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Abstract— This paper is about the mode estimation of
randomly switching linear systems. We follow up on previous
results, where we posed the problem in a way which is
well fitted for a worst-case analysis. The aforementioned
investigation relies on a divergence measure and several other
quantities, such as the entropy rate of the mode switching as
well as the power ratio between the system’s excitation and
the measurement noise. In this article we ascribe a natural
interpretation to such divergence measure, while establishing
a connection to rate-distortion theory. We also explore why
and in what form estimation fidelity is affected by the entropy
rate of the mode switching. Additionally, this analysis suggests
that such entropy rate must be regarded as a fundamental
quantity in the determination of the estimation fidelity.

I. INTRODUCTION

Motivated by a vast portfolio of applications, the chal-
lenge of estimating and tracking the mode, of switching
linear systems, has received consistent attention over the last
years. Such problem is important for several reasons, which
include failure detection and adaptive control. Additionally,
in adversarial environments, the mode sequence may rep-
resent the maneuvers executed by an external opponent.
This information may be a vital intelligence for determining
what will be the agent’s next step or it’s intent. Several
publications have explored the most diverse applications,
while stressing the importance of the general problem[3].

Depending on the formulation, modal estimation may be
realized as part of a hybrid state estimation paradigm[8],
comprising discrete (modes) and continuous states. Al-
though the investigation of such problems has generated
a variety of algorithms and methods, [9] suggests the need
to devote more attention to the modal estimation alone. By
adopting the framework used in the identification of FIR-
LPV systems [13], [4], the estimation of the continuous
state can be avoided. Along these lines, in [2], as well as
in this paper, we focus on the modal estimation problem
by considering systems that switch among a set of modes
which comprise finite impulse response, or moving average,
filters. A discrete stochastic process qk drives the switching,
while the system is excited by a white Gaussian process
(probing signal).

In [2] we recognize that the modal estimation problem
is equivalent to a communication setup in the presence of
randomly generated codes [6]. Under that framework, the
input probing signal defines a constrained code and the
system is perceived as an encoder of the mode sequence
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qk. Motivated by that, we adopt a decoder structure for the
mode estimator. In the same publication, we also present
an alternative low complexity estimation algorithm that
converges in probability, as k tends to infinity, to the
decoder proposed.

Although using a different formulation, we refer to [7]
where it is exposed the difficulty of computing measures
of quality for the available modal estimation algorithms.
In practice, such quality evaluation may have to resort to
Monte Carlo simulations. The reason behind such difficul-
ties is the fact that some of these estimators rely on the prop-
agation of probability densities. Moreover, the propagation
itself is very intricate and its computational implementation
requires additional approximations and simplifications. In
[2], we address that problem by means of a measure
of divergence Dd which allows a probabilistic worst-case
analysis. Still, [2] uses Dd as a distance to characterize
a set that comprises all the mode estimation uncertainty.
In particular, it is shown that the estimates of the mode
sequences are, with probability arbitrarily close to 1, in
a ball around the true sequence. The radius of the ball
is an affine function of the entropy rate of the switching
process. In that sense, as a theoretical result, the work in
[2] relates to [11], where it is proven that the uncertainty
[10] in identifying time-varying systems is directly related
to the speed (or rate) of variation. In this paper we devote
attention to the meaning of Dd as a measure of estimation
fidelity. We also expound why the entropy rate of qk can
be regarded as a fundamental quantity.

The distance Dd can also be used as a quality measure on
the design of probing signals and can be viewed as a first
step to the proper study of the effect of observed inputs on
the mode observability of linear hybrid systems. We also
stress that our analysis and methods are applicable to other
classes of stable switching systems [12]. In these cases, the
moving average coefficients should be the truncation of the
impulse response of such stable linear systems. Worst-case
LPV-FIR system identification was also broached by [14]
in the case where the coefficients have a specific functional
form.

