Model Reduction of Discrete-Time Markov Jump linear systems

Georgios Kotsalis, Alexandre Megretski, Munther A. Dahleh

Abstract

This paper proposes a model reduction algorithm for discrete-time, markov jump linear systems. The main point of the reduction method is the formulation of two generalized dissipation inequalities that in conjunction with a suitably defined storage function enable the derivation of reduced order models that come with a provable a priori upper bound on the stochastic L_{2} gain of the approximation error.

I. Preliminaries

A. System Model

Consider the discrete-time Markov jump linear system (MJLS) \mathcal{G} that has the following state space realization:

$$
\begin{aligned}
x_{k+1} & =A_{\theta_{k}} x_{k}+B_{\theta_{k}} f_{k}, \\
y_{k} & =C_{\theta_{k}} x_{k}, \quad k \in \mathbb{Z}_{+},
\end{aligned}
$$

where the state variable is $x_{k} \in \mathbb{R}^{n}$, the input is $f_{k} \in \mathbb{R}^{m}$, the parametric input is $\theta_{k} \in \Theta=\{1, \ldots, N\}$ and the output is $y_{k} \in \mathbb{R}^{p}$. Reduced order model candidates are denoted by $\hat{\mathcal{G}}$ and it is required that they lie in the same class of MJLS systems, having the state space realization

$$
\begin{aligned}
\hat{x}_{k+1} & =\hat{A}_{\theta_{k}} \hat{x}_{k}+\hat{B}_{\theta_{k}} f_{k} \\
\hat{y}_{k} & =\hat{C}_{\theta_{k}} \hat{x}_{k}, \quad k \in \mathbb{Z}_{+}
\end{aligned}
$$

where $\hat{x}_{k} \in \mathbb{R}^{\hat{n}}$ and $\hat{n}<n$.
In order to quantify the fidelity of $\hat{\mathcal{G}}$, an error system \mathcal{E} is introduced, whose inputs are the common inputs f_{k}, θ_{k} of \mathcal{G} and $\hat{\mathcal{G}}$ and whose output is the difference of their outputs, namely $e_{k}=y_{k}-\hat{y}_{k}$.
The parametric input θ_{k} represents the state of a Markov chain that takes values in a finite set $\Theta=\{1, \ldots, N\}$. The transition probability matrix of the Markov chain is denoted by Q and

$$
\mathbf{P}\left(\Theta_{k+1}=j \mid \Theta_{k}=i\right)=q_{i j} i, j \in\{1, \ldots, N\}, \quad k \in \mathbb{Z}_{+}
$$

When needed, random variables are denoted by capital letters in order to avoid confusion. The input sequence $\left\{f_{k}\right\}$ is taken to be deterministic and the sequence $\left\{\Theta_{k}\right\}$ has the property that $\forall k \in \mathbb{Z}_{+}$each Θ_{k} is independent of the state history $\left\{X_{0}, \ldots, X_{k}\right\}$ up to that point.

Georgios Kotsalis is with the Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA kotsalis@mit.edu

Alexandre Megretski is with the Faculty of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ameg@mit.edu

Munther A. Dahleh is with the Faculty of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA dahleh@mit.edu

Fig. 1. Error System \mathcal{E}

B. Sensitivity measure and stability

Let $l_{2}^{m}\left(\mathbb{Z}_{+}\right)$denote the space of all vector-valued real sequences on nonnegative integers, of dimension m, i.e., $f=\left\{f_{0}, f_{1}, \ldots\right\}$ with $f_{k} \in \mathbb{R}^{m}$, such that

$$
\|f\|_{2}^{2}=\sum_{k=0}^{\infty}\left|f_{k}\right|^{2}<\infty
$$

Here $\left|f_{k}\right|^{2}=f_{k}^{\prime} f_{k}$ stands for the square of the Euclidean norm on the underlying vector space. The unit sphere in $l_{2}^{m}\left(\mathbb{Z}_{+}\right)$is denoted by $S_{2}^{m}=\left\{f \in l_{2}^{m}\left(\mathbb{Z}_{+}\right):\|f\|_{2}=1\right\}$.

Definition 1.1: The stochastic L_{2} gain of the system \mathcal{G} is denoted by $\gamma_{\mathcal{G}}$ and is defined for $x_{0}=0$ by

$$
\gamma_{\mathcal{G}}^{2}=\sup _{f \in S_{2}^{m}} \mathbf{E}\left[\sum_{k=0}^{\infty}\left|Y_{k}\right|^{2}\right]
$$

Definition 1.2: The system \mathcal{G} with $f_{k}=0, \forall k \in \mathbb{Z}_{+}$ is called mean square stable, if for every set of initial conditions $x_{0} \in \mathbb{R}^{n}, \theta_{0} \in \Theta$, the second moment of the magnitude of the state converges to zero

$$
\mathbf{E}\left[\left|X_{k}\right|^{2}\right] \rightarrow 0 \text { as } k \rightarrow \infty
$$

