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Abstract— This paper proposes a model reduction algorithm
for discrete-time, markov jump linear systems. The main point
of the reduction method is the formulation of two generalized
dissipation inequalities that in conjunction with a suitably
defined storage function enable the derivation of reduced order
models that come with a provable a priori upper bound on the
stochastic L2 gain of the approximation error.

I. PRELIMINARIES

A. System Model

Consider the discrete-time Markov jump linear system
(MJLS) G that has the following state space realization:

xk+1 = Aθk
xk + Bθk

fk,

yk = Cθk
xk, k ∈ Z+,

where the state variable is xk ∈ R
n, the input is fk ∈ R

m,
the parametric input is θk ∈ Θ = {1, . . . , N} and the output
is yk ∈ R

p. Reduced order model candidates are denoted by
Ĝ and it is required that they lie in the same class of MJLS
systems, having the state space realization

x̂k+1 = Âθk
x̂k + B̂θk

fk,

ŷk = Ĉθk
x̂k, k ∈ Z+,

where x̂k ∈ R
n̂ and n̂ < n.

In order to quantify the fidelity of Ĝ, an error system E is
introduced, whose inputs are the common inputs fk, θk of
G and Ĝ and whose output is the difference of their outputs,
namely ek = yk − ŷk.
The parametric input θk represents the state of a Markov

chain that takes values in a finite set Θ = {1, . . . , N} . The
transition probability matrix of the Markov chain is denoted
by Q and

P(Θk+1 = j|Θk = i) = qij i, j ∈ {1, . . . , N}, k ∈ Z+.

When needed, random variables are denoted by capital letters
in order to avoid confusion. The input sequence {fk} is taken
to be deterministic and the sequence {Θk} has the property
that ∀k ∈ Z+ each Θk is independent of the state history
{X0, . . . , Xk} up to that point.
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Fig. 1. Error System E

B. Sensitivity measure and stability

Let lm2 (Z+) denote the space of all vector-valued real
sequences on nonnegative integers, of dimension m, i.e.,
f = {f0, f1, . . .} with fk ∈ R

m, such that

‖f‖2
2 =

∞∑
k=0

|fk|
2 < ∞

Here |fk|2 = f ′
kfk stands for the square of the Euclidean

norm on the underlying vector space. The unit sphere in
lm2 (Z+) is denoted by Sm

2 = {f ∈ lm2 (Z+) : ‖f‖2 = 1}.
Definition 1.1: The stochastic L2 gain of the system G is

denoted by γG and is defined for x0 = 0 by

γ2
G = sup

f∈Sm
2

E[

∞∑
k=0

|Yk|
2]

Definition 1.2: The system G with fk = 0, ∀k ∈ Z+

is called mean square stable, if for every set of initial
conditions x0 ∈ R

n, θ0 ∈ Θ, the second moment of the
magnitude of the state converges to zero

E[|Xk|
2] → 0 as k → ∞.

Definition 1.3: The system G with fk = 0, ∀k ∈ Z+ is
called exponentially mean square stable if for every set of
initial conditions x0 ∈ R

n and θ0 ∈ Θ, there exist real
constants β ≥ 1 and ρ ∈ (0, 1) such that

E[|Xk|
2] ≤ βρk|x0|

2, k ∈ Z+

Theorem 1.1: [10] The following statements are equiva-
lent :

• (a) System G is mean square stable.

• (b) System G is exponentially mean square stable.
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• (c) For every positive definite matrix S > S, Q ∈ R
n×n,

there exists a unique positive definite matrix P > 0, P ∈
R

n×n such that :

P −
N∑

i=1

qijA
′
iPAi = S, j ∈ Θ

A proof of the above theorem can be found in [10].
Lemma 1.1: Given a system G, if there exists a set of

positive definite matrices (P1, . . . , PN ) such that the corre-
sponding quadratic functions Vi(x) = x′Pix, i ∈ Θ satisfy
:

γ2|f |2 + Vj(x) ≥
N∑

i=1

qij [|Cix|
2 + V (Aix + Bif)], (1)

∀x ∈ R
n, ∀f ∈ R

m

then the stochastic L2 gain of G does not exceed γ ≥ 0.
Proof. The above relation implies

γ2|fk|
2 + E[V (Xk)] ≥ E[|Yk|

2] + E[V (Xk+1)], (2)

∀fk ∈ R
m, ∀k ∈ Z+.

