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Abstract— This paper addresses a fundamental limitation
of performance for feedback systems, in the presence of
a communication channel. The feedback loop comprises a
discrete-time, linear and time-invariant plant, a channel, an
encoder and a decoder which may also embody a controller.
Measurements of the plant’s output must be encoded for
transmission over the channel. Information, at the other end of
the channel, is decoded and used to generate a control signal,
which is additively disturbed by a Gaussian and stationary
stochastic process. We derive an inequality of the form L− ≥P

max{0, log(|λi(A)|)}−Cchannel, where L− is a measure of
disturbance rejection, A is the open loop dynamic matrix and
Cchannel is the Shannon capacity of the channel. Our measure
L− is non-positive and smaller L− indicates better rejection
(attenuation), while L− = 0 signifies no rejection. Previous
results show that Cchannel >

P
max{0, log(|λi(A)|)} is a

necessary condition for stability and now we show that the
extra rate Cchannel −

P
max{0, log(|λi(A)|)} determines a

fundamental limitation for disturbance rejection. Additionally,
we prove that, under stationarity assumptions, L− admits a
log-sensitivity integral representation. We contrast our condi-
tion with Bode’s integral formula and the water-bed effect.
The new inequality shows explicitly how the capacity of the
channel limits closed loop performance.

I. INTRODUCTION

Motivated by applications, such as remote feedback, con-
trol in the presence of information constraints has received
considerable attention. Certainly, the exploration of such
problems is exciting as they foster the interaction between
the disciplines of Information Theory and Control.

So far, research in this field has, primarily, directed
its attention to stabilization [19]. The basic framework is
depicted in Fig 1 and comprises a plant, a channel, an en-
coder and a decoder, which implicitly embeds a controller.
Measurements of the plant’s output must be encoded and
sent through the channel. The information, received at the
other end of the channel, is decoded and used to generate
a control signal. It has been shown that stabilization, of
a linear and time-invariant plant, requires [16], [17], [12]
that Cchannel, the channel’s Shannon capacity, is larger than∑

max{0, log(|λi(A)|)}, where A is the dynamic matrix of
the state-space representation of the plant. For certain chan-
nels, the condition Cchannel >

∑
max{0, log(|λi(A)|)} is

sufficient for stabilization in the almost sure sense [17],
but it may not suffice for moment stability[15]. In general,
moment stability necessitates a more informative notion of
capacity, designated as Anytime Capacity [15]. Stabilization
of nonlinear systems has also been studied by [13] and [7].
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Fig. 1. Structure of the Feedback Interconnection

The work by [4] has used the integral of the log-sensitivity,
as seen by the noise in an additive Gaussian channel, to
establish that the optimal encoding/decoding scheme can be
constructed using standard optimal control theory. Optimal
control of stable systems was addressed in [11]. Another
recent area of investigation is the analysis in the presence
of disturbances and uncertainty. In [9], stability in the
presence of disturbances and operator theoretic uncertainty
is investigated, for a particular class of channels.

Understanding the fundamental limitations of perfor-
mance in a feedback system is critical for effective control
design. One of the most well known trade-offs is the water-
bed effect for linear feedback systems, which results from
Bode’s integral formula[1]. In such classical theory, the
transfer function, between the disturbance d and ẽ = ũ+d
(see Fig 1), is denoted as sensitivity and is represented
by S(z). Bode’s result, for a strictly proper loop gain, is
expressed as:

1
2π

∫ π

−π

[log |S(ejω)|]−dω +
1
2π

∫ π

−π

[log |S(ejω)|]+dω =
∑

max{0, log(|λi(A)|)} (1)

where [log |S(ejω)|]− = min{0, log |S(ejω)|} and
[log |S(ejω)|]+ = max{0, log |S(ejω)|}. It implies that
sensitivity can’t be small at all frequencies,i.e., reduction of∫ π

−π
[log |S(ejω)|]−dω is achieved at the expense of increase

in
∫ π

−π
[log |S(ejω)|]+dω.

Recent publications [5], [22] have provided new versions
of (1). The work by [22] has introduced a Bode-like integral
inequality for non-linear systems, which is derived based on
information theoretic principles.

In this paper, we derive a fundamental limitation that
arises when the directed information rate1 [10], [17], de-
noted by Ī∞(v → z), at the channel, is upper-bounded by
a constant, i.e., Ī∞(v → z) ≤ Cchannel. Our results show
that the following must hold:

1
2
L− + Ī∞(v → z) ≥

∑
max{0, log(|λi(A)|)}

1This quantity is represented as Ī∞(v → z) and will be precisely
defi ned in section II.
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where L− is a measure of disturbance rejection. Such
measure satisfies L− ≤ 0, where L− = 0 means no-
rejection and small L− attests disturbance attenuation. We
show that, under stationarity assumptions, L− becomes an
integral and our condition can be expressed as:

1
2π

∫ π

−π

[log |S(ejω)|]−dω + Ī∞(v → z) ≥
∑

max{0, log(|λi(A)|)} (2)

By means of an argument similar to the water-bed effect,
the inequality (2) asserts that attenuation, when measured by∫ π

−π
[log |S(ejω)|]−dω, has to be repaid by a higher informa-

tion rate in the channel. Since Ī∞(v → z) ≤ Cchannel, we
infer that the trade-off (2) creates a fundamental limitation.