Definition 1.3: The system \mathcal{G} with $f_{k}=0, \forall k \in \mathbb{Z}_{+}$is called exponentially mean square stable if for every set of initial conditions $x_{0} \in \mathbb{R}^{n}$ and $\theta_{0} \in \Theta$, there exist real constants $\beta \geq 1$ and $\rho \in(0,1)$ such that

$$
\mathbf{E}\left[\left|X_{k}\right|^{2}\right] \leq \beta \rho^{k}\left|x_{0}\right|^{2}, \quad k \in \mathbb{Z}_{+}
$$

Theorem 1.1: [10] The following statements are equivalent:

- (a) System \mathcal{G} is mean square stable.
- (b) System \mathcal{G} is exponentially mean square stable.
- (c) For every positive definite matrix $S>S, Q \in \mathbb{R}^{n \times n}$, there exists a unique positive definite matrix $P>0, P \in$ $\mathbb{R}^{n \times n}$ such that :

$$
P-\sum_{i=1}^{N} q_{i j} A_{i}^{\prime} P A_{i}=S, j \in \Theta
$$

A proof of the above theorem can be found in [10].
Lemma 1.1: Given a system \mathcal{G}, if there exists a set of positive definite matrices $\left(P_{1}, \ldots, P_{N}\right)$ such that the corresponding quadratic functions $V_{i}(x)=x^{\prime} P_{i} x, i \in \Theta$ satisfy

$$
\begin{array}{r}
\gamma^{2}|f|^{2}+V_{j}(x) \geq \sum_{i=1}^{N} q_{i j}\left[\left|C_{i} x\right|^{2}+V\left(A_{i} x+B_{i} f\right)\right] \tag{1}\\
\forall x \in \mathbb{R}^{n}, \forall f \in \mathbb{R}^{m}
\end{array}
$$

then the stochastic L_{2} gain of \mathcal{G} does not exceed $\gamma \geq 0$.
Proof. The above relation implies

$$
\begin{array}{r}
\gamma^{2}\left|f_{k}\right|^{2}+\mathbf{E}\left[V\left(X_{k}\right)\right] \geq \mathbf{E}\left[\left|Y_{k}\right|^{2}\right]+\mathbf{E}\left[V\left(X_{k+1}\right)\right] \tag{2}\\
\forall f_{k} \in \mathbb{R}^{m}, \forall k \in \mathbb{Z}_{+}
\end{array}
$$

According to definition 1.1 set $x_{0}=0$ and sum relation (2) from $k=0$ to $k=T$ obtaining

$$
\mathbf{E}\left[\sum_{k=0}^{T}\left|Y_{k}\right|^{2}\right] \leq \gamma^{2} \sum_{k=0}^{T}\left|f_{k}\right|^{2}-\mathbf{E}\left[V\left(X_{T+1}\right)\right] .
$$

Since V is a nonnegative valued map, $\mathbf{E}\left[V\left(X_{T+1}\right)\right] \geq 0$ thus

$$
\mathbf{E}\left[\sum_{k=0}^{T}\left|Y_{k}\right|^{2}\right] \leq \gamma^{2} \sum_{k=0}^{T}\left|f_{k}\right|^{2} .
$$

Restricting the input signal f to be on the unit sphere S_{2}^{m} gives

$$
\mathbf{E}\left[\sum_{k=0}^{\infty}\left|Y_{k}\right|^{2}\right] \leq \gamma^{2} \forall f \in S_{2}^{m}
$$

and in particular $\gamma_{\mathcal{G}}^{2} \leq \gamma^{2}$ completing the proof.
Theorem 1.2: If the system \mathcal{G} is mean square stable, then its stochastic L_{2} gain is finite.
Proof. Let $Q>0$ be an arbitrary positive definite matrix. Mean square stability guarantees the existence of a positive definite matrix $P>0$, such that

$$
\begin{equation*}
\sum_{i=1}^{N} q_{i} A_{i}^{\prime} P A_{i}-P=-Q<0 \tag{3}
\end{equation*}
$$

Define $V(x)=x^{\prime} \alpha P x$ to be a quadratic function of the state, where $P>0$ and $\alpha \geq 1$. Using the state equations one obtains the following relation, that is equivalent to condition (1)

$$
\left[\begin{array}{ll}
x^{\prime} & f^{\prime}
\end{array}\right]\left[\begin{array}{ll}
W_{11} & W_{12} \tag{4}\\
W_{21} & W_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
f
\end{array}\right] \leq 0 \quad \forall x \in \mathbb{R}^{n}, f \in \mathbb{R}^{m}
$$

where

$$
\begin{aligned}
W_{11} & =\sum_{i=1}^{N} q_{i}\left(A_{i}^{\prime} \alpha P A_{i}+C_{i}^{\prime} C_{i}\right)-\alpha P \\
W_{12} & =\sum_{i=1}^{N} q_{i} A_{i}^{\prime} \alpha P B_{i} \\
W_{21} & =Q_{12}^{\prime} \\
W_{22} & =\sum_{i=1}^{N} q_{i} B_{i}^{\prime} \alpha P B_{i}-\gamma^{2} I
\end{aligned}
$$