According to definition 1.1 set x0 = 0 and sum relation (2)
from k = 0 to k = T obtaining

E[
T∑

k=0

|Yk|
2] ≤ γ2

T∑
k=0

|fk|
2 − E[V (XT+1)].

Since V is a nonnegative valued map, E[V (XT+1)] ≥ 0 thus

E[

T∑
k=0

|Yk|
2] ≤ γ2

T∑
k=0

|fk|
2.

Restricting the input signal f to be on the unit sphere Sm
2

gives

E[

∞∑
k=0

|Yk|
2] ≤ γ2 ∀f ∈ Sm

2

and in particular γ2
G ≤ γ2 completing the proof.

Theorem 1.2: If the system G is mean square stable, then
its stochastic L2 gain is finite.
Proof. Let Q > 0 be an arbitrary positive definite matrix.
Mean square stability guarantees the existence of a positive
definite matrix P > 0, such that

N∑
i=1

qiA
′
iPAi − P = −Q < 0. (3)

Define V (x) = x′αPx to be a quadratic function of the state,
where P > 0 and α ≥ 1 . Using the state equations one
obtains the following relation, that is equivalent to condition
(1)[

x′ f ′
] [

W11 W12

W21 W22

] [
x
f

]
≤ 0 ∀x ∈ R

n, f ∈ R
m

(4)

where

W11 =

N∑
i=1

qi(A
′
iαPAi + C′

iCi) − αP

W12 =

N∑
i=1

qiA
′
iαPBi

W21 = Q′
12

W22 =
N∑

i=1

qiB
′
iαPBi − γ2I

Using the Schur complement idea one can conclude, that a
sufficient set of conditions for (4) to hold is

W11 < 0 (5)

W22 < W21W
−1
11 W12 (6)

Using (3), relation (5) can be rewritten as

N∑
i=1

qiC
′
i Ci − αQ < 0

and there is always an α large enough so that it is satisfied.

Setting F1 =
N∑

i=1

qiB
′
iαPBi and F2 = W21W

−1
11 W12 one

can rewrite (6) as

F1 − F2 < γ2I.

The above condition can always be satisfied by taking γ
large enough. Thus, there exists an α ≥ 1 and a γ > 0 such
that V (x) = x′αPx satisfies the dissipation inequality (1).
Invoking lemma 1.1 leads to finiteness of the stochastic L2

gain of G.
A standing assumption in this work is that the process
of imposing the aforementioned statistics to the parametric
input leads to a mean square stable system.

II. GENERALIZED DISSIPATION INEQUALITIES AND

TRUNCATION OF STATES

A. Generalized dissipation inequalities

The model reduction procedure developed in this work
relies on the computation of P > 0, Q̂ > 0 for a given
mean square stable system G such that the following set of
dissipation inequalities is satisfied:

|x|2P ≥
N∑

i=1

qi(|Aix|
2
P + |Cix|

2), (7)

∀x ∈ R
n,

|x|2
Q̂

+ |f |2 ≥
N∑

i=1

qi(|Aix + Bif |
2
Q̂

), (8)

∀x ∈ R
n, ∀f ∈ R

m

In the above relations the notation |z|2P = z′Pz is used.
There is a natural interpretation of (7), (8) in the case where
N = 1, so that G reduces to an LTI system. If the system
matrices {A, B, C} constitute a minimal realization of G,
then equation (7) is satisfied with equality using P = Wo,
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and (8) is satisfied with equality using Q̂ = W−1
c , where

Wo, Wc are the observability and controllability Gramians
of the system respectively. In the case where N > 1, the
following two lemmas provide interpretations for P and Q̂.

