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Abstract—A network of nodes communicate via point-
to-point memoryless independent noisy channels. Each
node has some real-valued initial measurement or message.
The goal of each of the nodes is to acquire an estimate
of a given function of all the initial measurements in
the network. As the main contribution of this paper, a
lower bound on computation time is derived. This bound
must be satisfied by any algorithm used by the nodes
to communicate and compute, so that the mean square
error in the nodes’ estimate is within a given interval
around zero. The derivation utilizes information theoretic
inequalities reminiscent of those used in rate distortion
theory along with a novel ‘perturbation’ technique so as
to be broadly applicable.

To understand the tightness of the bound, a specific
scenario is considered. Nodes are required to learn a
linear combination of the initial values in the network
while communicating over erasure channels. A distributed
quantized algorithm is developed, and it is shown that the
computation time essentially scales as is implied by the
lower bound. In particular, the computation time depends
reciprocally on ”conductance”, which is a property of the
network that captures the information-flow bottleneck. As
a by-product, this leads to a quantized algorithm, for
computing separable functions in a network, with minimal
computation time.

Index Terms—Computation time, conductance, dis-
tributed computing, noisy networks, quantized summation.

I. INTRODUCTION

We consider a network of nodes communicating via
a network of point-to-point memory-less independent
noisy channels. Each node has a single real-valued initial
measurement or message. The goal of each of the nodes
is to acquire an estimate of a given function of all the
initial measurements in the network.
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We seek to understand the limitations imposed by the
communication constraints on the nodes’ performance
in computing the desired function. The performance
is measured by the mean square error in the nodes’
estimates of the desired function. The communication
constraints consist of (1) the topology of the network,
that is, the connectivity of the nodes, and (2) the noisy
channels between nodes that communicate. In order to
capture the limitation due to the communication con-
straints, we assume that that the nodes have unlimited
computation capability. Each node can perform any
amount of computation as well as encoding and decoding
for communication.

As we discuss below, the formulation of section II
is not the typical information theoretic formulation for
networks. Our setup is more similar to certain distributed
computation formulations. Still, we use information the-
oretic inequalities to derive lower bounds on information
exchange between nodes necessary for the mean square
error in the nodes’ estimates to converge to zero.

Both our technique and results are different from those
of the distributed computation results. In section V we
derive a lower bound on computation time that must
be satisfied byany algorithm used by the nodes to
communicate and compute, so that the mean square error
in the nodes’ estimates is within a given interval around
zero. The bound is in terms of the channel capacities,
the size of the desired interval, and the uncertainty in
the function to be computed. To obtain this bound, we
develop a novel ‘perturbation’ technique as explained in
section V-C. This allows us to apply our method to obtain
non-trivial lower bound for any functional computation
setup.

Our lower bound is a universal lower bound that holds
for any causal distributed algorithm that can be used by
the nodes to attain their goal of function computation.
We make minimal assumptions on how a node encodes
messages sent over the channels or decodes messages re-
ceived via the channels. Furthermore, we make minimal
restrictions on how the node uses the information it pos-
sesses to compute or update its estimate. Essentially, we
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only require that the encoders, decoders, and estimators
are measurable and causal mappings, the output depends
only the node’s initial measurement and the messages
received in the past.

As a result, our lower bound provides a means to
assess the optimality of distributed causal computation
algorithms. No algorithm can achieve a desired mean
square error in a computation time that is smaller than
the lower bound. This limitation is due to the distributed
nature of the algorithm, specifically, the need to com-
municate with nodes via a network of noisy point-
to-point channels. Therefore, any algorithm that has a
computation time that is equal to the lower bound is
an optimal distributed algorithm for the given network
topology. We illustrate this in the remainder of the paper
for a scenario where nodes are required to learn a linear
combination of the initial values in the network while
communicating over block erasure channels.

In section VI, we consider a scenario where nodes
are required to learn a linear combination of the initial
values. Our lower bound suggests that in this sce-
nario, the computation time depends reciprocally on a
“conductance-like” term. This term is equal to “con-
ductance” when the the channel from nodei to node
j has the same capacity as the channel from nodej to
i. Conductance essentially captures the information-flow
bottle-neck that arises due to topology and channel ca-
pacities. The more severe the communication limitations,
the smaller the conductance. When nodes communicate
over erasure channels, our conductance is identical to the
graph-theoretic conductance that arises in the analysis of
mixing times in Markov chains.

To establish the tightness of our lower bound, we de-
scribe an algorithm for computation linear combination
of the initial values when nodes communicate over block
erasure channels. For this algorithm, the computation
time matches the lower bound. The algorithm that we
describe here can in fact be more generally used for
distributed computation of separable functions, a spe-
cial case of which is the sum. The desired function,
a sum, is simple, and the algorithm that we describe
has computational demands that are not severe. So, the
time until the performance criterion is met using this
algorithm is primarily constrained by the limitations on
communication.