Using the Schur complement idea one can conclude, that a sufficient set of conditions for (4) to hold is

$$
\begin{align*}
& W_{11}<0 \tag{5}\\
& W_{22}<W_{21} W_{11}^{-1} W_{12} \tag{6}
\end{align*}
$$

Using (3), relation (5) can be rewritten as

$$
\sum_{i=1}^{N} q_{i} C_{i}^{\prime} C_{i}-\alpha Q<0
$$

and there is always an α large enough so that it is satisfied. Setting $F_{1}=\sum_{i=1}^{N} q_{i} B_{i}^{\prime} \alpha P B_{i}$ and $F_{2}=W_{21} W_{11}^{-1} W_{12}$ one can rewrite (6) as

$$
F_{1}-F_{2}<\gamma^{2} I
$$

The above condition can always be satisfied by taking γ large enough. Thus, there exists an $\alpha \geq 1$ and a $\gamma>0$ such that $V(x)=x^{\prime} \alpha P x$ satisfies the dissipation inequality (1). Invoking lemma 1.1 leads to finiteness of the stochastic L_{2} gain of \mathcal{G}.
A standing assumption in this work is that the process of imposing the aforementioned statistics to the parametric input leads to a mean square stable system.

II. GENERALIZED DISSIPATION INEQUALITIES AND TRUNCATION OF STATES

A. Generalized dissipation inequalities

The model reduction procedure developed in this work relies on the computation of $P>0, \hat{Q}>0$ for a given mean square stable system \mathcal{G} such that the following set of dissipation inequalities is satisfied:

$$
\begin{array}{r}
|x|_{P}^{2} \geq \sum_{i=1}^{N} q_{i}\left(\left|A_{i} x\right|_{P}^{2}+\left|C_{i} x\right|^{2}\right) \\
\forall x \in \mathbb{R}^{n} \\
|x|_{\hat{Q}}^{2}+|f|^{2} \geq \sum_{i=1}^{N} q_{i}\left(\left|A_{i} x+B_{i} f\right|_{\hat{Q}}^{2}\right) \tag{8}\\
\forall x \in \mathbb{R}^{n}, \forall f \in \mathbb{R}^{m}
\end{array}
$$

In the above relations the notation $|z|_{P}^{2}=z^{\prime} P z$ is used. There is a natural interpretation of (7), (8) in the case where $N=1$, so that \mathcal{G} reduces to an LTI system. If the system matrices $\{A, B, C\}$ constitute a minimal realization of \mathcal{G}, then equation (7) is satisfied with equality using $P=W_{o}$,
and (8) is satisfied with equality using $\hat{Q}=W_{c}^{-1}$, where W_{o}, W_{c} are the observability and controllability Gramians of the system respectively. In the case where $N>1$, the following two lemmas provide interpretations for P and \hat{Q}.

Lemma 2.1: Let $T \in \mathbb{Z}_{+}$and consider the unforced $\left\{f_{0}, \ldots, f_{T}\right\}=\{0, \ldots, 0\}$ response of \mathcal{G} to the initial condition $x_{0} \in \mathbb{R}^{n}$. For an arbitrary $T_{0} \in \mathbb{Z}_{+}$, such that $T_{0}<T$ one has

$$
\sum_{k=T_{0}}^{T} \mathbf{E}\left[\left|Y_{k}\right|^{2}\right] \leq \mathbf{E}\left[\left|X_{T_{0}}\right|_{P}^{2}\right]
$$

Proof. The dissipation inequality (7) implies in the unforced case

$$
\mathbf{E}\left[\left|X_{k+1}\right|_{P}^{2}\right]+\mathbf{E}\left[\left|Y_{k}\right|^{2}\right] \leq \mathbf{E}\left|X_{k}\right|_{P}^{2}
$$

Sum the above relation from $k=T_{0}$ to $k=T$ to obtain

$$
\mathbf{E}\left[\left|X_{T+1}\right|_{P}^{2}\right]+\sum_{k=T_{0}}^{T} \mathbf{E}\left[\left|Y_{k}\right|^{2}\right] \leq \mathbf{E}\left[\left|X_{T_{0}}\right|_{P}^{2}\right]
$$

Then, noticing that $\mathbf{E}\left[\left|X_{T+1}\right|_{P}^{2}\right] \geq 0$ leads to the desired result.

Lemma 2.2: Let $T \in \mathbb{Z}_{+}$and consider the evolution of \mathcal{G} that starts at rest $x_{0}=0$. Then, for an arbitrary input sequence $\left\{f_{0}, \ldots, f_{T}\right\}$ one has

$$
\sum_{k=0}^{T}\left|f_{k}\right|^{2} \geq \mathbf{E}\left[\left|X_{T+1}\right|_{\hat{Q}}^{2}\right], \forall f_{k} \in \mathbb{R}^{m}, k \in\{1 \ldots T\}
$$

Proof. The dissipation inequality (8) gives in this case

$$
\mathbf{E}\left[\left|X_{k+1}\right|_{\hat{Q}}^{2}\right] \leq \mathbf{E}\left[\left|X_{k}\right|_{\hat{Q}}^{2}\right]+\left|f_{k}\right|^{2}, \forall f_{k} \in \mathbb{R}^{m}
$$

Sum the above relation from $k=0$ to $k=T$ and note that $x_{0}=0$ to obtain the desired result.

