there always exists a
value of k which satisfies both of these constraints and, hence,
(5) is stabilizable via static output feedback.

When a!0, there is no value k which can satisfy both in-
equalities simultaneously when b > 0 and c > 0. Hence, (5) can-
not be stabilized via static output feedback. To show that (5)
cannot be stabilized for any choice of v(x1, x2), first recognize
that, when b > 0 and c > 0, the conic region x1 > 0, x2 > 0 is
invariant under the flow of (5) for any choice of v(x1, x2). To
show this, assume that the statement is not true, and that there
exists a trajectory with x1(0) > 0, x2(0) > 0 that leaves the open
first quadrant by crossing the axis x1 = 0. At the point of time
that the trajectory crosses the x1 axis, the corresponding value
of ẋ1 is given by bx2 > 0 which means that x1(t) must be in-
creasing when it crosses the x1 axis, an obvious contradiction.
Similarly, if there exists some choice of v(x1, x2) such that a
trajectory escapes the open first quadrant by crossing the x2
axis, at the time of crossing, ẋ2 = cx1 > 0.

If a!0, b > 0, c > 0, then (5) is not stabilizable for
any choice of v(x1, x2) for essentially the same reason as
was presented in Example 1.1. By virtue of the above, if
x1(0) > 0, x2(0) > 0, then ẋ1 = ax1 + bx2 > 0, which means
that x1(t) is always increasing for any choice of v(x1, x2).

Proof of Part 3. When c < 0, the roots of (6) can be made
to lie in the open left half plane when a < 0. When a!0, the
roots can also be made to lie in the open left half plane if
and only if a2 < − bc. Hence, (5) is not static output feedback
stabilizable if a2 ! − bc, yet, as we now show, there exists a
choice of v(x1, x2) which yields global exponential stability.
Closer examination of the characteristic polynomial (6) with
b > 0, c < 0, and a2 !−bc yields the following two statements:

• The roots of (6) are complex with nonnegative real part
whenever a − 2

√
−bc < k < a + 2

√
−bc.

• There exists a negative real root of (6) whenever k < − a.

Since the roots of (6) can be calculated explicitly as

s = a + k

2
±

√
(a − k)2 + 4bc

2
, (7)

it is clear that the roots are complex whenever the first bulleted
item holds. Moreover, the real part of the roots is nonnegative
since, due to the fact that a2 ! − bc,

a + k

2
> a −

√
−bc!0.

Now, when k < − a, the discriminant satisfies

(a − k)2 + 4bc > 4a2 + 4bc!0,

hence, the roots are real. Moreover, because the sum of the
roots (a + k)/2 < 0, one root must be negative.

Fig. 1. Illustration of stabilization algorithm for a system which is not static
output feedback stabilizable.

Informally speaking, to find a choice of v(x1, x2) which
asymptotically stabilizes (5), we use the following basic de-
sign strategy. The above analysis shows that there exists a value
of k1 which yields a real eigenvalue !1 < 0 and corresponding
real eigenvector q1. If we set v(x1, x2) = k1 along q1, then any
initial condition which lies along q1 will decay exponentially
with rate !1. For all other values of x1 and x2 which do not
lie along q1, we find a value k2 for which the eigenvalues are
complex. If we set v(x1, x2) = k2 everywhere else in the state-
space, then any initial condition which does not lie along q1
will rotate until it eventually “hits” q1 and will decay exponen-
tially thereafter. This idea is illustrated graphically in Fig. 1.
Here, the dotted line represents the stable eigenvector q1 when
v(x1, x2) = k1, the dashed line represents a sample phase por-
trait with initial condition x(0) when v(x1, x2)=k2 throughout
the entire state-space, and the solid curve represents the trajec-
tory with initial condition x(0) when v(x1, x2) = k1 along q1
and v(x1, x2) = k2 everywhere else in the state-space.

Before we prove this result formally, we need the following
lemma:

Lemma 1. Consider the linear system ż=Az where A ∈ R2×2

has two complex conjugate eigenvalues. Then for any w ∈ R2

and any z(0), there exists t0 ∈ R such that w′z(t0) = 0.