Using information theoretic arguments and assuming
stationarity, we also derive the Bode integral formula. Our
derivations require a linear and time-invariant plant, but
the encoder, the channel and the decoder/controller can
be any causal operators. The paper is organized in 4
sections. Besides the introduction, section II lays down the
problem formulation as well as a preview and a discussion
of the results; the limitations resulting from causality are
derived in section III and section IV develops a fundamental
limitation that results from finite capacity feedback.

A. The following notation is adopted:

• Whenever it is clear from the context, we refer to a
sequence {a(k)}∞−∞ of elements in R

n as a. A finite
segment of a sequence a is indicated as akmax

kmin
=

{a(k)}kmax

kmin
. If kmax < kmin then akmax

kmin
= ∅.

• If M is a matrix then the element in the i-th row and
j-th column is indicated as [M ]i,j . Similarly, if a ∈ R

n

then [a]i denotes the i-th component of the vector.
• Random variables are represented using boldface let-

ters, such as a.
• If a(k) is a stochastic process, then we use a(k) to

indicate a specific realization. Similar to the convention
used for sequences, we may denote a(k) just as a and
a(k) as a. A finite segment of a stochastic process is
indicated as akmax

kmin
.

• The probability density of a random variable a, if it
exists, is denoted as pa. The conditional probability,
given b, is indicated as pa|b.

• The expectation operator over a is written as E [a]
• We write log2(.) simply as log(.)
• We adopt the convention 0 log 0 = 0
• The auto-covariance function of a given stochastic

process a is given by:

Ra(k, l) = E
[
(a(k) − E [a(k)])(a(l) − E [a(l)])T

]
If a is stationary then it’s power spectral density is
written as

F̂a(ω) =
∞∑

k=−∞

Ra(k, 0)e−iωk

• If a is a stochastic process taking values in R then we
use the following covariance matrix:[

Σ
(
akmax

kmin

)]
(i−kmin+1),(j−kmin+1)

=

E [(a(i) − E [a(i)])(a(j) − E [a(j)])] (3)

where i, j ∈ {kmin, . . . , kmax}.
• The Singular Value Decomposition of a matrix M =

MH ≥ 0 is indicated as M = V T
MΛMVM , where

the usual ordering of singular values is assumed
[ΛM ]i+1,i+1 ≤ [ΛM ]i,i. The singular values of M are
represented in a more streamlined form as λi(M) =
[ΛM ]i,i. If A is a square matrix, we also represent its
eigenvalues as λi(A).

• If a ∈ R then we define the negative and positive parts
of a as [a]− = min{a, 0} and [a]+ = max{a, 0},
respectively.

• The following is a shorthand notation for the log-
density of the eigenvalues with magnitude smaller than
1, of a covariance matrix:

L−(akmax

kmin
) =

∑kmax−kmin+1
i=1 [log

(
λi(Σ(akmax

kmin
))

)
]−

kmax − kmin + 1
(4)

Similarly, we also define L+, the positive counterpart
of L−, mutatis-mutandis by replacing − by + in (4).

B. Basic Facts and Definitions of Information Theory

In this section, we summarize the main definitions and
facts about Information Theory which are used throughout
the paper. We adopt [14], as a primary reference, because
it contemplates general probabilistic spaces in a unified
framework. Let (Ω,Sω ,Pω) be a probability space along
with the random variables a, b and c, taking values in the
measurable spaces (A,Sa), (B,Sb) and (C,Sc). We define
mutual information and conditional mutual information,
between any two random variables, as:

Definition 1.1: (from [14] pp. 9 ) The mutual information
I : (a;b) → R+

⋃
{∞}, between a and b, is given by

I(a;b) = sup
∑

ij Pa,b(Ei × Fj) log Pa,b(Ei×Fj)
Pa(Ei)Pb(Fj)

, where
the supremum is taken over all partitions {Ei} of A and
{Fj} of B.
The definition of conditional mutual information can be
found in [14] (pp. 37).

Notice that, in definition 1.1, A and B may be different.
Without loss of generality, we follow [17] as we consider
probability spaces which are countable or R

q, for some q.
We also define the following quantities, denoted as differen-
tial entropy and conditional differential entropy, which are
useful in the computation of I(·, ·) for certain cases relevant
in this paper.