B. Reduction by state truncation

This a brief review of the concept of model reduction by means of state truncation for linear parameter-varying systems. One starts out with the state space representation of \mathcal{G}

$$
\begin{align*}
x_{k+1} & =A_{\theta_{k}} x_{k}+B_{\theta_{k}} f_{k} \tag{9}\\
y_{k} & =C_{\theta_{k}} x_{k}, \quad k \in \mathbb{Z}_{+}
\end{align*}
$$

and applies an invertible coordinate transformation $x_{k}=$ $T \tilde{x}_{k}$ that puts the "most important" states in first components of the transformed state vector \tilde{x}_{k}. This transformation gives a new state space representation of \mathcal{G}

$$
\begin{aligned}
\tilde{x}_{k+1} & =\tilde{A}_{\theta_{k}} \tilde{x}_{k}+\tilde{B}_{\theta_{k}} f_{k} \\
y_{k} & =\tilde{C}_{\theta_{k}} \tilde{x}_{k}, k \in \mathbb{Z}_{+}
\end{aligned}
$$

The state vector \tilde{x}_{k} is then partitioned as

$$
\tilde{x}_{k}=\left[\begin{array}{c}
\tilde{x}_{1_{k}} \\
\tilde{x}_{2_{k}}
\end{array}\right],
$$

where the state vector $\tilde{x}_{1_{k}}$ corresponds to the states that are to be retained and $\tilde{x}_{2_{k}}$ to the states that are to be removed.

With appropriate partitioning of the system matrices the state space representation of \mathcal{G} becomes

$$
\begin{aligned}
\tilde{x}_{1_{k+1}} & =\tilde{A}_{11_{\theta_{k}}} \tilde{x}_{1_{k}}+\tilde{A}_{12_{\theta_{k}}} \tilde{x}_{2_{k}}+\tilde{B}_{1_{\theta_{k}}} f_{k} \\
\tilde{x}_{2_{k+1}} & =\tilde{A}_{2_{\theta_{k}}} \tilde{x}_{1_{k}}+\tilde{A}_{2_{\theta_{k}}} \tilde{x}_{2_{k}}+\tilde{B}_{2_{\theta_{k}}} f_{k} \\
y_{k} & =\tilde{C}_{1_{\theta_{k}}} \tilde{x}_{2_{k}}+\tilde{x}_{2_{k}}, \quad \tilde{x}_{2_{k}}, \quad k \in \mathbb{Z}_{+} .
\end{aligned}
$$

The dynamic system that one obtains by truncating the last r variables, i.e. $\tilde{x}_{2_{k}} \in \mathbb{R}^{r}$, is equivalent to a system whose state variables are constrained in a proper subspace S_{n-r} of the original state space, where $S_{n-r}=\left\{x \in \mathbb{R}^{n} \mid x(i)=\right.$ $0, n-r+1 \leq i \leq n\}$, that is naturally isomorphic to \mathbb{R}^{n-r}. Thus the state vector \hat{x}_{k} of the reduced system $\hat{\mathcal{G}}$ will be of the form $\hat{x}_{k}=\left(\tilde{x}_{1_{k}}, 0\right)^{\prime} \in S_{n-r} \subset \mathbb{R}^{n}$.

III. UPPER BOUND TO THE APPROXIMATION ERROR

In this section it will be shown how to reduce the order of a given mean square stable system \mathcal{G} by means of state truncation and obtain an upper bound on the stochastic L_{2} gain of the resulting error system \mathcal{E}.

Theorem 3.1: Consider a mean square stable system \mathcal{G} of order n. Consider also the positive definite matrix W, such that

$$
W=\Sigma_{1} \oplus \Sigma_{2}
$$

where

$$
\Sigma_{2}=\beta_{1} I_{r_{1}} \oplus \ldots \oplus \beta_{s} I_{r_{s}}, \quad \sum_{k=1}^{s} r_{k}=r
$$

Suppose that the matrix $P=W$ satisfies (7) and $\hat{Q}=W^{-1}$ satisfies (8). Let $\tilde{\mathcal{G}}$ be the reduced order model obtained by truncating the last r states of \mathcal{G}. Then, the stochastic L_{2} gain of the error system \mathcal{E} is bounded from above by twice the sum of the distinct entries on the diagonal of Σ_{2} :

$$
\begin{equation*}
\gamma_{\mathcal{E}} \leq 2\left(\beta_{1}+\ldots+\beta_{s}\right) \tag{10}
\end{equation*}
$$