Proof. If w′z(0) = 0, then the statement immediately follows.
Otherwise, without loss of generality, assume that w′z(0) > 0.
Because the eigenvalues of A are complex, the entries of the
corresponding state transition matrix exp(At) are linear combi-
nations of the terms exp("0t) cos(#0t) and exp("0t) sin(#0t)

where #0 > 0. Hence,

w′z
(

$
#0

)
= − exp

(
"0$
#0

)
w′z(0) < 0.

By continuity of z(t), it then follows that there exists some time
t0 < $/#0 such that w′z(t0) = 0. "
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We now formally prove that the above informal description
yields an exponentially stable system.

Proposition 2.2. For system (5) with b > 0, c < 0, and
a2 ! − bc, suppose that k1 is chosen such that (5) with
v(x1, x2) = k1 has a stable eigenvector q1 with correspond-
ing eigenvalue !1 < 0, and k2 is chosen such that (5) has two
complex-conjugate eigenvalues. Let w1 satisfy w′

1q1 = 0 and
consider

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x '= 0.

Then (5) is globally exponentially stable for the above choice
of v(x1, x2) with decay rate !1.

Proof. If x(0)=%q1 for some % ∈ R, then x(t)=exp(!1t)x(0)

and the statement holds. Otherwise, w′
1x(0) '= 0, and, by virtue

of Lemma 1, there exists some value of t0 such that w′
1x(t0)=0.

In other words, x(t0) = %q for some % ∈ R. Now, x(t) =
exp(!1(t − t0))x(t0) for all t > t0. "

2.2. Case 2

Now we assume a system of the following structure:

A =
[
a b

0 c

]
, B =

[
0
1

]
, C = [1 0 ] , (8)

where a, c ∈ R, and b!0. Here, (3) takes the form
[

ẋ1
ẋ2

]
=

[
a b

v(x1, x2) c

] [
x1
x2

]
. (9)

We summarize the possibilities for stabilizability as a function
of the parameters a, b, and c in the proposition below:

Proposition 2.3. For system (9):

(1) If b = 0, then (9) is exponentially stabilizable via static
output feedback if a < 0 and c < 0 and is not stabilizable
for any choice of v(x1, x2) otherwise.

(2) If b > 0, when v(x1, x2)=k for some constant k, the eigen-
values of (9) are not real for all k, and (9) is exponentially
stabilizable either by static output feedback or by feedback
of the form

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x '= 0

for some appropriate choice of w1, k1, and k2.

We prove each part separately below.

Proof of Part 1. If b = 0, the system described by (8) is both
uncontrollable and unobservable. In this case, (9) is stabilizable
if and only if a < 0 and c < 0. That (9) is unstable if a!0 is
clear; if c!0, then any solution with initial condition x1(0)=0
satisfies ẋ2 = cx2 and, hence, (9) is unstable for any choice of
v(x1, x2).

Proof of Part 2. If we set v(x1, x2) = k for some constant k,
the characteristic polynomial of (9) is

s2 − (a + c)s + ac − bk. (10)

It is clear that if a + c < 0, then there always exists a choice
of k such that ac − bk > 0, and hence (9) can be stabilized via
static output feedback. If a + c!0, then (9) can be stabilized
via a choice of v(x1, x2) which takes on two values throughout
the entire state-space in a manner similar to that of Case 1. A
more detailed observation of the roots of (10) when a + c!0
reveal the following two facts:

• The roots of (10) are complex with nonnegative real part
whenever k < − (a − c)2/4b.

• There exists a negative real root of (10) whenever k > ac/b.

Because the roots of (10) can be calculated explicitly as

s = a + c

2
±

√
(a − c)2 + 4bk

2
, (11)

it is clear that the roots are complex whenever the first bulleted
item holds.

Now, if k is chosen such that a negative real root exists, then
the inequality a + c <

√
(a − c)2 + 4bk must be satisfied. A

simple calculation shows that this is equivalent to the second
bulleted item.