Definition 1.2: If a is a random variable with A = R
q,

finite covariance matrix Σa and a bounded2 and measurable

2Since pa is bounded with a fi nite covariance matrix Σa it follows that
h(a) < ∞. The fact that h(a) < ∞ further implies that pa log pa is
integrable. Proofs of these facts use standard analysis arguments and can
be found in [8]
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probability density function pa(·) then we define the differ-
ential entropy of a as h(a) =

∫
Rq pa(γ) log pa(γ)dγ. If b

is a random variable with B = R
q′

and such that pa,b(·, ·)
is a bounded measurable probability density function with
finite covariance then we define the conditional differential
entropy of a given b as3:

h(a|b) = h(a,b) − h(b) =∫
Rq′

∫
Rq

pa,b(γa, γb) log pa|b(γa, γb)dγadγb (5)

If B is countable and pa|b(γa, b) is bounded and log pa|b

is measurable in the measure induced in A×B then h(a|b)
is defined as:

h(a|b) =
∑

γb∈Sb

∫
Rq

pa,b(γa, γb) log pa|b(γa, γb)dγa (6)

Likewise, the quantity h(a|b, c) is defined by incorporating
another sum over Sc, if C is discrete, or an integral if
C = R

q′′

. Notice that the quantity defined in (6) may not
be bounded (it can be −∞) because the integrand is not
necessarily integrable/summable. In the more general case,
if we write h(a|b) then we assume that pa|b is bounded
and that log pa|b is integrable with respect to the probability
measure induced in A × B. A more rigorous treatment of
this technicality can be found in Chapter 3 of [8].

Using Theorem 2.1.2 of [14], we know that if log pa

and log pa|b are integrable with respect to the probability
measure induced in A×B then we can compute I(a;b) as:

I(a;b) = h(a) − h(a|b) (7)

In this paper, if we use (7) then, implicitly, we assume
that log pa and log pa|b are integrable with respect to the
probability measure induced in A× B.

The following is a list of properties used in the sections
III and IV. The proof of such properties may be found in
[14] and, in some cases, in [2]: (P1): I(a;b) = I(b;a) ≥
0 and I(a;b|c) ≥ 0; (P2) Kolmogorov’s formula 4

(equation 3.6.6 in [14]):

I((a,b); c|d) = I(b; c|d) + I(a; c|(b,d))

(P3): Theorem 3.7.1 in [14]: If f and g are measur-
able functions in the appropriate probability spaces then
I(f(a); g(b)|c) ≤ I(a;b|c) and equality holds if f and
g are invertible5; (P4): From property (P3), we conclude
that I(a; (b, c)|d) = I(a; (b − c, c)|d). Using (P2), such
equality also leads to I(a;b|(c,d)) = I(a;b − c|(c,d));
(P5): By means of (P1) and (7), we infer that h(a) ≥
h(a|b), where equality holds if and only if a and b are
independent. Likewise, we can use properties (P1)-(P2) to

3Notice that the equalities bellow hold because all the integrands are
integrable

4Notice that equation 3.6.3 in [14] has a typographic mistake. On the
left hand side of the equality, the correct is I(ξ, ζ)

5In [14] equality is guaranteed for everywhere dense f and g. Everytime
we say that a function is invertible in this context we are implicitly
assuming that it is everywhere dense.

Channel ��
z v

D E

� �� �

�
�

P
w

u

ye

Fig. 2. Simplifi ed Structure of the Feedback Interconnection using e =
G−1ẽ and u = G−1ũ.

state that I(a; (b, c)) ≥ I(a;b), which can be used with
(7) to derive h(a|b) ≥ h(a|(b, c)); (P6): Using a change
of variables in the integrals of definition 1.2, we reckon
that if f : B → A is any given function then h(a|b) =
h(a−f(b)|b); (P7) [2]: If a has a finite covariance matrix
Σa then h(a) ≤ 1

2 log((2πe)n det(Σa)).
In order to simplify our notation, we also define the

following quantities:
Definition 1.3: Let a and b be stochastic processes. The

following are useful limit information rates:

Ī∞(a;b) = lim sup
k→∞

I(ak
1 ;bk

1)
k

Ī∞(a → b) = lim sup
k→∞

I(ak
1 → bk

1)
k

where directed mutual information is defined as [10], [17]:

I(ak
1 → bk

1) =
k∑

i=1

I(ai
1;b(i)|bi−1

1 )

II. PROBLEM FORMULATION AND DISCUSSION OF

RESULTS

Consider the feedback interconnection depicted in Figure
1. In such information pattern [18], measurements of the
state of the plant have to be encoded and sent over a
communication channel. The transmitted information is
used, at the decoder/controller, to generate the control signal
u. In order to make the paper more comprehendible, we
proceed with the equivalent block diagram of Fig 2.

