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Model Reduction of Discrete-Time Markov Jump linear systems

Georgios Kotsalis, Alexandre Megretski, Munther A. Dahleh

Abstract— This paper proposes a model reduction algorithm
for discrete-time, markov jump linear systems. The main point
of the reduction method is the formulation of two generalized
dissipation inequalities that in conjunction with a suitably
defined storage function enable the derivation of reduced order
models that come with a provable a priori upper bound on the
stochastic L. gain of the approximation error.

I. PRELIMINARIES

A. System Model
Consider the discrete-time Markov jump linear system

(MJLS) G that has the following state space realization:

Tr+1
Y =

Ag,x1, + Bo, f,

C@kl'k, k€Z+,

where the state variable is x € R"”, the input is f; € R™,
the parametric input is 6, € © = {1,..., N} and the output
is ¥ € RP. Reduced order model candidates are denoted by
G and it is required that they lie in the same class of MJLS
systems, having the state space realization

Ag, i1 + Be, fr,
keZs,

Tp1 =

w = Cg, Tk,

where &, € R™ and # < n.

In order to quantify the fidelity of G, an error system €& is
introduced, whose inputs are the common inputs fx, 6 of
g and Q and whose output is the difference of their outputs,
namely ex = yr — Yk

The parametric input 6 represents the state of a Markov
chain that takes values in a finite set © = {1,..., N} . The
transition probability matrix of the Markov chain is denoted
by @ and

P(Ort1 =4Ok =i) =qij i,j €{1,...,N}, keZ;.

When needed, random variables are denoted by capital letters
in order to avoid confusion. The input sequence { fx} is taken
to be deterministic and the sequence {Oy} has the property

that Vk € Z, each Oy is independent of the state history
{Xo,..., Xy} up to that point.
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Fig. 1. Error System £

B. Sensitivity measure and stability

Let [5*(Z.) denote the space of all vector-valued real
sequences on nonnegative integers, of dimension m, i.e.,

f=A{fo, f1,...} with f € R™, such that
IF113 =" 1fs* < o0
k=0
Here |f|?> = fifx stands for the square of the Euclidean

norm on the underlying vector space. The unit sphere in
I5'(Z+.) is denoted by S5 = {f € 1'(Zy) : | fll2 = 1}.

Definition 1.1: The stochastic Lo gain of the system G is
denoted by ~g and is defined for o = 0 by

Z|Yk|

Definition 1.2: The system g w1th fr = 0,Vk € Z4
is called mean square stable, if for every set of initial
conditions g € R", 0, € O, the second moment of the
magnitude of the state converges to zero

’Yg = SUP

E[|X.]?] = 0 as k — oo.

Definition 1.3: The system G with f = 0,Vk € Z4 is
called exponentially mean square stable if for every set of
initial conditions g € R™ and 6, € O, there exist real

constants 5 > 1 and p € (0,1) such that
E[|Xk|?] < Bp"|zo|?, k€ Zy

Theorem 1.1: [10] The following statements are equiva-
lent :

o (a) System G is mean square stable.

o (b) System G is exponentially mean square stable.
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« (c) For every positive definite matrix S > S, Q) € R"*",
there exists a unique positive definite matrix P > 0, P €
R"™*™ such that :

N
P—> qijAPA; =S, j€®©
i=1
A proof of the above theorem can be found in [10].
Lemma 1.1: Given a system G, if there exists a set of

positive definite matrices (P, ..., Py) such that the corre-
sponding quadratic functions V;(z) = o’ Pz, i € © satisfy

N
VP +Vi(@) 2 Y ayl|Conl® + V(A + Bif)l, (1)
=1
Ve € R",Vf e R™

then the stochastic Lo gain of G does not exceed v > 0.
Proof. The above relation implies

VIfel? + EV(X)] = E[Y:"] + E[V(Xi1), )
Vi, e R™,Vk € Z.

According to definition 1.1 set g = 0 and sum relation (2)
from k = 0 to k = T obtaining

T T
ED) Vi) <) 1/l = EBV(Xri)).
k=0 k=0

Since V is a nonnegative valued map, E[V (X741)] > 0 thus

T T
D A A
k=0 k=0

Restricting the input signal f to be on the unit sphere S3*

gives
oo

E[Y Vil <2 Vf € Sy
k=0

and in particular 73 < ~v* completing the proof.
|
Theorem 1.2: If the system G is mean square stable, then
its stochastic Lo gain is finite.
Proof. Let @@ > 0 be an arbitrary positive definite matrix.
Mean square stability guarantees the existence of a positive
definite matrix P > 0, such that

N
> GAPA; - P =-Q<0. 3)

i=1

Define V(x) = 2’ a Pz to be a quadratic function of the state,
where P > 0 and o > 1 . Using the state equations one
obtains the following relation, that is equivalent to condition
ey
Wi Wi x
' f <0 VzeR" feR™
[ 1] [ War Waa - f