Using this result, we can derive a stabilization algorithm
which is completely analogous to the algorithm of the previous
case:

Proposition 2.4. For system (9) with b > 0 and a + c!0, sup-
pose that k1 is chosen such that (9) has a stable eigenvector q1
with corresponding eigenvalue !1 < 0, and k2 is chosen such
that (9) has two complex eigenvalues. Let w1 satisfy w′

1q1 = 0,
and consider

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x '= 0.

Then (5) is globally exponentially stable for the above choice
of v(x1, x2) with decay rate !1.

Proof. Same as the proof of Proposition 2.2. "

3. Main result

While the case studies of the prior section may seem con-
strained due to the very special structure of the A, B, and C
matrices, an appropriate change of coordinates reveals that any
second order system of the form (1) and can be transformed
into either Case 1 or 2.

Lemma 2. Consider matrices A ∈ R2×2, B ∈ R2×1, and
C ∈ R1×2 where neither B nor C is identically 0. For any
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invertible matrix T ∈ R2×2, define the triplet (Ã, B̃, C̃) as
(T −1AT , T −1B, CT ), and let

Ã ≡
[
a b

c d

]
.

Then the following statements hold:

(1) If CB '= 0, then ∃T such that

B̃ =
[

0
1

]
, C̃ = [0 % ]

with % '= 0 and b!0.
(2) If CB = 0, then ∃T such that

B̃ =
[

0
1

]
, C̃ = [% 0 ]

with % '= 0 and b!0.

Proof. Let B =[&1 &2]′, C=['1 '2]. To prove the first result,
direct computation shows that the matrix

T =
[

'2 &1
−'1 &2

]

is invertible since det(T ) = '1&1 + '2&2 = CB '= 0. Moreover,
B̃ = [0 1]′, C̃ = [0 %] where % = CB '= 0. If b!0, then the
statement follows. Otherwise, the transformation

T2 = T

[
−1 0
0 1

]
=

[
−'2 &1
'1 &2

]

will satisfy all of the desired properties.
To prove the second part of the statement, consider the matrix

T =
[

&2 &1
−&1 &2

]
.

Then det(T ) = &2
1 + &2

2 '= 0, and, hence, T is invertible. Note
that any nonzero C which satisfies CB = 0 may be written as
C =[(&2 −(&1], where ( '= 0. Hence, B̃ =[0 1]′, C̃ =[% 0],
where % = ((&2

1 + &2
2) '= 0. If b!0, then the statement holds.

Otherwise, the transformation

T2 = T

[
−1 0
0 1

]
=

[
−&2 &1
&1 &2

]

will satisfy all of the desired properties. "

We are now ready to present the main result of the paper.

Theorem 3. Consider system (1) with A ∈ R2×2, B ∈ R2×1,
and C ∈ R1×2 where neither C nor B is identically 0. Define
the root locus of this system to be the locus of eigenvalues of
(3) when v(x1, x2) = k as k varies continuously over R. Then
exactly one of the following statements is true:

(1) The system is static output feedback stabilizable.
(2) The system is not static output feedback stabilizable, but

it has root locus which takes on complex values for some

values of k ∈ R and is stabilizable by a control law
v(x1, x2) which takes on two values throughout the entire
state-space.

(3) The system has a root locus which is real for all values of
k ∈ R and is not stabilizable by control of the form (3) for
any choice of v(x1, x2).

Proof. Using Lemma 2, whenever C and B are not identically
0, there exists a coordinate transformation where (3) is either
of the form
[

ẋ1
ẋ2

]
=

[
a b

c d + %v(x1, x2)

] [
x1
x2

]

or the form
[

ẋ1
ẋ2

]
=

[
a b

c + %v(x1, x2) d

] [
x1
x2

]
,

with % '= 0 and b!0. Since % '= 0, the substitutions ũ(x1, x2)=
d + %v(x1, x2) and ũ(x1, x2) = c + %v(x1, x2) are invertible.
Hence, any system of the form (1) for which neither C nor
B is identically 0 can be transformed into the form of either
Case 1 or 2 of the previous section. Since the statements of the
theorem were shown to be true for both of these case studies,
it then follows that the result must hold in the more general
setting. "