Proof. Using the matrix

$$
E_{r}=\left[\begin{array}{cc}
0 & 0 \\
0 & I_{r}
\end{array}\right]
$$

the state space representation of $\hat{\mathcal{G}}$ can be written as

$$
\begin{align*}
\hat{x}_{k+1} & =\left(I_{n}-E_{r}\right)\left(A_{\theta_{k}} \hat{x}_{k}+B_{\theta_{k}} f_{k}\right), \tag{11}\\
\hat{y}_{k} & =C_{\theta_{k}} \hat{x}_{k}, \quad k \in \mathbb{Z}_{+} .
\end{align*}
$$

The following signals will shorten the subsequent notation.

$$
\begin{aligned}
z_{k} & =x_{k}+\hat{x}_{k}, \\
\delta_{k} & =x_{k}-\hat{x}_{k} \\
h_{\theta_{k}} & =A_{\theta_{k}} \hat{x}_{k}+B_{\theta_{k}} f_{k}, \quad \theta_{k} \in \Theta
\end{aligned}
$$

The proof will proceed by successive truncation of the last $r_{s}, r_{s-1}, \ldots, r_{1}$ states. Let \mathcal{G}_{s} denote the reduced system obtained by truncating the last r_{s} states and \mathcal{E}_{s} the corresponding error system between \mathcal{G}_{s} and \mathcal{G}. The state variable
of \mathcal{G}_{s} is $\hat{x}^{(s)} \in S_{n-r_{s}} \subset \mathbb{R}^{n}$ and one can verify that the following relations hold:

$$
\begin{aligned}
z_{k+1}^{(s)} & =A_{\theta_{k}} z_{k}^{(s)}+2 B_{\theta_{k}} f_{k}-E_{r_{s}} h_{\theta_{k}}^{(s)} \\
\delta_{k+1}^{(s)} & =A_{\theta_{k}} \delta_{k}^{(s)}+E_{r_{s}} h_{\theta_{k}}^{(s)} \\
e_{k}^{(s)} & =C_{\theta_{k}} \delta_{k}^{(s)}, \quad k \in \mathbb{Z}_{+}
\end{aligned}
$$

where

$$
\begin{aligned}
z_{k}^{(s)} & =x_{k}+\hat{x}_{k}^{(s)} \\
\delta_{k}^{(s)} & =x_{k}-\hat{x}_{k}^{(s)} \\
e_{k}^{(s)} & =y_{k}-y_{k}^{(s)}
\end{aligned}
$$

In a first step it will be shown that

$$
\begin{equation*}
\gamma_{\mathcal{E}_{s}} \leq 2 \beta_{s} \tag{12}
\end{equation*}
$$

In order to prove (12) one can follow arguments similar to Lemma 1.1. Namely, it is sufficient to find a storage function $V: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, such that $V(0,0)=0$ and :

$$
\begin{align*}
& \Psi\left(x, \hat{x}^{(s)}, f\right) \geq 0 \tag{13}\\
& \forall x \in \mathbb{R}^{n}, \forall \hat{x}^{(s)} \in S_{n-r_{s}}, \forall f \in \mathbb{R}^{m}
\end{align*}
$$

where

$$
\begin{aligned}
\Psi\left(x, \hat{x}^{(s)}, f\right) & =4 \beta_{s}^{2}|f|^{2}-\sum_{i=1}^{N} q_{i}\left|C_{i} \delta^{(s)}\right|^{2}-\Delta V \\
\delta^{(s)} & =x-\hat{x}^{(s)} \\
\Delta V & =\sum_{i=1}^{N} q_{i} V\left(x_{+}, \hat{x}_{+}^{(s)}\right)-V\left(x, \hat{x}^{(s)}\right) \\
x_{+} & =A_{i} x+B_{i} f \\
\hat{x}_{+}^{(s)} & =\left(I_{n}-E_{r_{s}}\right)\left(A_{i} \hat{x}^{(s)}+B_{i} f\right)
\end{aligned}
$$

Note that the above set of relations essentially imply

$$
\begin{aligned}
0 \leq & 4 \beta_{s}^{2}\left|f_{k}\right|^{2}+ \\
- & \mathbf{E}\left[\left|E_{k}^{(s)}\right|^{2}+V\left(X_{k+1}, \hat{X}_{k+1}^{(s)}\right)-V\left(X_{k}, \hat{X}_{k}^{(s)}\right)\right] \\
& \forall f_{k} \in \mathbb{R}^{m}
\end{aligned}
$$

and thus (12). A quadratic storage function candidate is given by :

$$
V\left(x, \hat{x}^{(s)}\right)=\beta_{s}^{2}\left|z^{(s)}\right|_{W \quad 1}^{2}+\left|\delta^{(s)}\right|_{W}^{2}
$$

In order to verify (13) one needs to compute the expected increment of the storage function along system trajectories.

$$
\begin{aligned}
\Delta V= & \sum_{i=1}^{N} q_{i}\left|A_{i} \delta^{(s)}+E_{r_{s}} h_{i}^{(s)}\right|_{W}^{2}+ \\
& \beta_{s}^{2} \sum_{i=1}^{N} q_{i}\left|A_{i} z^{(s)}+2 B_{i} f-E_{r_{s}} h_{i}^{(s)}\right|_{W}{ }^{(s}+ \\
& -\beta_{s}^{2}\left|z^{(s)}\right|_{W}^{2} 1-\left|\delta^{(s)}\right|_{W}^{2} .
\end{aligned}
$$