“)

where

N

Wi = qu(A;OLPAZ—l-O;CZ)—OzP
i=1
N

W12 = Zin;OéPBi
i=1

Wor = Qi
N

Wa = > aBlaPBi—~°I

i=1
Using the Schur complement idea one can conclude, that a
sufficient set of conditions for (4) to hold is
Wiy
Waa

< 0 (5)
< W W' Wi (6)

Using (3), relation (5) can be rewritten as

N
> 4G Ci—aQ <0
i=1
and there is always an « large enough so that it is satisfied.
N
Setting I} = Y. ¢;BiaPB; and Fy = Wy W, ;'Wi one

i=1
can rewrite (6) as

Fi — Fy < 1.

The above condition can always be satisfied by taking -y
large enough. Thus, there exists an v > 1 and a v > 0 such
that V(x) = 2’aPx satisfies the dissipation inequality (1).
Invoking lemma 1.1 leads to finiteness of the stochastic Lo
gain of G. |
A standing assumption in this work is that the process
of imposing the aforementioned statistics to the parametric
input leads to a mean square stable system.

II. GENERALIZED DISSIPATION INEQUALITIES AND
TRUNCATION OF STATES

A. Generalized dissipation inequalities

The model reduction procedure developed in this work
relies on the computation of P > 0, Q > 0 for a given
mean square stable system G such that the following set of
dissipation inequalities is satisfied:

N
2| > > il Aialp + |Cial?), O]
=1
Ve € R,
N
2l + £ = D ailAiw + Bif[%), ®)

i=1
Ve e R" VfeR™

In the above relations the notation |2|3% = 2'Pz is used.
There is a natural interpretation of (7), (8) in the case where
N =1, so that G reduces to an LTI system. If the system
matrices {A, B,C} constitute a minimal realization of G,
then equation (7) is satisfied with equality using P = W,,
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and (8) is satisfied with equality using Q = W1, where
W,, W, are the observability and controllability Gramians
of the system respectively. In the case where N > 1, the
following two lemmas provide interpretations for P and Q

Lemma 2.1: Let T € Z,4 and consider the unforced
{fo,---, fr} = {0,...,0} response of G to the initial
condition gy € R™. For an arbitrary Ty € Z, , such that
To < T one has

T
> E[Yil?] < B[ Xg, |3
k=To

Proof. The dissipation inequality (7) implies in the unforced
case

E[|Xk11/5] + E[[Yil’] < E[Xi[3,
Sum the above relation from k = Ty to kK = T to obtain

T

E[|Xrfp]+ ) BlIYi’) < B[ X5 3]
k=T

Then, noticing that E[|X741|%] > 0 leads to the desired
result. [ ]

Lemma 2.2: Let T € Z4 and consider the evolution of
G that starts at rest xg = 0. Then, for an arbitrary input
sequence {fo,..., fr} one has

T
Sl > B Xra 3], VAR ke {1...T}
k=0

Proof. The dissipation inequality (8) gives in this case

E(|Xk11/3] < E[IXkl3] + [ fl?, Ve € R™.

Sum the above relation from k& = 0 to £ = T and note that
zo = 0 to obtain the desired result. |

B. Reduction by state truncation

This a brief review of the concept of model reduction
by means of state truncation for linear parameter-varying
systems. One starts out with the state space representation
of G

Ag, . + B, fr, 9)
ke ZJr,

Tk+1 =
y = Cy, g,

and applies an invertible coordinate transformation x; =
T'Zy, that puts the “most important” states in first components
of the transformed state vector zj, . This transformation gives
a new state space representation of G

Ay, & + B, fr,
Cgkfz'k, ke Z+.

Tpt1 =
Y =
The state vector Ty, is then partitioned as
- 71
T = |: . :| )
ng
where the state vector 21, corresponds to the states that are
to be retained and %, to the states that are to be removed.

With appropriate partitioning of the system matrices the state
space representation of G becomes

Ty, An,, @1y, + Ar2y, T2, + By, i,
T2, Az, @1y, + Azgy T, + Boy [,
Y = Clekilk + Cgeki'gk, keZs.

The dynamic system that one obtains by truncating the last
T variables, i.e. T2, € R" , is equivalent to a system whose
state variables are constrained in a proper subspace S,_, of
the original state space, where S,,_, = {x € R™ | z(i) =
0, n—r+1 < i < n}, that is naturally isomorphic to R"~".
Thus the state vector &, of the reduced system G will be of
the form &y = (Z41,,0)' € Sp—r C R™.

III. UPPER BOUND TO THE APPROXIMATION ERROR

In this section it will be shown how to reduce the order
of a given mean square stable system G by means of state
truncation and obtain an upper bound on the stochastic Lo
gain of the resulting error system &.