A. General Assumptions

In the present formulation, the following assumptions
are made: the process w, with w(k) ∈ R, is an i.i.d.,
zero mean, unit variance, white and Gaussian process;
e is a scalar (e(k) ∈ R) stochastic process for which
ekmax

kmin
has a probability density function, for every finite

kmin, kmax; G(z) is an all-pole stable filter of the form
G(z) = α

1−
Pp

m=1 amz−m for some integer p ≥ 1 and
constants ai and α > 0. Given n, P is a single input plant
with state x(k) ∈ R

n, which satisfies the following state-
space equation:

x(k + 1) =
[
xu(k + 1)
xs(k + 1)

]
=

[
Au 0
0 As

]
x(k) +

[
bu

bs

]
e(k)

(8)
y(k) = Cx(k), |λi(Au)| ≥ 1, |λi(As)| < 1 and k ≥ 0
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The state partitions xu and xs represent the unstable and
stable open-loop dynamics, respectively. In addition, if A �=
As then xu(1) is a random variable with a probability
density function and |h(xu(1))| < ∞.

In this paper, we will also refer to Channels which are
stochastic operators conforming to the following definition:

Definition 2.1: (Memory-less Channel) Let V and Z
be given input and output alphabets, along with a white
stochastic process, denoted as c, with alphabet C. Consider
f : V ×C → Z such that the following maps are invertible:

g1(v(k), c(k)) = (v(k), f(v(k), c(k)))

g2(v(k), c(k)) = (f(v(k), c(k)), c(k))

The pair (f, c) defines a memory-less channel. The follow-
ing are examples of memory-less channels:

• Additive white Gaussian channel: V = Z = C =
R, c is an i.i.d. white Gaussian sequence with unit
variance and f(c, v) = c + v.

• Binary symmetric channel, with error probability
pe: V = Z = C = Z2 = {0, 1}, c is an i.i.d sequence
satisfying P(c(k) = 1) = pe and f(c, v) = c +mod2 v

B. Assumptions about the Encoder and the Decoder

We also assume the following about the encoder and the
decoder:

• (A1) the encoder and the decoder are causal operators
defined in the appropriate spaces, i.e., E : Y∞ → V∞,
D : Z∞ → U∞ where v(k) = f e

k(yk
−∞) and u(k) =

fd
k (zk

−∞) for some functions f e
k and fd

k .
• (A2) additionally, the decoder satisfies the following

finite memory condition:

∀k > α,uk
1+α = f̃d

k (uα
1 , zk

1) (9)

for some α ∈ N+ and a sequence of functions f̃d
k :

Uα ×Zk → Uk−α−1.
• (A3) (Fading memory condition) For technical reasons,

we assume that the following condition holds:

lim sup
k→∞

1
k
I(uα

1 ;x(1),wk
1 |z

k
1) = 0

where α is the smallest constant for which (A2) holds.
If α = 0 then we adopt the convention that (A3)
is satisfied. A particular instance of α = 0 is if the
decoder is a dynamical system with zero initial condi-
tions. Several aspects of this assumption are clarified
below. More details can be found in [8].

C. Further Remarks about (A2)

Notice that a synchronous block decoder, with delay α,
falls into this category. In addition, any dynamic system,
of the form u(k) = f(uk−1

k−α, zk
k−α), will satisfy (9). We

emphasize that this representation does not pressupose a
full-information system. For example, if yc(k) is the output
of an observable n-th order linear and time-invariant system,
with input z(k), then it is possible to represent its input-
output behavior in the form yc(k) = f(yc

k−1
k−n, zk

k−n).

1) Assumption (A3) when U is countable: If U is count-
able then we can use (P1)-(P2) to conclude that:

I(uα
1 ;wk

1 |z
k
1) ≤ H(uα

1 ) (10)

As such, if H(uα
1 ) < ∞ holds then I(uα

1 ;wk
1 |z

k
1) < ∞

is satisfied. If U has ℵU elements, such quantity is upper-
bounded [2] as H(uα

1 ) ≤ α log(ℵU ). The confinement to
finite control alphabets is expected if the channel, itself, is
discrete or in the presence of quantizers. Finite U further
encompasses digital controllers, as they constitute dynamic
systems evolving on a finite precision algebra.

D. Problem Statement and Discussion of Results

We investigate the fundamental limitations of the eigen-
value distribution of Σ(ekmax

kmin
). In order to simplify the

exposé, we state our results in terms of L−(ekmax

kmin
) and

L+(ekmax

kmin
).