Lemma 2.1: Let T ∈ Z+ and consider the unforced
{f0, . . . , fT } = {0, . . . , 0} response of G to the initial
condition x0 ∈ R

n. For an arbitrary T0 ∈ Z+ , such that
T0 < T one has

T∑
k=T0

E[|Yk|
2] ≤ E[|XT0 |

2
P ].

Proof. The dissipation inequality (7) implies in the unforced
case

E[|Xk+1|
2
P ] + E[|Yk|

2] ≤ E|Xk|
2
P ,

Sum the above relation from k = T0 to k = T to obtain

E[|XT+1|
2
P ] +

T∑
k=T0

E[|Yk|
2] ≤ E[|XT0 |

2
P ].

Then, noticing that E[|XT+1|2P ] ≥ 0 leads to the desired
result.

Lemma 2.2: Let T ∈ Z+ and consider the evolution of
G that starts at rest x0 = 0. Then, for an arbitrary input
sequence {f0, . . . , fT } one has

T∑
k=0

|fk|
2 ≥ E[|XT+1|

2
Q̂

], ∀fk ∈ R
m, k ∈ {1 . . . T}

Proof. The dissipation inequality (8) gives in this case

E[|Xk+1|
2
Q̂

] ≤ E[|Xk|
2
Q̂

] + |fk|
2, ∀fk ∈ R

m.

Sum the above relation from k = 0 to k = T and note that
x0 = 0 to obtain the desired result.

B. Reduction by state truncation

This a brief review of the concept of model reduction
by means of state truncation for linear parameter-varying
systems. One starts out with the state space representation
of G

xk+1 = Aθk
xk + Bθk

fk, (9)

yk = Cθk
xk, k ∈ Z+,

and applies an invertible coordinate transformation xk =
T x̃k that puts the ”most important” states in first components
of the transformed state vector x̃k . This transformation gives
a new state space representation of G

x̃k+1 = Ãθk
x̃k + B̃θk

fk,

yk = C̃θk
x̃k, k ∈ Z+.

The state vector x̃k is then partitioned as

x̃k =

[
x̃1k

x̃2k

]
,

where the state vector x̃1k
corresponds to the states that are

to be retained and x̃2k
to the states that are to be removed.

With appropriate partitioning of the system matrices the state
space representation of G becomes

x̃1k+1 = Ã11θk
x̃1k

+ Ã12θk
x̃2k

+ B̃1θk
fk,

x̃2k+1 = Ã21θk
x̃1k

+ Ã22θk
x̃2k

+ B̃2θk
fk,

yk = C̃1θk
x̃1k

+ C̃2θk
x̃2k

, k ∈ Z+.

The dynamic system that one obtains by truncating the last
r variables, i.e. x̃2k

∈ R
r , is equivalent to a system whose

state variables are constrained in a proper subspace Sn−r of
the original state space, where Sn−r = {x ∈ R

n | x(i) =
0, n−r+1 ≤ i ≤ n}, that is naturally isomorphic to R

n−r.
Thus the state vector x̂k of the reduced system Ĝ will be of
the form x̂k = (x̃1k

, 0)′ ∈ Sn−r ⊂ R
n.

III. UPPER BOUND TO THE APPROXIMATION ERROR

In this section it will be shown how to reduce the order
of a given mean square stable system G by means of state
truncation and obtain an upper bound on the stochastic L2

gain of the resulting error system E .
Theorem 3.1: Consider a mean square stable system G of

order n. Consider also the positive definite matrix W , such
that

W = Σ1 ⊕ Σ2,

where

Σ2 = β1Ir1 ⊕ . . . ⊕ βsIrs
,

s∑
k=1

rk = r.