Expanding the individual term in the above expressions, one obtains

$$
\begin{align*}
\Delta V= & \sum_{i=1}^{N} q_{i}\left|A_{i} \delta^{(s)}\right|_{W}^{2}-\left|\delta^{(s)}\right|_{W}^{2}+ \tag{14}\\
& +\beta_{s}^{2} \sum_{i=1}^{N} q_{i}\left|A_{i} z^{(s)}+2 B_{i} f\right|_{W \quad 1}^{2}-\beta_{s}^{2}\left|z^{(s)}\right|_{W ~}^{2} \\
& +2 \beta_{s} \sum_{i=1}^{N} q_{i}\left|E_{r_{s}} h_{i}^{(s)}\right|^{2} \\
& -2 \beta_{s} \sum_{i=1}^{N} q_{i}\left(E_{r_{s}} h_{i}^{(s)}\right)^{\prime}\left(A_{i} z^{(s)}+2 B_{i} f-A_{i} \delta^{(s)}\right) .
\end{align*}
$$

Applying the dissipation inequality (7) on the first two terms of (14) gives

$$
\sum_{i=1}^{N} q_{i}\left|A_{i} \delta^{(s)}\right|_{W}^{2}-\left|\delta^{(s)}\right|_{W}^{2} \leq-\sum_{i=1}^{N} q_{i}\left|C_{i} \delta^{(s)}\right|^{2}
$$

Using the dissipation inequality (8), the second line in (14) becomes

$$
\beta_{s}^{2} \sum_{i=1}^{N} q_{i}\left|A_{i} z^{(s)}+2 B_{i} f\right|_{W \quad 1}^{2}-\beta_{s}^{2}\left|z^{(s)}\right|_{W \quad 1}^{2} \leq 4 \beta_{s}^{2}|f|^{2}
$$

For the last term of (14) note that

$$
A_{i} z^{(s)}+2 B_{i} f-A_{i} \delta^{(s)}=2 h_{i}^{(s)}
$$

and that $E_{r_{s}}^{2}=E_{r_{s}}$. Using the above relations we obtain

$$
\begin{aligned}
\Delta V \leq & -\sum_{i=1}^{N} q_{i}\left|C_{i} \delta^{(s)}\right|^{2}+4 \beta_{s}^{2}|f|^{2}- \\
& 2 \beta_{s} \sum_{i=1}^{N} q_{i}\left|E_{r_{s}} h_{i}^{(s)}\right|^{2}
\end{aligned}
$$

Substitute the above inequality in (14) to obtain

$$
\begin{aligned}
& \Psi_{k}\left(x, \hat{x}^{(s)}, f\right) \geq 2 \beta_{s} \sum_{i=1}^{N} q_{i}\left|E_{r_{s}} h_{i}^{(s)}\right|^{2} \geq 0, \\
& \forall \hat{x}^{(s)} \in S_{n-r_{s}}, \forall f \in \mathbb{R}^{m}
\end{aligned}
$$

completing the first part of the proof. Let W_{s} be a submatrix of W corresponding to the retained states.

$$
W_{s}=\Sigma_{1} \oplus \beta_{1} I_{r_{1}} \oplus \ldots \oplus \beta_{s} I_{r_{s} 1}
$$

Note that W_{s} satisfies the generalized dissipation inequalities corresponding to \mathcal{G}_{s}, in the sense

$$
\begin{aligned}
& \sum_{i=1}^{N} q_{i}\left(\left|A_{i} \hat{x}^{(s)}\right|_{W_{s}}^{2}+\left|C_{i} \hat{x}^{(s)}\right|^{2}\right) \leq\left|\hat{x}^{(s)}\right|_{W_{s}}^{2} \\
& \forall \hat{x}^{(s)} \in S_{n-r_{s}} \\
& \sum_{i=1}^{N} q_{i}\left(\left|A_{i} \hat{x}^{(s)}+B_{i} f\right|_{W_{s}{ }^{1}}^{2}\right) \leq\left|\hat{x}^{(s)}\right|_{W_{s}{ }^{1}}^{2}+|f|^{2}, \\
& \forall \hat{x}^{(s)} \in S_{n-r_{s}}, \forall f \in \mathbb{R}^{m}
\end{aligned}
$$

Thus, if the last r_{s-1} states from \mathcal{G}_{s} are truncated and if one denotes the resulting system \mathcal{G}_{s-1} and the corresponding error system between $\mathcal{G}_{s}, \mathcal{G}_{s-1}$ by \mathcal{E}_{s-1} then by repeating the above argument

$$
\gamma_{\mathcal{E}_{s} \quad 1} \leq 2 \beta_{s-1}
$$

Similarly,

$$
\gamma_{\mathcal{E}_{j}} \leq 2 \beta_{j} \quad j \in\{s, s-1, \ldots, 1\}
$$

The desired result (10) is obtained by observing that $e_{k}=e_{k}^{(1)}+\ldots+e_{k}^{(s)}$ and applying the triangle inequality on stochastic L_{2} gains.