Indeed, we show that the upper bound, on the time
until this algorithm guarantees the performance criterion,
depends reciprocally on conductance. Hence, we con-
clude that the lower bound we derive using information
theoretic analysis is tight in capturing the limitations due
to the network topology. Alternatively, one can interpret
this tightness as the fact that the algorithm we describe

here is the fastest with respect to its dependence on
the network topology, as quantified by the conductance.
Thus our distributed quantized algorithm answers a ques-
tion of recent interest on the design of the fastest possible
distributed algorithm for separable function computation,
for example, in the works on consensus, linear estimation
and distributed control.

A. Related work

Our work has similarities with a vast body of works
that can be broadly categorized as distributed compu-
tation, signal processing, information theory or control.
Our formulation is most similar to some formulations
appearing in the distributed computation and signal pro-
cessing literature. Our approach of finding a lower bound
using information theoretic inequalities and demonstrat-
ing a bound-achieving algorithm is similar to work in
the information theory literature. Our inspiration, for
using information theoretic tools on a formulation that is
not typical in information theory, comes from a similar
approach that appears in the control theory literature.
Below, we highlight the difference between our work and
some works from the different fields mentioned above.

Our problem formulation is similar to certain formu-
lations in the distributed computation literature, like the
distributed averaging and consensus literature. Each node
has an initial value, a real number or vector, and needs
to exchange data with its neighbors in order to compute
a function of the data in the network. Results consist
of a suggested algorithm together with an analysis of
the algorithm. For example, upper or lower bounds are
provided on the time or number of messages exchanged
until nodes compute a certain quantity with given accu-
racy [16], [4], [23]. Or, conditions are provided so that
nodes reach agreement asymptotically in the number of
algorithm iterations [29], [30], [3]. In the cited work,
communication is subject to topological constraints, but
perfect when present.

Recent studies explicitly assume imperfect commu-
nication of some sort, in addition to the topological
constraint of having direct links with neighbors only. For
example, in the average consensus problem, all nodes are
required to asymptotically agree on the average of all
the initial values in the network. In [2], [31], messages
are quantized but transmission is noiseless. In [14],
messages are real-valued, but links between nodes may
fail probabilistically. In a parameter estimation problem
considered in [15], messages are quantized and links may
fail probabilistically.

In all of these works, authors assume that each node
updates its estimate of the quantity to be computed
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by linearly combining the previous estimate, received
data, and other information that the node possesses.
The computation algorithm is analyzed together with
the encoding and decoding strategies, such as the sug-
gested quantization scheme. Asymptotic properties, such
as convergence to a consensus value, boundedness of
mean square error, or unbiasedness of the estimate are
exhibited.

In contrast to the consensus literature, our goal is not
for nodes to ultimately agree on the same value. Rather,
the goal is for the nodes to compute a function of their
measurements with desired accuracy. All nodes need not
obtain the same estimate of the function. Our bounds are
not asymptotic in the number of algorithm iterations; the
accuracy appears explicitly in the bounds on computation
time.

Furthermore, to obtain an optimal algorithm for sum-
mation over block erasure channels, we do not constrain
the node update rule, for the estimate of the sum, to
be linear. In fact, when exchanging information, nodes
need only keep track of the minimum of received values.
So, nodes need not keep track of duplicate messages or
sender identity. Another consequence of not limiting our
updates to be linear is that the quantization scheme that
we propose is relatively simple.

Another perspective is the information theoretic one.
Each node has access to a sequence of samples from its
source. Alternatively, the node receives data at some bit
rate. In classical network information theory, the goal
is for nodes to reliably exchange these samples [5].
In [9], the authors derive information theoretic bounds
on the number of bits that must be exchanged for
nodes communicating via noiseless channels to acquire
each other’s data. In [1], the authors consider a point-
to-point network of finite-rate noiseless channels. This
network connects one set of nodes, the source nodes,
to another, the destination nodes. Source nodes need to
transmit their data sequences to the destination nodes.
The admissible rate region is characterized.

Recent work investigates a variation on these informa-
tion theoretic formulations. Nodes exchange information
for function computation rather than transmission of
data. For example, in [25] there is one encoder, a
noiseless finite-rate channel and a decoder with side
information. The authors determine the compression rate
region so that the decoder can obtain a function of its
side information and the source. In [24], the authors
investigate the “computation capacity” region so that
a decoder receiving information via a multiple access
channel obtains a function of the sources.

Our formulation is different in several ways. For
example, for our lower bound for summation, each node

has at time zero a single real-valued initial value, that
is, infinite bits. Unlike our work, the results in [1], [25],
[24] hold asymptotically in the block length (number
of source samples or length of messages sent over the
channel, depending on the formulation).