In section III we reach a fundamental limitation which
is a consequence of causality alone. The result is presented
in theorem3.3, which states that if the feedback system in
Fig 2 is stable then the following must hold:

1
2

lim inf
k→∞

(
L−(ek

1) + L+(ek
1)

)
≥

∑
i

max{0, log(|λi(A)|)}

(11)
The inequality in (11) demonstrates that not all of the
eigenvalues, of Σ(ek

1), can be made small and that the
reduction of some necessarily imply the increase of others.
That is comparable to the water-bed effect, associated to
the classic Bode integral limitation. Such comparison is not
coincidental and is explored in section III-A.

In the fundamental limitation expressed in (11), the
characteristics of the channel do not play a role. It remains
the question of whether the “shaping” of the eigenvalues
of Σ(ek

1) depends on the information flow in the feedback
loop. The answer is given in theorem 4.3 which states that:

1
2

lim inf
k→∞

L−(ek
1)+Ī∞(v → z) ≥

∑
i

max{0, log(|λi(A)|)}

(12)
As a consequence of (12), we find that reduction of the
eigenvalues of Σ(ek

1), for values bellow unity, must come at
the expense of information flow in the channel, as quantified
by Ī∞(v → z).

Under stationary assumptions, corollaries 3.4 and 4.4
show that the inequalities (11) and (12) can be expressed
as:

1
2π

∫ π

−π

[log(S(ω))]−dω +
1
2π

∫ π

−π

[log(S(ω))]+dω ≥

∑
i

max{0, log(|λi(A)|)} (13)

1
2π

∫ π

−π

[log(S(ω))]−dω + Ī∞(v → z) ≥
∑

i

max{0, log(|λi(A)|)} (14)
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where S(ω) =
√

F̂e(ω) =
√

F̂ẽ(ω)

F̂d(ω)
.

The inequalities (13) and (14) must be satisfied by any
stable and causal loop of the form depicted in Fig 1 or Fig
2.

III. FUNDAMENTAL LIMITATIONS CREATED BY

CAUSALITY

In this section, we derive a fundamental limitation that
results from causality. Such digression is also used to
present some of the preliminary results, which will be used
in section IV. Our technique follows the one by [22], with
the exception of the way we tackle initial conditions and
unstable modes of the plant. More specifically, theorem 3.3
states a fundamental limitation that explicitly incorporates
the eigenvalues of A. At the end of the section, we special-
ize the result, under stationarity assumptions, and derive the
Bode-Integral formula in Corollary 3.4.

The following lemma shows that the difference, between
the entropy rate of e and the entropy rate of w, is lower-
bounded by the mutual information between the initial state
and e.

Lemma 3.1: If x(k) is the solution of the state-space
equation (8) then the following holds:

lim inf
k→∞

h(ek
1)

k
≥ lim inf

k→∞

I(ek
1 ;x(1))
k

+ h(w(1)) (15)

Proof: We start by noticing that since the plant is strictly
causal and x(1) is independent of w, we get that:

h(w(k)) = h(w(k)|x(1),uk
1 ,wk−1

1 ) =

h(e(k)|x(1),uk
1 , ek−1

1 ) ≤ h(e(k)|x(1), ek−1
1 ) (16)

where we used properties (P5) and (P6). Since h(w(k))
does not depend on k, we use (16) and the law of iterated
differential entropy 6 to derive:

k∑
i=1

h(e(i)|x(1), ei−1
1 ) = h(ek

1 |x(1)) ≥ kh(w(1))

The proof is concluded once we notice, from (7), that
h(ek

1 |x(1)) = h(ek
1) − I(ek

1 ;x(1)). �

The following lemma, corroborates the results by [16],
[17], [15], [21], [12], and unveils that stability implies that
e must carry a bit-rate, of information about the initial state,
of at least

∑
i max{0, log(|λi(A)|)}.

Lemma 3.2: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e.,
supk E [xT (k)x(k)] < ∞ holds then the following is sat-
isfied:

lim inf
k→∞

I(ek
1 ;x(1))
k

≥
∑

i

max{0, log(|λi(A)|)} (17)

6Notice that the law of iterated differential entropy, equation (9.33) in
[2], holds here because we assume that e and x(1) have a joint probability
density function.

Proof: If A = As then we just use I(ek
1 ;x(1)) ≥ 0. If A �=

As then we consider the following homogeneous system:

xe(k + 1) = Auxe(k) + bue(k), xe(1) = 0 (18)

and define the estimate x̂(k) = A−k
u xe(k). Since xu(k) =

xe(k) + Ak
uxu(1) = Ak

u(x̂(k) − xu(1)), we know that:

k log(| det(AuAT
u )|) + log(det(Rxerror

(k))) =
log(det(Rxu

(k, k))) < β < ∞ (19)

where xerror(k) = x̂(k) − xu(1). Since x̂(k) is a function
of ek

1 , we have that:

I(x(1); ek
1) ≥ I(xu(1); ek

1) ≥ h(xu(1))−h(x̂(k)−xu(1))
(20)

But, from (P7) we know that lim supk→∞
h(x̂(k)−xu(1))

k
≤

lim supk→∞
log(det(Rxerror (k)))

2k
. As a consequence, we

can use (19) to get lim supk→∞
h(x̂(k)−xu(1))

k
≤

− log(| det(Au)|). The proof follows by direct substitution
�.