The paper is organized as follows: Section I-A introduces
the notation used throughout the text. The technical frame-
work is formulated, the main results of [2] are reviewed and
the contributions of this paper are stated in section II, while
section III presents rate-distortion theory in a way which
is relevant in the present context. The detailed study, as
well the implications in estimation fidelity, of the divergence
measure introduced in [2] is performed in IV.
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A. Notation

The following notation is adopted: Large caps letters are
used to indicate vectors and matrices. Small caps letters are
reserved for real scalars and discrete variables. In addition,
p is reserved to represent probability distributions. Discrete-
time sequences are indexed by time using integer subscripts,
such as xk . Finite segments of discrete-time sequences are
indicated by the range of their time-indexing as in the
following example (k ≥ n):

qn,k = (qn, . . . , qk) (1)

Superscripts are reserved for distinguishing different vari-
ables and functions according to their meaning. Random
variables are represented using boldface letters and follow
the conventions above. As an illustration, x is a valid
representation for a scalar random variable, while a sample
(or realization) is written as x. Also, a finite segment of a
discrete-time sequence of random variables, would be q1,k.
A realization of such process would be indicated as q1,k.
The probability of an event is indicated by P(event). We
use the entropy function, of a random variable Z, given by:

H[Z] = E [− ln pZ(Z)] (2)

where pZ is the p.d.f. of Z and E [·] is the expected value,
taken over Z. Similarly, the conditional entropy is given
by H[Z1|Z2] = H[Z1,Z2] − H[Z2] where, in this case,
the expectation is taken with respect to Z1 and Z2. The
covariance matrix of a random matrix Z, with Z ∈ Rn1×n2

,
is given by:

ΣZ = E
[(

�Z − E [�Z]
) (

�Z − E [�Z]
)T

]
, where �Z = vec(Z)

(3)
If ΣZ is a scalar we write, instead, σ2

z . The i-th eigenvalue
of a matrix B ∈ Rn×n is represented as λi(B).

II. TECHNICAL FRAMEWORK

Consider the mode alphabet A = {1, . . . , m}, with m ≥
2, and the random process Fk, with Fk ∈ RnF

, described
by:

Fk = Yk + Wk, k ≥ 1 (4)

Yk =
α∑

i=0

Gi(qk)Vk−i, k ≥ 1 (5)

where k, α ∈ N and Gi : A → RnF ×nV

are matrices that
specify the switching system. The stochastic processes Vk

(probing signal), Wk and qk are mutually independent and
satisfy:

• Vk and Wk are Gaussian zero mean i.i.d. processes,
with Vk ∈ RnV

and Wk ∈ RnF

. In order to avoid
degeneracy problems, we assume ΣW > 0. Addition-
ally, aiming at simplifying the presentation, we adopt
ΣW = σ2

wI . In contrast to Wk, the probing signal Vk

is assumed to be observed by the estimator. Examples
where this is a realistic assumption are: when Vk is

generated by the estimator; when it is an exogenous
process that can be observed by the estimator or a
combination of both.

• qk is a discrete, stationary and ergodic Markovian
stochastic process with alphabet A. For a given k ∈ N,
we write the probability mass function of q1,k as
pq(q1,k) and the conditional probability is expressed
as pq (qk|qk−1) = pq(qk,qk−1)

pq(qk−1) . The entropy rate of qk

is given by:

rq
m = E [− logm pq (qk|qk−1)] (6)

where we use a non-standard scaling. In [18], the en-
tropy rate is defined, in nats, as E [− ln pq (qk|qk−1)].

A. Review of previous results

For a given k, we use the probing signal V1−α,k and a
decision system that, by means of the measurement of F1,k,
produces an estimate q̂1,k of q1,k. Given a realization q1,k,
the following is a statistic for gauging the likelihood of a
candidate sequence q̂1,k:

Definition 2.1: Given k ∈ N, k ≥ 1 and qk, q̂k ∈ A,
define the random variable Tk(qk, q̂k) as:

Tk(qk, q̂k) =
α∑

i=0

(Gi(qk) − Gi(q̂k))Vk−i + Wk (7)

For any given indices k1, k2 and qk1,k2 , q̂k1,k2 ∈ Ak2−k1+1,
we also adopt the following abuse of notation:

Tk1,k2(qk1,k2 , q̂k1,k2) = (Tk1 (qk1 , q̂k1 ), . . . ,Tk2(qk2 , q̂k2))
(8)

In [2], we have studied an estimator as well as the
following associated measure 1 of distance Dd(q1,k, q̂1,k),
which is related to the concept of divergence as in [5].