Suppose that the matrix P = W satisfies (7) and Q̂ = W−1

satisfies (8). Let G̃ be the reduced order model obtained by
truncating the last r states of G. Then, the stochastic L2 gain
of the error system E is bounded from above by twice the
sum of the distinct entries on the diagonal of Σ2 :

γE ≤ 2(β1 + . . . + βs) (10)

Proof. Using the matrix

Er =

[
0 0
0 Ir

]
the state space representation of Ĝ can be written as

x̂k+1 = (In − Er)(Aθk
x̂k + Bθk

fk), (11)

ŷk = Cθk
x̂k, k ∈ Z+.

The following signals will shorten the subsequent notation.

zk = xk + x̂k,

δk = xk − x̂k

hθk
= Aθk

x̂k + Bθk
fk, θk ∈ Θ.

The proof will proceed by successive truncation of the last
rs, rs−1, . . . , r1 states. Let Gs denote the reduced system
obtained by truncating the last rs states and Es the corre-
sponding error system between Gs and G. The state variable
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of Gs is x̂(s) ∈ Sn−rs
⊂ R

n and one can verify that the
following relations hold:

z
(s)
k+1 = Aθk

z
(s)
k + 2Bθk

fk − Ers
h

(s)
θk

,

δ
(s)
k+1 = Aθk

δ
(s)
k + Ers

h
(s)
θk

,

e
(s)
k = Cθk

δ
(s)
k , k ∈ Z+,

where

z
(s)
k = xk + x̂

(s)
k ,

δ
(s)
k = xk − x̂

(s)
k ,

e
(s)
k = yk − y

(s)
k .

In a first step it will be shown that

γEs
≤ 2βs (12)

In order to prove (12) one can follow arguments similar to
Lemma 1.1. Namely, it is sufficient to find a storage function
V : R

n × R
n → R+, such that V (0, 0) = 0 and :

Ψ(x, x̂(s), f) ≥ 0, (13)

∀x ∈ R
n, ∀x̂(s) ∈ Sn−rs

, ∀f ∈ R
m,

where

Ψ(x, x̂(s), f) = 4β2
s |f |

2 −
N∑

i=1

qi|Ci δ(s)|2 − ΔV,

δ(s) = x − x̂(s)

ΔV =

N∑
i=1

qiV (x+, x̂
(s)
+ ) − V (x, x̂(s))

x+ = Aix + Bif

x̂
(s)
+ = (In − Ers

)(Aix̂
(s) + Bif)

Note that the above set of relations essentially imply

0 ≤ 4β2
s |fk|

2 +

− E[|E
(s)
k |2 + V (Xk+1, X̂

(s)
k+1) − V (Xk, X̂

(s)
k )],

∀fk ∈ R
m

and thus (12). A quadratic storage function candidate is given
by :

V (x, x̂(s)) = β2
s |z

(s)|2W−1 + |δ(s)|2W

In order to verify (13) one needs to compute the expected
increment of the storage function along system trajectories.

ΔV =

N∑
i=1

qi|Aiδ
(s) + Ers

h
(s)
i |2W +

β2
s

N∑
i=1

qi|Aiz
(s) + 2Bif − Ers

h
(s)
i |2W−1 +

−β2
s |z

(s)|2W−1 − |δ(s)|2W .

Expanding the individual term in the above expressions, one
obtains

ΔV =

N∑
i=1

qi|Aiδ
(s)|2W − |δ(s)|2W + (14)

+β2
s

N∑
i=1

qi|Aiz
(s) + 2Bif |

2
W−1 − β2

s |z
(s)|2W−1

+2βs

N∑
i=1

qi|Ers
h

(s)
i |2

−2βs

N∑
i=1

qi(Ers
h

(s)
i )′(Aiz

(s) + 2Bif − Aiδ
(s)).

Applying the dissipation inequality (7) on the first two terms
of (14) gives

N∑
i=1

qi|Aiδ
(s)|2W − |δ(s)|2W ≤ −

N∑
i=1

qi|Ciδ
(s)|2.

Using the dissipation inequality (8), the second line in (14)
becomes

β2
s

N∑
i=1

qi|Aiz
(s) + 2Bif |

2
W−1 − β2

s |z
(s)|2W−1 ≤ 4β2

s |f |
2.