4. Connection to the classical root locus

Note that in order to obtain a stabilizing controller (when it
exists), one need not carry out the transformations described in
Lemma 2. Rather, one may analyze the root locus of the matrix
A+kBC directly and (when necessary) find a stable eigenvector
to derive an appropriate control law v(x1, x2). Moreover, when
(A, B) is reachable and (C, A) is observable, we may employ
classical root locus techniques to the corresponding transfer
function C(sI − A)−1B to quickly ascertain the geometric be-
havior of the root locus. When either (A, B) is not reachable
and/or (C, A) is not observable, we may still use classical root
locus techniques on the transfer function C(sI − A)−1B, but
we must take care to include the unreachable and/or unobserv-
able modes in our analysis. We now formalize these statements,
beginning with the following lemma.

Lemma 4. For A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n, if the
pair (A, B) is reachable and the pair (C, A) is observable,
then the eigenvalues of A + kBC for each k '= 0 are given by
all values of s which satisfy 1 − kC(sI − A)−1B = 0.

Proof. We first show that if k '= 0, then no eigenvalue of
A can be an eigenvalue of A + kBC. If we assume the con-
trary, that there exists an eigenvalue of A that is also an eigen-
value of A + kBC, then there exists a right eigenvector p such
that Ap = sp and (A + kBC)p = sp for some s ∈ C. Hence,
kBCp = 0 which consequently implies that Cp = 0. Moreover,
CAn−1p = CAn−2p = · · · = CAp = 0, which implies that the
observability matrix is not full rank, thereby contradicting the
assumption of observability of the pair (C, A). By examining
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the left eigenvectors of A and A + kBC, one can similarly con-
clude that a common eigenvalue between these two matrices
causes the matrix

[An−1B An−2B · · · AB B]

to lose rank, thereby contradicting the assumption that the pair
(A, B) is reachable.

The eigenvalues of A + kBC are those values of s for which
det(sI−A− kBC)=0. From the above result, when k '= 0, the
matrix sI − A must be invertible, and hence

det(sI − A − kBC) = det(sI − A) det(I − k(sI − A)−1BC).

Thus, eigenvalues of A + kBC are those values of s for which
det(I − k(sI − A)−1BC) = 0. Using the identity det(I − AB) =
det(I − BA), we find that

det(I − k(sI − A)−1BC) = 1 − kC(sI − A)−1B. "

In cases where either (A, B) is unreachable and/or (C, A) is
unobservable, we have the following corollary whose proof is
immediate and is left to the reader:

Corollary 5. For A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n, the
eigenvalues of A + kBC for each k '= 0 are given by s ∈
M ∪ N ∪ O, where M is the set of unreachable modes of
(A, B), N is the set of unobservable modes of (C, A), and O is
the classical root locus of the transfer function C(sI − A)−1B,
i.e. O = {s : 1 − kC(sI − A)−1B = 0}.

5. Design methodology and examples

Using the result of Corollary 5, we may employ the following
basic algorithm to find a stabilizing controller when one exists:

(1) Compute the transfer function C(sI − A)−1B and exam-
ine the corresponding root locus of (1) (i.e. the roots of
1 − kC(sI − A)−1B as k varies over R, along with any
fixed unreachable and/or unobservable modes of the origi-
nal state-space model).

(2) If examination of the root locus shows that there exists k0
for which both of the eigenvalues of A + k0BC lie in the
open left half-plane, find such a value of k0 and choose
v(x1, x2) = k0 for all x.

(3) If examination of the root locus indicates that there exists a
value k1 for which one of the eigenvalues A+ k1BC lies in
the open left half-plane and a value k2 for which the imagi-
nary part of the eigenvalues is nonzero, find corresponding
values of k1 and k2, along with the (real) eigenvector q1 of
A + k1BC corresponding to the stable eigenvalue. Choose
v(x1, x2) such that

v(x1, x2) =
{

k1 if w′
1x = 0,

k2 if w′
1x '= 0,

where w1 satisfies w′
1q1 = 0.