Definition 2.2: (Measure of Distance) The distance Dd :⋃∞
k=1 Ak × Ak → R is given by:

Dd(q1,k, q̂1,k) =
H(T1,k(q1,k, q̂1,k))

k
−H(Wk) (9)

Such distance is well fitted for a worst case performance
analysis, as shown in the following theorem:

Theorem 2.1: (Main theorem of [2]) For any given δ >
0, there exists k ∈ N and an estimator which produces q̂1,k,
satisfying:

P
(
Dd(q1,k, q̂1,k) > ln(m)rq +

nF

2
+ nF δ

)
< δ (10)

P (Dd(q1,k, q̂1,k) > nF δ
)

< δ, if rq
m = 0 (11)

Theorem 2.1 shows that there exists an estimator for
which the estimates are contained in a ball, centered around
the true sequence, with probability arbitrarily close to 1. The
radius of the ball can be made as close to ln(m)rq + nF

2
as desired. We also emphasize that in [2] it is assumed
that the estimator knows the probability transition matrix
of qk. Such assumption can be dropped, by means of

1In [2], the distance is defined with an extra factor 1
nF . We have such

scaling in mind when using the results of [2]
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Fig. 1. Framework for a communication system

using an estimator constructed as a hypothesis testing over
a polynomially growing set of sequences. An identical
argument is used in [1] to prove the universal coding
theorem.

The quantity ln(m)rq is the entropy rate of qk , in nats,
and, according to theorem 2.1, it modulates an upper-bound
for the worst-case uncertainty ball; smaller ln(m)rq leading
to the assurance of less uncertainty. One might think of this
property as the stochastic and countable alphabet analog to
the characterization given by [11]. In common, they have
the fact that the rate of time-variation impacts the magnitude
of the uncertainty, in a robust identification framework.

B. Contributions of the paper

In this paper we devote attention to the meaning of Dd

as a measure of estimation fidelity. We also expound why
the entropy rate of qk can be regarded as a fundamental
quantity. We appeal to rate distortion theory [18] as a way to
bring together these aspects and the information theoretical
viewpoint, presented in [2]. Moreover, we investigate if the
worst-case radius of theorem 2.1, given by ln(m)r q + nF

2 ,
is conservative.

III. RATE DISTORTION THEORY IN THE PRESENT

CONTEXT

Consider the setup depicted in Figure 1. That is the
basic communications scheme, where the channel is a
memoryless map which is completely described by pH|S,
the probability of Hk conditioned on Sk.

From standard texts in Information Theory, such as [16],
we know that any map D :

⋃∞
k=1 Ak ×Ak → R+ qualifies

as a distortion measure. Like the cost functional in an
optimization procedure, a meaningful distortion measure
should be used to quantify the desired properties of a com-
munication scheme. In rate distortion theory, it is customary
to look at d∗ = E [D(q1,k, q̂1,k)]. The smaller d� the better
the quality of the communication scheme.

An example of a distortion measure is the following,
based on the Hamming distance:

Dh(q1,k, q̂1,k) =
1
k

k∑
i=1

I(qi �= q̂i) (12)

where I is the indicator function. Accordingly, Dh is the
relative frequency of errors over the horizon {1, . . . , k}.

A. Capacity of the channel

We denote the capacity of the channel [18], in the m-ary
basis, by Cm. Such quantity represents the maximum trans-
fer rate at which information can be reliably transmitted
through the channel. The analysis we develop in this article
can be generalized, but we adopt the following additive
white Gaussian channel:

Hk = Sk + Wk (13)

Given ΣY > 0, if the eigenvalues of ΣS are restricted by
λi(ΣS) ≤ λi(ΣY ) then Cm satisfies [18]:

Cm =
nF∑
i=1

1
2

logm

(
1 +

λi(ΣY )
σ2

w

)
(14)

B. Rate Distortion trade-off

The fact that Cm establishes a fundamental limit, for
reliable transmission, is explicit in the following relation
[16], [17], which is true for any encoder, decoder and code 2:

Γ(d∗h(k, ΣV ))
ln(m)

+ d∗h(k, ΣV )
ln(m − 1)

ln(m)
≥ rq

m − Cm (15)

where Γ : [0, 1] → R+ is given by:

Γ(d∗h(k, ΣV )) = −d∗h(k, ΣV ) ln(d∗h(k, ΣV ))
− (1 − d∗h(k, ΣV )) ln(1 − d∗h(k, ΣV )) (16)

and d∗
h(k, ΣV ) represents the following expected distortion:

d∗h(k, ΣV ) = E [Dh(q1,k, q̂1,k)] (17)

Indeed, if Cm < rq
m then d∗

h(k, ΣV ) > 0, which indicates
the existence of distortion.

C. Analogy to the mode estimation problem

The diagram in Figure 2 portrays the mode estimation
problem described in section II. Yet, by inspection, one can
notice the structural similarity with Figure 1. The following
is a list of the equivalences we establish:

• The process qk represents the sequence of modes, but
it can, instead, be viewed as a string of symbols placed
for transmission through the communication scheme of
Figure 1. In such analogy, a random code is set by Vk,
while the system equation (5) lays down an encoding
rule.