A. Obtaining $W=\Sigma_{1} \oplus \Sigma_{2}, W$ diagonal

The theorem of the previous section assumes there exists a $W=\Sigma_{1} \oplus \Sigma_{2}, \Sigma_{2}$ diagonal, such that $W=P$ satisfies (7) and $\hat{Q}=W^{-1}$ satisfies (8). In this section it will be shown that under the standing assumption of mean square stability, one can obtain in fact a diagonal matrix W with the desired properties.

Mean square stability is equivalent with the existence of $\hat{P}>0$, such that

$$
\begin{equation*}
\sum_{i=1}^{N} q_{i} A_{i}^{\prime} \hat{P} A_{i}-\hat{P}<0 \tag{15}
\end{equation*}
$$

Relation (7) is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{N} q_{i} A_{i}^{\prime} P A_{i}-P \leq-\sum_{i=1}^{N} q_{i} C_{i}^{\prime} C_{i} \tag{16}
\end{equation*}
$$

By virtue of the above two relations, if one sets $P=\alpha \hat{P}$ and takes $\alpha>0$ large enough, the dissipation inequality (7) can always be satisfied by some positive definite matrix P. Relation (8) is equivalent to

$$
\left[\begin{array}{cc}
-\hat{Q}+\sum_{i=1}^{N} q_{i} A_{i}^{\prime} \hat{Q} A_{i} & \sum_{i=1}^{N} q_{i} A_{i}^{\prime} \hat{Q} B_{i} \tag{17}\\
\sum_{i=1}^{N} q_{i} B_{i}^{\prime} \hat{Q} A_{i} & -I+\sum_{i=1}^{N} B_{i}^{\prime} \hat{Q} B_{i}
\end{array}\right] \leq 0
$$

Note that, if one sets $\gamma=1, C_{i}=0, \forall i \in\{1, \ldots, N\}$, and $\hat{Q}=\alpha P$ with $\alpha>0$, the above relation becomes equivalent to (4). Let \hat{P} satisfy (15) and set $\hat{Q}=\alpha \hat{P}$ with $\alpha>0$. Condition (5) is equivalent to mean square stability and thus feasible for all positive values of α. Condition (6) can be rewritten as

$$
\sum_{i=1}^{N} q_{i} B_{i}^{\prime} \hat{Q} B_{i}-W_{21} W_{11}^{-1} W_{12}<I
$$

Both terms on the left hand side of the above relation scale linearly with α. Thus, by taking the positive parameter α to be small enough one can also satisfy (8) with the choice of $\hat{Q}=\alpha \hat{P}$. To this point one has obtained $P>0$ and $\hat{Q}>0$ such that (7) and (8) are feasible. What remains then, is to compute a transformation matrix T that diagonalizes the product $P \hat{Q}^{-1}$. In that case $T P \hat{Q}^{-1} T^{-1}=W^{2}>0$ and (7) is satisfied by W and (8) by W^{-1}, justifying the assumption of the previous theorem in regards to W.

B. Non uniqueness of P and \hat{Q}

In general LMI's may have multiple solutions, and thus there is no unique solution to (7) and (8). However the dissipation inequality (7) and its equivalent form (16) possess a unique minimal solution, which can be computed by solving the linear algebraic equation :

$$
\sum_{i=1}^{N} q_{i}\left(A_{i}^{\prime} P A_{i}+C_{i}^{\prime} C_{i}\right)=P
$$

When it comes to relation (8) or its equivalent form (17) the situation is different. For $N=1$, the inverse of the controllability grammian corresponds to a maximal solution of (17). In the case of an LPV system, where $N>1$, there is no maximal solution though. For example, let $\mathrm{N}=2$ and

$$
\begin{equation*}
\hat{Q}_{i}=\underset{\hat{Q}>0}{\arg \max } \operatorname{trace}\left(R_{i} \hat{Q}\right), \quad i \in\{1,2\} \tag{18}
\end{equation*}
$$

subject to (17), where $R_{i} \geq 0, i \in\{1,2\}$. If there was a maximal solution to (17), then one should have

$$
\begin{equation*}
\hat{Q}_{1}=\hat{Q}_{2} \tag{19}
\end{equation*}
$$

The following system shows that (19) is not satisfied. Let

$$
\begin{aligned}
& R_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad A_{1}=\left[\begin{array}{ll}
0.2 & 0.0 \\
0.3 & 0.5
\end{array}\right] \\
& R_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0.3 & 0.3 \\
0.2 & 0.2
\end{array}\right] \\
& B_{1}=B_{2}=\left[\begin{array}{l}
0.4 \\
0.2
\end{array}\right], \quad q_{1}=q_{2}=\frac{1}{2}
\end{aligned}
$$

Solving the optimization problem (18) subject to (17) gives

$$
\hat{Q}_{1}=\left[\begin{array}{rr}
17.4 & -16.7 \\
-16.7 & 21.3
\end{array}\right], \quad \hat{Q}_{2}=\left[\begin{array}{rr}
14.9 & -16.0 \\
-16.0 & 24.9
\end{array}\right]
$$