For the last term of (14) note that

Aiz
(s) + 2Bif − Aiδ

(s) = 2h
(s)
i ,

and that E2
rs

= Ers
. Using the above relations we obtain

ΔV ≤ −
N∑

i=1

qi|Ciδ
(s)|2 + 4β2

s |f |
2 −

2βs

N∑
i=1

qi|Ers
h

(s)
i |2.

Substitute the above inequality in (14) to obtain

Ψk(x, x̂(s), f) ≥ 2βs

N∑
i=1

qi|Ers
h

(s)
i |2 ≥ 0,

∀x̂(s) ∈ Sn−rs
, ∀f ∈ R

m,

completing the first part of the proof. Let Ws be a submatrix
of W corresponding to the retained states.

Ws = Σ1 ⊕ β1Ir1 ⊕ . . . ⊕ βsIrs−1 .

Note that Ws satisfies the generalized dissipation inequalities
corresponding to Gs, in the sense

N∑
i=1

qi(|Aix̂
(s)|2Ws

+ |Cix̂
(s)|2) ≤ |x̂(s)|2Ws

,

∀x̂(s) ∈ Sn−rs
,

N∑
i=1

qi(|Aix̂
(s) + Bif |

2
W

−1
s

) ≤ |x̂(s)|2
W

−1
s

+ |f |2,

∀x̂(s) ∈ Sn−rs
, ∀f ∈ R

m.
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Thus, if the last rs−1 states from Gs are truncated and if
one denotes the resulting system Gs−1 and the corresponding
error system between Gs, Gs−1 by Es−1 then by repeating
the above argument

γEs−1 ≤ 2βs−1

Similarly,

γEj
≤ 2βj j ∈ {s, s − 1, . . . , 1}.

The desired result (10) is obtained by observing that
ek = e

(1)
k + . . . + e

(s)
k and applying the triangle inequality

on stochastic L2 gains.

A. Obtaining W = Σ1 ⊕ Σ2, W diagonal

The theorem of the previous section assumes there exists
a W = Σ1⊕Σ2, Σ2 diagonal, such that W = P satisfies (7)
and Q̂ = W−1 satisfies (8). In this section it will be shown
that under the standing assumption of mean square stability,
one can obtain in fact a diagonal matrix W with the desired
properties.

Mean square stability is equivalent with the existence of
P̂ > 0, such that

N∑
i=1

qiA
′
iP̂Ai − P̂ < 0. (15)

Relation (7) is equivalent to

N∑
i=1

qiA
′
iPAi − P ≤ −

N∑
i=1

qiC
′
iCi. (16)

By virtue of the above two relations, if one sets P = αP̂
and takes α > 0 large enough, the dissipation inequality (7)
can always be satisfied by some positive definite matrix P .
Relation (8) is equivalent to⎡⎢⎢⎣ −Q̂ +

N∑
i=1

qiA
′
iQ̂Ai

N∑
i=1

qiA
′
iQ̂Bi

N∑
i=1

qiB
′
iQ̂Ai −I +

N∑
i=1

B′
iQ̂Bi

⎤⎥⎥⎦ ≤ 0 (17)

Note that, if one sets γ = 1, Ci = 0, ∀i ∈ {1, . . . , N},
and Q̂ = αP with α > 0 , the above relation becomes
equivalent to (4). Let P̂ satisfy (15) and set Q̂ = αP̂ with
α > 0. Condition (5) is equivalent to mean square stability
and thus feasible for all positive values of α. Condition (6)
can be rewritten as

N∑
i=1

qiB
′
iQ̂Bi − W21W

−1
11 W12 < I.