• Measurements are produced according to the equation
Fk = Yk+Wk. Hence, the noise Wk acts by creating
a white Gaussian additive channel, as described by
(13).

• Finally, the estimator can be viewed as a decoder.

2Notice that (15) is proven in [16], [17] for i.i.d. sources. Some extra
work is needed to prove it for a Markovian source
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Fig. 2. Analogy to the mode estimation problem

D. Preliminary Considerations

By means of the communication system analogy, we can
use rate distortion theory to derive some of the fundamental
limitations in mode estimation. From the outset, we perceive
that (15) is a valid lower bound for the expected Hamming
distortion, as a function of Cm and rq

m. Doubtlessly, since
(15) holds for any encoding strategy, it must hold for the en-
coder specified by (5). Such fact also exposes the influence
of the Signal to Noise Ratios λi(ΣY )

σ2
w

on d∗
h(k, ΣV ). If Cm

is small, when compared to rq
m, then distortion will occur.

As a final result of our analogy, we obtain the following,
which holds for any estimator and probing signal:

d∗h(k, ΣV ) ≈
m>>1

Γ(d∗h(k, ΣV ))
ln(m)

+ d∗h(k, ΣV )
ln(m − 1)

ln(m)
≥ rq

m − Cm (18)

where we use the fact that Γ(d∗
h(k, ΣV )) ≤ 1.

Notice that if a given agent does not want his mode to be
accurately estimated then (18) suggests that it should keep
Cm as low as possible. Equation (18) can also be used
to compute what is the maximum Cm which guarantees
a certain minimal level of distortion. In practice, there
are two ways in which Cm can be lowered: by jamming
the opponent’s measurements, i.e., increasing ΣW and by
not responding to the opponent’s probing signals, that is
lowering ΣY . Alternatively, one can also use distraction
(dummy) maneuvers to increase m or r q

m.

IV. COMPARATIVE STUDY OF THE MEASURE Dd

In contrast to the Hamming distortion, that has immediate
implications in the symbol error frequency, it is not clear,
in general, how to interpret Dd. In this section, we address
that concern by comparing Dd with the following measure
of distortion:

Definition 4.1: The following is a distortion measure,
which is sensitive to a mismatch in the first coefficient of
the switching FIR system:

Dg(q1,k, q̂1,k) =
1
k

k∑
i=1

J (qi, q̂i) (19)

where J : A × A → R+ is given by:

J (q, q̂) =
1
2

nF∑
j=1

ln

(
1 +

λj(Σ̃(q, q̂))
σ2

w

)
(20)

Σ̃(q, q̂) = (G0(q) − G0(q̂))ΣV (G0(q) − G0(q̂))
T (21)

We also use d∗
g(k, ΣV ) to indicate the following expected

distortion:

d∗g(k, ΣV ) = E [Dg(q1,k; q̂1,k)] (22)
The previously defined measure has a natural interpre-

tation, which is suggested by the following properties of
J :

• J (q, q̂) ≥ 0 and q = q̂ =⇒ J (q, q̂) = 0.
• If nF = 1 and nV = 1 then the FIR system is single-

input single-output and

J (q, q̂) =
1
2

ln
(

1 + (g0(q) − g0(q̂))2
σ2

v

σ2
w

)
(23)

• Under ergodicity assumptions, the following also
holds:

d∗g(k, ΣV ) ≈
k>>1

E (J (qk, q̂k)) (24)

In reality, Dg has technical advantages that permit a direct
comparison with Dd, while providing an insight similar to
Dh.

Lemma 4.1: The following relation holds:

Dd(q1,k; q̂1,k) ≥ Dg(q1,k; q̂1,k) (25)
Proof: We start by noticing that the law of iterated entropy
[18], leads to:

H (T1,k(q1,k; q̂1,k)) = H (T1(q1; q̂1))+
k∑

i=2

H (Ti(qi; q̂i)|T1,i−1(q1,i−1; q̂1,i−1)) (26)

and that, from the definition of Ti, we arrive at:

H (Ti(qi; q̂i)|T1,i−1(q1,i−1; q̂1,i−1)) ≥
H ((G0(qi) − G0(q̂i))Vi + Wi) (27)

H (T1(q1; q̂1)) ≥ H ((G0(q1) − G0(q̂1))V1 + W1) (28)