The lack of a maximal solution to (17), is to some extent unfortunate, since the diagonal entries of Σ_{2} that appear in (10) are monotonic in P and \hat{Q}^{-1}. A reasonable remedy is to compute a positive definite matrix \hat{Q} such that trace $\left(P^{-1} \hat{Q}\right)$ is maximized subject to the constraint (17). The motivation for this objective function comes from the fact that

$$
\operatorname{trace}\left(P^{-1} \hat{Q}\right)=\sum_{i=1}^{N} \frac{1}{\beta_{i}^{2}}
$$

and thus the smaller eigenvalues of W are more heavily penalized in this optimization criterion, which is desirable given the nature of the error bound (10).

IV. A NUMERICAL EXAMPLE OF THE METHOD

The reduction method will be demonstrated on a simple example that involves a system \mathcal{G} with 2 modes, 2 states, 1 input and 1 output having the system matrices :

$$
A_{1}=\left[\begin{array}{rr}
\beta+\alpha & 0 \\
0 & \beta-\alpha
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
\beta-\alpha & 0 \\
0 & \beta+\alpha
\end{array}\right]
$$

where β and α are positive parameters.

$$
B_{1}=B_{2}=B=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=C_{1}^{\prime}=C_{2}^{\prime}=C^{\prime}
$$

Note that the above system is worst case stable if and only if $\beta+\alpha<1$. The parametric input is randomized by setting $q_{1}=q_{2}=\frac{1}{2}$. System \mathcal{G} is mean square stable if and only if $\beta^{2}+\alpha^{2}<1$. As expected the requirement of stochastic stability relaxes the constraints on the parameters α, β. Let

$$
W=\left[\begin{array}{rr}
\lambda_{\max } & 0 \\
0 & \lambda_{\min }
\end{array}\right]
$$

and set $\beta=0.7$. The ratio $\frac{\lambda_{\max }}{\lambda_{\min }}$ is depicted in the following figure as a function of α. Given the nature of the error bound,

Fig. 2. Ratio $\frac{\lambda_{\max }}{\lambda_{\min }}$ of the eigenvalues of $W,(\beta=0.7, \alpha \in[0.06,0.5])$.
one can expect, that the larger the eigenvalue ratio of W the better the quality of the reduction. Note that as α converges to $0, \mathcal{G}$ converges to a first order linear time-invariant system. Truncating one state from \mathcal{G} leads to a reduced system $\hat{\mathcal{G}}$, that turns out to be a linear time invariant system with a single pole at β. The response of the two systems to a step input for a particular realization of the parametric input is depicted in the following figure for $\beta=0.7$ and $\alpha=0.1$.

Fig. 3. Response of \mathcal{G} and $\hat{\mathcal{G}}$ to a step input for a particular realization of the parametric input $\theta_{k},(\beta=0.7, \alpha=0.1)$.

REFERENCES

[1] B.C. Moore, "Principal component analysis in linear systems - controllability, observability, and model reduction," IEEE Trans. on Automatic Control, vol. 26, no. 1, pp. 17-32, January 1981
[2] D. Enns, "Model Reduction with balanced realizations: An error bound and a frequency weighted generalization," in Proc. of 23 rd Conf. Decision Contr., NV, 1984
[3] K. Glover, "All optimal Hankel-norm approximations of linearmultivariable Systems and their L^{∞} - error bounds," Int. J. Control, vol. 39 (6), pp. 1115-1193, 1984
[4] U. Al-Saggaf, and G. Franklin, "An error-bound for a discrete reducedorder model of a linear multivariable system," IEEE Trans. Automat. Contr., vol. 32 (9), pp. 815-819, August 1987
[5] D. Hinrichsen, A. J. Pritchard, " An improved error estimate for reduced order models of discrete-time-systems" IEEE Trans. Automat. Contr, vol 35 (3), pp. 317-320, March 1990
[6] C.L. Beck, J. Doyle, K. Glover, "Model reduction of multidimensional and uncertain systems", IEEE Trans. Automat. Contr. vol. 41 (10), pp. 1466-1477, October 1996
[7] G.D. Wood, P.J. Goodard, K. Glover "Approximation of Linear Parameter-Varying Systems," in Proc. 35th Conf. Decision Contr., , 1996
[8] S. Lall, C. L. Beck, "Error-bounds for balanced model-reduction of linear time-varying systems" IEEE Trans. Automat. Contr. , vol 48 (6), pp. 946-956, June 2003
[9] H. Sandberg, A. Rantzer, "Balanced Truncation of linear time-varying systems ", IEEE Trans. Automat. Contr., vol 49 (2), pp. 217-229, February 2004
[10] O.L.V. Costa, M.D. Fragoso, and R.P. Marques, "Discrete-time Markov jump linear systems," London, Springer, 2005.
[11] A. Megretski, "Robustness of Finite State Automata," in Proceedings of the Mohammed Dahleh Memorial Symposium, Santa Barbara, CA, February 2002