Theorem 3.1: Consider a mean square stable system G of
order n. Consider also the positive definite matrix W, such
that

W =316 3,

where
S =Pl ®... 0B, Y rp=r
k=1

Suppose that the matrix P = W satisfies (7) and Q =w-!
satisfies (8). Let G be the reduced order model obtained by
truncating the last r states of G. Then, the stochastic Lo gain
of the error system £ is bounded from above by twice the
sum of the distinct entries on the diagonal of X5 :

Ve S 2Bt +Bs) (10)
Proof. Using the matrix
0 0
st
the state space representation of G can be written as
Tr41 (In — Er) (A6, 2k + Bo, fr), (11
ij - C«‘)k jjk, k (S Z+.

The following signals will shorten the subsequent notation.

2K = Tp+ Tk,
5k = T — fk
he, = Agkik + By, fr, 0 €0O.

The proof will proceed by successive truncation of the last
Ts,Ts—1,...,71 states. Let Gs; denote the reduced system
obtained by truncating the last r4 states and & the corre-
sponding error system between G, and G. The state variable

456



of G, is 2 € Sn—r, C R™ and one can verify that the
following relations hold:

(S) _ Aekzl(j) + 2Bkak _ Ers h(()i)7

Ztr1 =
60, = 49,07 + E.nY,
e = €y kezy,
where
]E;S) Ik‘i‘j?;(:),
69— mp— s,
Oo= -

In a first step it will be shown that

Ve, < 20s 12)

In order to prove (12) one can follow arguments similar to
Lemma 1.1. Namely, it is sufficient to find a storage function
V :R™ x R™ — Ry, such that V(0,0) =0 and :

(z,2%), f) >0, (13)

Vo e R, V&) € §,_,., Vf e R™,

where
N
(2,2, f) = 4B2fP =D alCi 69 — AV,

=1

5§ = 52

AV = Zqz Viey,2) = Viz,2®)

Ty = Azx—l—Blf

3 = (I, - E.)(A#" + B.f)

Note that the above set of relations essentially imply

0 < 4B82|fl* +
E[|EY P+ V(Xpsr, X)) — VX, X)),
Vfr € R™

and thus (12). A quadratic storage function candidate is given
by :
V(&)

= 3212y 0 + 18y

In order to verify (13) one needs to compute the expected
increment of the storage function along system trajectories.

N

i=1

N
323" il Aiz®) + 2Bif — B B R, +
i=1

=Bz = 169y

Expanding the individual term in the above expressions, one
obtains

AV = 845 +

N
> Gl A5 — 16"
i=1

N
+02 3" a4z + 2B, 1Ry

=1

N
+2ﬁquZ|ET K |?

(14)

= B2y

—28, Z Gi(Er Y (4,29 4 2B f — A;6).

Applying the dissipation inequality (7) on the first two terms
of (14) gives

N
Z%|Ai5(s)|%/v 16 3 Zq G602,

Using the dissipation inequality (8), the second line in (14)
becomes

N
B2 ail Az + 2Bif 5, 1 — B2, 1 <4821

=1

For the last term of (14) note that

Aiz®) 4+ 2B f — A6 = 2h1(-5)7

and that Ef = E,,. Using the above relations we obtain

N
AV < _ZQi|Oi5(S)|2+4B§|f|2_

=1
N
2 B b2
ﬁszcm rslly °.
=1

Substitute the above inequality in (14) to obtain

Uy (z, 2, f) > 2ﬁquz|Er hI12 >0,

=1
) e S,_,.,Vf e R™,

completing the first part of the proof. Let W, be a submatrix
of W corresponding to the retained states.

Ws :El@ﬁlln G9"'@65[7“5—1'

Note that WW; satisfies the generalized dissipation inequalities
corresponding to G, in the sense

N
M a(Aid @R, + 10O < 2@,
=1
Vi) e S, ,.,
N
Y a4 + B, 0) < R, L+ S
=1

) e S,_,.,Vf e R™.
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Thus, if the last r,_; states from G, are truncated and if
one denotes the resulting system G;_1 and the corresponding
error system between G;, Gs—1 by £s_1 then by repeating
the above argument

755 1 S 26571

Similarly,
ve; <265 je{s,s—1,...,1}

The desired result (10) is obtained by observing that
er = e,(cl) +...4+ eggs) and applying the triangle inequality

on stochastic Lo gains. [ ]

A. Obtaining W = 31 ® Xo, W diagonal

The theorem of the previous section assumes there exists
aW =X, ®X,, Xy diagonal, such that W = P satisfies (7)
and Q = W1 satisfies (8). In this section it will be shown
that under the standing assumption of mean square stability,
one can obtain in fact a diagonal matrix W with the desired
properties.