The standard formula for the differential entropy [18], of a
normally distributed vector, leads to:

H ((G0(q) − G0(q̂))Vk + Wk) −H(Wk) =

1
2

nF∑
j=1

ln

(
1 +

λj(Σ̃(q, q̂))
σ2

w

)
(29)

The proof follows after the substitution of (27)-(29) into
(26) and by inspection, of the formulae for D d and Dg,
corresponding to the definitions 2.2 and 4.1, respectively.
�
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A. Worst case analysis using Dg

At this point, we can use lemma 4.1 and theorem 2.1 to
reach a worst case analysis for the estimator in [2], in terms
of Dg . The following theorem encompasses such result:

Theorem 4.2: [2] For any given δ > 0, there exists k ∈ N

and an estimator which produces q̂1,k, satisfying:

P
(
Dg(q1,k, q̂1,k) > ln(m)rq

m +
nF

2
+ nF δ

)
< δ (30)

P (Dg(q1,k, q̂1,k) > nF δ
)

< δ, if rq
m = 0 (31)

We can elucidate the repercussions of theorem 4.2 by
focusing on the non-zero entropy rate. From (30) we find
that, given an arbitrary δ > 0, there exists an estimator, and
k sufficiently large, for which the following holds:

P
(

1
k

k∑
i=1

J (qi, q̂i) < ln(m)rq
m +

nF

2
+ δ

)
≈ 1 (32)

In order to simplify the sub-sequential exposé, we define
the following quantity:

Definition 4.2: Let C̃ be given by:

C̃ = min
q �=q̂

1
2

nF∑
i=1

ln

(
1 +

λi(Σ̃(q, q̂))
σ2

w

)
(33)

By inspection, we find that J (q, q̂) satisfies:

J (q, q̂) ≥ I(q �= q̂)C̃ (34)

As a consequence, given δ > 0, we can state that there
exists an estimator and k sufficiently large so that the
following holds:

P
⎛
⎝1

k

k∑
i=1

I(qi �= q̂i) <
ln(m)rq

m + nF

2 + δ
ln(m)

C̃

⎞
⎠ ≈ 1

(35)
Equally meaningful interpretations can be given by means

of the approximation (24). In addition, we can determine
that information can be reliably transmitted from qk to q̂k.
In particular, (35) implies:

Pe ≤
ln(m)rq

m + nF

2 + δ
ln(m)

C̃
(36)

where Pe = P(qi �= q̂i). But, from Fano’s inequality [1],
we have that H(q|q̂) ≤ Γ(Pe) + Pe log(m − 1).

B. Influence of the input to noise ratio on the estimation
distortion

In the subsequent subject matter, we explore the role of
the input to noise ratio (INR) in the estimation fidelity. We
perform the previously characterized analysis for the single-
input single-output case (nV = nF = 1). The conclusions
extend to the multi-input multi-output case, which we did
not consider because it is notationally cumbersome.

We initiate by following the same steps, mutates muntan-
dis, of the analysis in (34)-(35) and using (23) to arrive at
the following:

P
(∑k

i=1 I (|g0(qi) − g0(q̂i)| ≥ η)
k

<

rq
m + 1

ln(m)2 + δ
ln(m)

1
2 logm (1 + max{η2, η2

min}INR)

)
≈ 1 (37)

where δ > 0 is given, k is sufficiently large, η > 0 is
arbitrary, ηmin = minq �=q̂ |g0(q)−g0(q̂)| and INR is given
by:

INR =
σ2

v

σ2
w

Also, notice that if we adopt η = ηmin, then
I (|g0(qi) − g0(q̂i)| ≥ η) = I(q �= q̂) and the previous
approximation reduces to (35). Additionally, we can write
Cm as:

Cm =
1
2

logm

(
1 + µ2INR

)
(38)

where µ2 =
σ2

y

σ2
v

Remark 4.1: From (18) and the previous analysis, we can
infer the facts listed below:

• If Cm = 1
2 logm

(
1 + µ2INR

)
< rq

m then Hamming
distortion will occur. In order to attain small distortion,
it is necessary that Cm = 1

2 logm

(
1 + µ2INR

)
>

rq
m − ε, where ε is also small.

• In addition to the previous item, we know, from

(37), that as the ratio
rq

m+ 1
ln(m)2 + δ

ln(m)
1
2 logm(1+max{η2,η2

min}INR) de-

creases, the smaller the distortion, as measured by∑k
i=1 I (|g0(qi) − g0(q̂i)| ≥ η).