Using the results in the previous lemmas, we derive
theorem 3.3. It states that causality and stability imply that
the log-sum of the eigenvalues of Σ(ek

1) are, in the limit,
lower bounded by the unstable eigenvalues of the plant.

Theorem 3.3: (Causality fundamental limitation) Let
x(k) be the solution of the state-space equation (8). If the
system is stable, i.e., supk E [xT (k)x(k)] < ∞ holds then
the following is satisfied:

lim inf
k→∞

(
L−(ek

1) + L+(ek
1)

)
≥ 2

∑
i

max{0, log(|λi(A)|)}

(21)
Proof: From lemmas 3.1 and 3.2 we know that:

lim inf
k→∞

h(ek
1)

k
− h(w(1)) ≥ lim inf

k→∞

I(ek
1 ;x(1))
k

≥∑
i

max{0, log(|λi(A)|)} (22)

Using the fact (P7), we conclude that h(ek
1)− kh(w(1)) ≤

1
2 log(det(Σ(ek

1))) which, together with (22), leads to the
final result �

A. Deriving Bode’s Integral Formula

Under stationarity assumptions, theorem 3.3 is at the base
of Bode-integral formula. A precise description of such
property is in the subsequent Corollary.

Corollary 3.4: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e.,
supk E [xT (k)x(k)] < ∞ holds and e is a stationary
process, where 0 < m < F̂e(ω) < M < ∞ is Lebesgue
integrable, then the following is satisfied:

1
2π

∫ π

−π

log(S(ω))dω ≥
∑

i

max{0, log(|λi(A)|)} (23)

where S(ω) =
√

F̂e(ω) =
√

F̂ẽ(ω)

F̂d(ω)
=

√
F̂ẽ(ω)

|G(ejω)|2 . The

processes ẽ and d are the ones depicted in Fig 1.
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Proof: The proof follows from Theorems 3.3 and 5.2,
which implies that if e is stationary, then limk→∞ L(ek

1) =
1
2π

∫ π

−π
log(F̂e(ω))dω. �

IV. FUNDAMENTAL LIMITATIONS CREATED BY FINITE

CAPACITY FEEDBACK

In this section, we examine the fundamental limitations,
in the eigenvalues of Σ(ek

1), that originate from the con-
straint Ī∞(v → z) ≤ Cchannel. The main inequality,
involving the channel directed information rate and the
eigenvalues of A, is given in theorem 4.3.

Subsequentially, we provide a lemma which unveils
how the information, traveling in the feedback loop, is
allocated. By inspecting the proof of such lemma, we
identify that the feedback mutual information, dictated by
I((x(1),wk

1 );uk
1), must account for two terms. The first is

due to stabilization information I(x(1); ek
1) and the second

quantifies the interaction between the control signal and the
disturbance I(uk

1 ;wk
1). In addition, the case study in [8]

shows that the inequality, presented in the lemma below, is
not conservative.

Lemma 4.1: (Fundamental Lemma of the Information
Flux) Let x(k) be the solution of the state-space equation
(8). If the system is stable, i.e., supk E [xT (k)x(k)] < ∞
holds then the following is satisfied:

Ī∞(v → z) ≥ lim inf
k→∞

I(x(1); ek
1)

k
+ Ī∞(u;w) (24)

Proof: We start by using (P2) to write I((x(1),wk
1 );uk

1) =
I(x(1);uk

1 |w
k
1) + I(uk

1 ;wk
1) which can be rewritten, by

means of (P3), as:

I((x(1),wk
1 );uk

1) = I(x(1); ek
1 |w

k
1) + I(uk

1 ;wk
1) (25)

On the other hand, using (P2) we get

I(x(1); ek
1 |w

k
1) =

I(x(1); ek
1) − I(x(1);wk

1 ) + I(x(1);wk
1 |e

k
1) (26)

Since w is independent from x(1), the second term, on
the right-hand side of (26), vanishes and we resort to (P1)
to get I(x(1); ek

1 |w
k
1) ≥ I(x(1); ek

1). Consequently, we
substitute the aforementioned inequality in (25) and obtain
the following:

I((x(1),wk
1 );uk

1) ≥ I(x(1); ek
1) + I(uk

1 ;wk
1) (27)

The present lemma is proven once we resort to theorem 5.1
�

The following lemma suggests that attenuation can hap-
pen only if the channel sends information about the distur-
bance.