Mean square stability is equivalent with the existence of
P> 0, such that

N

(15)
i=1
Relation (7) is equivalent to
N N
Y aAiPA;—P <= qCiC;. (16)
i=1 i=1

By virtue of the above two relations, if one sets P = aP
and takes o > 0 large enough, the dissipation inequality (7)
can always be satisfied by some positive definite matrix P.
Relation (8) is equivalent to

R N R N R
—Q+ Y ¢ AJQA; > GAQB;
=1 =1

N N <0 a7
> 6:BiQA; —I+ 3 BiQB;
i=1 i=1
Note that, if one sets v = 1, C; = 0,Vi € {1,...,N},
and Q = aP with @ > 0 , the above relation becomes

equivalent to (4). Let p satisfy (15) and set Q = aP with
o > 0. Condition (5) is equivalent to mean square stability
and thus feasible for all positive values of «. Condition (6)
can be rewritten as

N
Z 4 BIQB; — Wo W' Wia < I
i=1
Both terms on the left hand side of the above relation scale
linearly with «. Thus, by taking the positive parameter «
to be small enough one can also satisfy (8) with the choice
of Q = aP . To this point one has obtained P > 0 and
Q > 0 such that (7) and (8) are feasible. What remains then,
is to compute a transformation matrix 7' that diagonalizes
the product PQ~'. In that case TPQ T~ = W2 > 0
and (7) is satisfied by W and (8) by W !, justifying the
assumption of the previous theorem in regards to W.

B. Non uniqueness of P and Q

In general LMI’s may have multiple solutions, and thus
there is no unique solution to (7) and (8). However the
dissipation inequality (7) and its equivalent form (16) possess
a unique minimal solution, which can be computed by
solving the linear algebraic equation :

N

> a(AjPA; +C[Ci) =P

i=1
When it comes to relation (8) or its equivalent form (17)
the situation is different. For N = 1, the inverse of the
controllability grammian corresponds to a maximal solution
of (17). In the case of an LPV system, where N > 1, there
is no maximal solution though. For example, let N = 2 and

Q; = arg max trace(R;Q), i€ {1,2} (18)
Q>0
subject to (17), where R; > 0,i € {1,2}. If there was a
maximal solution to (17), then one should have

Q1= Qe (19)
The following system shows that (19) is not satisfied. Let
10 0.2 0.0
o= {o 0]’ Al_[o.?, 0.5]’
0 0 0.3 0.3
B = {0 1]’ A2_[0.2 0.2]’
0.4 1
By = B2—[0.2}, h=0=3
Solving the optimization problem (18) subject to (17) gives
A 174 -16.7 A 149 -16.0
Q1= [ -16.7  21.3 } » Q= [ —-16.0  24.9 ]

The lack of a maximal solution to (17), is to some extent
unfortunate, since the diagonal entries of 35 that appear in
(10) are monotonic in P and Q‘l. A reasonable remedy is to
compute a positive definite matrix @ such that trace(P~1 Q)
is maximized subject to the constraint (17). The motivation
for this objective function comes from the fact that

. Noq
trace(P~1Q) = Z =5
i=1 pi

and thus the smaller eigenvalues of W are more heavily
penalized in this optimization criterion, which is desirable
given the nature of the error bound (10).

IV. A NUMERICAL EXAMPLE OF THE METHOD

The reduction method will be demonstrated on a simple
example that involves a system G with 2 modes, 2 states, 1
input and 1 output having the system matrices :

- b+« 0 | B-« 0
o= [ a0

where 3 and « are positive parameters.

1

BlzB2:B:|:1

]:c{:c;:c'.
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Note that the above system is worst case stable if and only
if B4 a < 1. The parametric input is randomized by setting
G =q = % System G is mean square stable if and only
if 3% +a? < 1. As expected the requirement of stochastic
stability relaxes the constraints on the parameters «, 3. Let

)\maw 0
and set = 0.7. The ratio i:::: is depicted in the following

figure as a function of a. Given the nature of the error bound,

ratio of eigenvalues of W
T T

L L L L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 2. Ratio i‘mi of the eigenvalues of W, ( 3 = 0.7, « € [0.06, 0.5]).

one can expect, that the larger the eigenvalue ratio of W the
better the quality of the reduction. Note that as o converges
to 0, G converges to a first order linear time-invariant system.
Truncating one state from G leads to a reduced system G,
that turns out to be a linear time invariant system with a
single pole at 3. The response of the two systems to a step
input for a particular realization of the parametric input is
depicted in the following figure for # = 0.7 and o = 0.1.

8 T T T T T T T T

T B A@i

Fig. 3. Response of G and Gtoa step input for a particular realization of
the parametric input 0, (3 = 0.7, a = 0.1).
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