(4) If neither (2) nor (3) holds, declare the system unstabiliz-
able by any choice of v(x1, x2).

We now provide several examples to illustrate the general de-
sign methodology described here.

Example 5.2. We consider three reachable, observable systems
of the form

ẋ = Aix + Biu, y = Cix, i ∈ {1, 2, 3},

A1 =
[
−6 −6
−6 7

]
, A2 =

[
0 1
6 1

]
, A3 =

[
0 1

−12 7

]
,

B1 =
[
−1
1

]
, B2 =

[
0
1

]
, B3 =

[
0
1

]
,

C1 = [0 1], C2 = [1 1], C3 = [−2 1].
The transfer functions Hi(s) corresponding to each of these
state-space descriptions are given by

H1(s) = s

s2 − s − 6
,

H2(s) = s + 1
s2 − s − 6

,

H3(s) = s − 2
s2 − 7s + 12

.

The root locus for each of the above transfer functions is de-
picted in Fig. 2. From the first root locus diagram for H1(s),
it is clear that the root locus is real for all k, but the zero at
s = 0 prevents one eigenvalue from entering the left half plane.
Hence, there is no switching control law of the form (2) which
can asymptotically stabilize this system.

While the root locus for H2(s) is also real for all k, the
presence of the zero at s = −1 allows both eigenvalues to lie
in the open left half plane for sufficiently negative values of k.
Indeed, when k=−7, the eigenvalues are approximately −5.83
and −0.17. Hence, the second system can be made stable via
static output feedback.

The third system H3(s) has a root locus that takes on complex
values for some negative values of k, but both eigenvalues never
lie in the left half plane simultaneously. Nevertheless, one of
the eigenvalues can be made negative for sufficiently negative
values of k. Indeed, when k = −20/3, −1 is an eigenvalue of
A3 + kB3C3 with corresponding eigenvector q1 = [1 − 1]′.
When k = −1, the eigenvalues of A3 + kB3C3 are complex
(3± i). Noting that w1 =[1 1]′ satisfies w′

1q1 =0, a stabilizing
switching controller is given by u(x1, x2)=v(x1, x2)C3x, where
v(x1, x2) is given by

v(x1, x2) =
{

−20
3

if x1 + x2 = 0,

−1 if x1 + x2 '= 0.

Example 5.3. We now consider two unreachable systems of
the form

ẋ = Aix + Bu, y = Cx,

where B = [1 0], C = [1 1] and

A1 =
[
−1 1
0 1

]
, A2 =

[
−1 1
0 −1

]
.
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Fig. 2. Root loci for H1(s), H2(s), and H3(s). The root loci for positive k are depicted on the left, while the root loci for negative k are depicted on the right.

In both cases, the transfer function C(sI − Ai)
−1B = 1/(s +

1), from which it is clear that the root locus lies along the
negative real line for an appropriately chosen value of the gain
k. However, since the root locus of the entire system is given
by the root locus of the transfer function united with the fixed,
unreachable modes, only the second system is stabilizable in
this case since the unreachable mode lies in the open left half
plane. The first system has a root locus which is real for all k,
but an unstable eigenvalue at s = 1 always exists. Hence, no
feedback of the form u(x1, x2) = v(x1, x2)Cx can stabilize the
first system for any v(x1, x2).

6. Conclusion and future work

Some remarks are in order. First, the switching law presented
in this paper is not implementable from a practical standpoint
since the value of the gain is constant everywhere except on
a measure zero set. Nevertheless, it can be shown that by ex-
tending the gain used on the stable manifold to an entire cone
within the state-space, one can derive control laws which are
robust with respect to time delays (see [12] for details).

Second, even though it may appear that the results here are
highly dependent on the simplistic nature of second order sys-
tems, extensions of this work to higher dimensional systems do
exist. Indeed, [12] presents an example where the control laws

here are used to develop a stabilizing controller for a fourth-
order system by relying on standard results of perturbation the-
ory. Furthermore, the results here can be weakly extended to
a sufficient condition for stabilizability in higher dimensions if
the root locus of the LTI plant admits only one unstable mode
for a particular selection of the feedback gain.
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