Lemma 4.2: If g(k) is a sequence satisfying g(k) ≥ 1
then the following holds:

1
k

I(uk
1 ;wk

1) ≥ −
1
2
L−(ek

g(k)) (28)

Proof: Let the following be the singular value decomposi-
tion of Σ(ek

g(k)):

Σ(ek
g(k)) =

[
V+

V−

]T [
Λ+ 0
0 Λ−

] [
V+

V−

]
(29)

where [Λ−]ii < 1 and [Λ+]ii ≥ 1.
We establish the following relation7:

I(wk
1 ;uk

1) ≥ I(wk
g(k);u

k
g(k)) ≥ I(V−wk

g(k); V−uk
g(k)) =

h(V−wk
g(k)) − h(V−wk

g(k)|V−uk
g(k)) ≥

h(V−wk
g(k)) − h(V−ek

g(k)) (30)

where we have used (7), (P6) and (P5). More-
over, since w is Gaussian with unit variance then
(P7) guarantees that h(V−wk

g(k)) − h(V−ek
g(k)) ≥

− 1
2 log(det(V−Σ(ek

g(k))V
T
− )) = −k

2L−(ek
g(k)). �

Subsequently, we provide the theorem which states the
main inequality in the paper. It reflects a trade-off between
disturbance attenuation, as measured by L−(ek

1), and the
directed information rate through the channel, expressed by
Ī∞(v → z).

Theorem 4.3: (Main theorem) Let x(k) be the solution
of the state-space equation (8) and g(k) be an arbitrary
sequence satisfying g(k)

k
→

k→∞
0. If the system is stable,

i.e., supk E [xT (k)x(k)] < ∞ holds then the following is
satisfied:

Ī∞(v → z) +
1
2

lim inf
k→∞

L−(ek
g(k)) ≥∑

i

max{0, log(|λi(A)|)} (31)

Proof: The result follows by direct substitution of Lemmas
3.2 and 4.2 into Lemma 4.1. �

The corollary bellow is an immediate consequence of the-
orem 4.3 and shows that if Cchannel is too close to the crit-
ical stabilization rate, given by

∑
i max{0, log(|λi(A)|)},

then disturbance rejection is not possible.
Corollary 4.4: Let x(k) be the solution of the state-

space equation (8) and g(k) be an arbitrary sequence
satisfying g(k)

k
→

k→∞
0. If the system is stable, i.e.,

supk E [xT (k)x(k)] < ∞ holds then the following is sat-
isfied:

1
2

lim inf
k→∞

L−(ek
g(k))+Cchannel ≥

∑
i

max{0, log(|λi(A)|)}

(32)
Proof: Follows from theorem 4.3 and the fact that I(vk

1 →
zk
1) ≤ kCchannel. �

7Notice that we have used an abuse of notation in equation (30). We
write V−ek

g(k)
to indicate the random variable whose realizations are

computed as V−

2
64

e(k)
...

e(g(k))

3
75
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Fig. 3. Casting the feedback loop as a channel in feedback.

A. An Integral Formula

Under stationarity assumptions, the condition in theorem
4.3 can be expressed by means of an integral form.

Corollary 4.5: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e.,
supk E [xT (k)x(k)] < ∞ holds and e is stationary, where
0 < m < F̂e(ω) < M < ∞ is Lebesgue integrable, then
the following is satisfied:

1
2π

∫ π

−π

[log S(ω)]−dω + Ī∞(v → z) ≥
∑

i

max{0, log(|λi(A)|)} (33)

where S(ω) =
√

F̂e(ω) =
√

F̂ẽ(ω)

F̂d(ω)
=

√
F̂ẽ(ω)

|G(ejω)|2 . The

processes ẽ and d are the ones depicted in Fig 1.
Proof: By means of a direct application of the Theorem 5.2
we find that:

lim
k→∞

L−(ek
1) =

1
2π

∫ π

−π

[log(F̂e(ω))]−dω (34)

The result follows by direct substitution of (34) in (31). �

The integral formula holds under certain asymptotic
stationarity conditions. More specifically, it holds if there
exists g(k) such that Σ(ek

g(k)) converges, “sufficiently fast”,

to a stationary Σ(�ek−g(k)
1 ). This extension is studied by [8]

in a case study.

V. AUXILIARY RESULTS

The following theorem provides an extension of the
directed data processing inequality, originally derived in
[17]. Compared to the version in [17], the result presented
bellow allows encoders and decoders that depend on past
inputs indexed by k < 1. The quantities in the statement of
the theorem refer to the scheme depicted in Fig 3.

Theorem 5.1: (Directed Data Processing Inequality) Let
the following assumptions hold:

• The plant is LTI with a state-space representation
where D = 0 (strictly proper)

• (A1) The encoder and decoder are causal operators
• (A2) The decoder satisfies:

∀k > α,uk
α+1 = f̃d

k (uα
1 , zk

1) (35)

for some α ∈ N+ and a sequence of functions f̃d
k .