In rate distortion theory, the difference given by Cm −
rq
m determines, not only, a lower bound for the Hamming

distortion, but it also provides an encoding/decoding scheme
for which the converse of (18) holds, i.e.:

Γ(d∗h(k, ΣV ))
ln(m)

+d∗h(k, ΣV )
ln(m − 1)

ln(m)
≤ rq

m−Cm+ε (39)

where ε > 0 is arbitrarily small. In contrast to that, the
approximation in (37), provides a distortion upper-bound

that depends on the ratio
rq

m+ 1
ln(m)2 + δ

ln(m)
1
2 logm(1+max{η2,η2

min}INR) . Es-

pecially in the cases where η ≈ µ, such upper-bound is

close to
rq

m+ 1
ln(m)2 +δ

Cm
and that is much worst than what is

dictated by (39). On the other hand, that should be expected,
since the theory leading to (39) allows any code, encoder
and decoder, while (37) is derived for the very particular
case depicted in Figure 2. Indeed, when viewed as an
encoding/decoding scheme, the mode estimation problem
imposes the following constraints:

• Shannon’s theory suggests that, by using long code-
words, information can be transmitted, with arbitrarily
low Hamming distortion, at rates which are arbitrarily
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close to capacity. In such scheme, the information
stream qk is grouped into blocks. Each block is
encoded as a whole and placed for transmission. The
decoding is also performed block-wise, thereby intro-
ducing a delay in the communication system. In the
mode estimation problem, we do not have such luxury.
The stream qk is encoded as it occurs and that rules
out the use of Shannon’s technique.

• The other limitation is that, when compared to other
coding schemes, the FIR switching system encodes qk

in a constrained fashion. As an illustration, consider the
0-th order FIR with g0(1) = 1 and g0(2) = −1. In that
case, the channel code for symbol 2, say Yk = g0(2)vk,
has always the same absolute value, but a different
sign, when compared to the code for symbol 1 which
is given by Yk = g0(1)vk.

C. Lower bound for d∗
d(k, ΣV )

We recall that the upper-bound radius in theorem 2.1 is,
up to an arbitrarily small term, given by

d̄ = rq
m ln(m) +

nF

2
and that it does not depend on ΣV nor the estimation
horizon k. In the analysis below, we show that if rq

m > 0
then, even if d̄ might be conservative, it could never be
zero. Since d∗

d(k, ΣV ) ≤ d̄, for all ΣV and k, it suffices
to look for a lower bound for d∗

d(k, ΣV ). We denote such
lower-bound by d

¯
∗(ΣV ).

We begin with the coming remark, which establishes an
inequality between Dg and Dh:

Remark 4.2: By means of (34), we can derive the fol-
lowing:

Dg(q1,k; q̂1,k) ≥ C̃Dh(q1,k; q̂1,k) (40)

Consequently, d∗
g(k, ΣV ) and d∗

h(k, ΣV ) satisfy the inequal-
ity below:

d∗d(k, ΣV ) ≥ C̃d∗h(k, ΣV ) (41)
The following theorem establishes that, if rq

m > 0, and
the FIR system has distinct zero order coefficients, then
we can encounter ΣV for which there exists d

¯
∗(ΣV ) > 0

satisfying d∗
d(k, ΣV ) ≥ d

¯
∗(ΣV ) for all k.

Theorem 4.3: If rq
m > 0 and (q �= q̂) =⇒ (G0(q) �=

G0(q̂)) then there exists ΣV and d
¯
∗(ΣV ) > 0 such that

d∗d(k, ΣV ) > d
¯
∗(ΣV ) for all k.

Proof: Choose ΣV such that C̃ > 0 and, in addition,
re-scale ΣV such that Cm ≤ rq

m. The result follows by
sequential substitution in (15) and (41). �

D. Design of probing Signals by means of LMI’s

Consider the following problem: given a constant pwr >
0 and a system in the form (5), design ΣV under the power
constraint tr(ΣV ) ≤ pwr. Motivated by (35) and from the
definition of C̃, we suggest the following optimization:{

max λ

subject to minq �=q̂ Σ̃(q, q̂) − λI > 0, tr(ΣV ) < pwr

Notice that the constraints are linear in ΣV , which makes
the optimization above solvable by means of an LMI solver
[15]. Let λmax denote the optimal solution. By direct
substitution on the definition of C̃ , we find that the resulting
probing signal leads to:

C̃ ≥ nF

2
ln(1 +

λmax

σ2
w

)
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