Both terms on the left hand side of the above relation scale
linearly with α. Thus, by taking the positive parameter α
to be small enough one can also satisfy (8) with the choice
of Q̂ = αP̂ . To this point one has obtained P > 0 and
Q̂ > 0 such that (7) and (8) are feasible. What remains then,
is to compute a transformation matrix T that diagonalizes
the product PQ̂−1. In that case TPQ̂−1T−1 = W 2 > 0
and (7) is satisfied by W and (8) by W−1, justifying the
assumption of the previous theorem in regards to W .

B. Non uniqueness of P and Q̂

In general LMI’s may have multiple solutions, and thus
there is no unique solution to (7) and (8). However the
dissipation inequality (7) and its equivalent form (16) possess
a unique minimal solution, which can be computed by
solving the linear algebraic equation :

N∑
i=1

qi(A
′
iPAi + C′

iCi) = P

When it comes to relation (8) or its equivalent form (17)
the situation is different. For N = 1, the inverse of the
controllability grammian corresponds to a maximal solution
of (17). In the case of an LPV system, where N > 1, there
is no maximal solution though. For example, let N = 2 and

Q̂i = arg max
Q̂>0

trace(RiQ̂), i ∈ {1, 2} (18)

subject to (17), where Ri ≥ 0, i ∈ {1, 2}. If there was a
maximal solution to (17), then one should have

Q̂1 = Q̂2 (19)

The following system shows that (19) is not satisfied. Let

R1 =

[
1 0
0 0

]
, A1 =

[
0.2 0.0
0.3 0.5

]
,

R2 =

[
0 0
0 1

]
, A2 =

[
0.3 0.3
0.2 0.2

]
,

B1 = B2 =

[
0.4
0.2

]
, q1 = q2 =

1

2
.

Solving the optimization problem (18) subject to (17) gives

Q̂1 =

[
17.4 −16.7

−16.7 21.3

]
, Q̂2 =

[
14.9 −16.0

−16.0 24.9

]
.

The lack of a maximal solution to (17), is to some extent
unfortunate, since the diagonal entries of Σ2 that appear in
(10) are monotonic in P and Q̂−1. A reasonable remedy is to
compute a positive definite matrix Q̂ such that trace(P−1 Q̂)
is maximized subject to the constraint (17). The motivation
for this objective function comes from the fact that

trace(P−1Q̂) =

N∑
i=1

1

β2
i

and thus the smaller eigenvalues of W are more heavily
penalized in this optimization criterion, which is desirable
given the nature of the error bound (10).

IV. A NUMERICAL EXAMPLE OF THE METHOD

The reduction method will be demonstrated on a simple
example that involves a system G with 2 modes, 2 states, 1
input and 1 output having the system matrices :

A1 =

[
β + α 0

0 β − α

]
, A2 =

[
β − α 0

0 β + α

]
where β and α are positive parameters.

B1 = B2 = B =

[
1
1

]
= C′

1 = C′
2 = C′.
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Note that the above system is worst case stable if and only
if β +α < 1. The parametric input is randomized by setting
q1 = q2 = 1

2 . System G is mean square stable if and only
if β2 + α2 < 1. As expected the requirement of stochastic
stability relaxes the constraints on the parameters α, β. Let

W =

[
λmax 0

0 λmin

]
,

and set β = 0.7. The ratio λmax

λmin
is depicted in the following

figure as a function of α. Given the nature of the error bound,

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

α

λ m
ax

 / 
λ m

in

ratio of eigenvalues of W

Fig. 2. Ratio λmax

λmin
of the eigenvalues of W , ( β = 0.7, α ∈ [0.06, 0.5]).

one can expect, that the larger the eigenvalue ratio of W the
better the quality of the reduction. Note that as α converges
to 0, G converges to a first order linear time-invariant system.
Truncating one state from G leads to a reduced system Ĝ,
that turns out to be a linear time invariant system with a
single pole at β. The response of the two systems to a step
input for a particular realization of the parametric input is
depicted in the following figure for β = 0.7 and α = 0.1.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
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7

8

time

ou
tp

ut

Fig. 3. Response of G and Ĝ to a step input for a particular realization of
the parametric input θk , (β = 0.7 , α = 0.1).
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