• (A3) The fading memory condition
lim supk→∞

1
k
I(uα

1 ; (x(1),wk
1 )|zk

1) = 0 holds.

Under the above conditions, the following is true:

lim sup
k→∞

1
k
I((x(1),wk

1 );uk
1) ≤ Ī∞(v → z) (36)

Proof: We separate the proof in two parts.
As a first step we show that I(zk

1 ; (x(1),wk
1)) ≤

I(vk
1 → zk

1).
Using (P2) we can write the following equality, for any

given i ∈ {1, . . . , k}:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) = I(z(i);vi
1|z

i−1
1 )+

I(z(i); (x(1),wi−1
1 )|zi−1

1 ,vi
1)−

I(z(i);vi
1|z

i−1
1 ,x(1),wi−1

1 ) (37)

Now notice that (P2) allows us to rewrite:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ,vi
1) =

I((zi
1,v

i
1); (x(1),wi−1

1 )) − I((zi−1
1 ,vi

1); (x(1),wi−1
1 ))

(38)

But, from (P3), we know that

I((zi
1,v

i
1); (x(1),wi−1

1 )) =

I((c(i), zi−1
1 ,vi

1); (x(1),wi−1
1 )) (39)

where we used the fact that, from the definition 2.1 (chan-
nel), the following map is invertible:

(z(i), v(i)) 
−→ (c(i), v(i))

Causality makes c(i) independent of
(zi−1

1 ,vi
1,x(1),wi−1

1 ), so that (39) implies the following:

I((zi
1,v

i
1); (x(1),wi−1

1 )) = I((zi−1
1 ,vi

1); (x(1),wi−1
1 ))

(40)
By making use of (40) and (38) we infer that
I(z(i); (x(1),wi−1

1 )|zi−1
1 ,vi

1) = 0. Such fact, together with
(P1) and (37), leads to:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) ≤ I(z(i);vi
1|z

i−1
1 ) (41)

The first part of the proof is concluded once we notice
that, from causality, wk

i is independent of (x(1),wi−1
1 , zi

1),
which implies:

I(z(i); (x(1),wk
1 )|zi−1

1 ) = I(z(i); (x(1),wi−1
1 )|zi−1

1 )
(42)

so that (41) implies:

I(zk
1 ; (x(1),wk

1)) =
k∑

i=1

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) ≤

k∑
i=1

I(z(i);vi
1|z

i−1
1 ) = I(vk

1 → zk
1) (43)

In the second step we prove that:

lim sup
k→∞

1
k

I(uk
1 ; (x(1),wk

1)) ≤ lim sup
k→∞

1
k
I(zk

1 ; (x(1),wk
1 ))
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Once again, we use (P2) to write:

I(uk
1 ; (x(1),wk

1 )) = I(zk
1 ; (x(1),wk

1))+

I(uk
1 ; (x(1),wk

1)|zk
1) − I(zk

1 ; (x(1),wk
1 )|uk

1) (44)

It follows from (P2), (P4) and assumption (A2) that:

I(uk
1 ; (x(1),wk

1 )|zk
1) = I(uk

α+1; (x(1),wk
1 )|zk

1 ,uα
1 )+

I(uα
1 ; (x(1),wk

1 )|zk
1) = I(uα

1 ; (x(1),wk
1 )|zk

1) (45)

Substitution of (45) in (44), together with property (P1),
leads to:

I(uk
1 ; (x(1),wk

1 )) ≤ I(zk
1 ; (x(1),wk

1))+

I(uα
1 ; (x(1),wk

1 )|zk
1) (46)

Accordingly, (46) and the assumption (A3), which re-
quires lim supk→∞

1
k
I(uα

1 ; (x(1),wk
1 )|zk

1) = 0, imply that:

lim sup
k→∞

1
k

I(uk
1 ; (x(1),wk

1)) ≤ lim sup
k→∞

1
k
I(zk

1 ; (x(1),wk
1 ))

(47)
which, together with (43), concludes the proof. �

The following is the statement of the main theorem of
Chapter 5 of [6], repeated here for convenience:

Theorem 5.2: (Reproduced from [6], pp.64-65) Let
F̂e(ω) be a real-valued function of the class L1 ( |F̂e(ω)| is
integrable in the sense of Lebesgue). We denote by m and
M the essential lower bound and upper bound of F̂e(ω),
respectively, and assume that m and M are finite. If G(λ)
is any continuous function defined in the finite interval
m ≤ λ ≤ M , we have:

lim
k→∞

∑n

i=1 G(λi(Σ(ek
1)))

k + 1
=

1
2π

∫ π

−π

G(F̂e(ω))dω (48)
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