But, like our work, results typically consist of two
parts. First, there are lower bounds. These are derived
using information theoretic inequalities and properties.
Second, there is an algorithm, or proof of existence of
an algorithm or code, achieving the lower bound.

Like our work, there is a common message that appro-
priate processing of data improves performance. As put
in [1], “network coding has to be employed to achieve
optimality”. In [25], for certain functions, the rate region
for computation is larger than the rate region for data
exchange (equivalently, computing the identity function).
That is, for computing certain functions, transmission
can be made more efficient than simply transmitting
the source. In [24], the authors show that for computa-
tion over multi-access channels, codes that utilize joint
source-channel strategies outperform strategies which
encode the source and channel messages separately. Our
optimal algorithm requires that data is processed at nodes
as they exchange messages; in particular, a node passes
on the minimum of all the messages it receives.

In a similar flavor as our work, [10] and [12] provide
an algorithm for computation together with an algorithm-
independent lower bound that establishes optimality of
the proposed algorithm. In [10], each node in the network
has one bit. Nodes broadcast messages to each other
via binary symmetric channels. The goal is for a fusion
center to compute the parity of all the bits in the network.
Gallager proposes an algorithm that can be used while
guaranteeing a desired probability of error. He exhibits
an upper bound that is a constant multiple of the bits
that must be transmitted per node. Recently, it has been
shown in [12] that this algorithm is optimal. The authors
produce an algorithm-independent lower bound that is of
the same order as the upper bound.

Several formulations and results relevant to compu-
tation in wireless sensor networks can be found in a
detailed survey by Giridhar and Kumar [11].

In summary, our formulation is similar to that of
distributed computation, but our approach is similar to
that of information theory. We use information theoretic
inequalities, reminiscent of those of rate-distortion the-
ory, in a different setting with different objectives. In
particular, we have a network of nodes whose objective
is to compute a given function of the nodes’ data, rather
than to communicate reliably to each other their data.
Hence, our results are quite different from results within
either of these categories.
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We capitalize on Martins’ successful use of informa-
tion theoretic tools in [17], [18], [19], [20] to character-
ize fundamental performance limits of feedback control
systems with communication constraints. In our setting,
the information theoretic approach captures fundamental
performance limitations that arise in the network due
to the communication constraints. The derivation of
the lower bound is independent of the communication
algorithm used by the nodes. Therefore, the lower bound
enables us to characterize the effect of the network
structure on algorithm running time. We propose an algo-
rithm to compute the sum of initial conditions for nodes
exchanging information over block erasure channels. By
showing that this algorithm’s computation time achieves
the lower bound, we conclude that the lower bound is
indeed tight in capturing the network constraints.

B. Organization

In the next section, we describe the problem for-
mulation and necessary formalities. In section III we
state the two main results of this paper. The first result
is a general lower bound on the computation time for
nodes communicating over a network of point-to-point
independent memory-less channels. The second result
consists of two parts. First, we specialize the general
lower bound to the case of nodes computing the sum
of their initial values. Second, we describe a quantized
algorithm for computation of sum and show that its
computation time achieves our lower bound with respect
to the dependence on the network structure.

In section IV we illustrate how network topology,
through conductance, affects the computation time. We
compare our quantized algorithm with the popular linear
iterative algorithms. The comparison suggests that for
network structures withsmallconductance our algorithm
outperforms the popular algorithms.

In section V we prove our main theorem on the
general lower bound. Then, we illustrate the use of
a novel perturbation argument, introduced in section
V-C, to obtain a non-trivial bound when nodes compute
any general function. In section VI-A we derive the
lower bound for the computation of the sum of initial
values; the computation time scales reciprocally with
conductance. In section VI-B we describe an algorithm
that can be used to compute the sum via block erasure
channels, where the block length depends on the number
of nodes. We derive an upper bound on its computation
time; we show that this upper bound also scales inversely
with conductance. This establishes the optimality of our
quantized algorithm for computation of summation in
terms of its dependence on the graph structure.

II. PROBLEM DESCRIPTION

A network consists ofn nodes, each having a random
initial condition or value. We represent the initial condi-
tion at nodei by the random variableXi. A realization
of the random variable will be denoted by lower-case
letters,xi. Let X represent the vector of all the initial
condition random variables,[X1 . . . Xn]

′.

Each node is required to compute a given function of
all the initial conditions, with continuous support. That
is, nodei is required to estimateYi = fi(X), andYi is
a continuous random variable. We letY = [Y1 . . . Yn]

′.
Suppose that nodes 1 tom belong to setS. Whenever
we use a set as a subscript to a variable, we mean the
vector whose entries are that variable subscripted by the
elements of the set. For example,YS = [Y1 . . . Ym]′.

We assume that time is discretized into intervals, and
enumerated by positive integers,{1, 2, . . . }. During each
time step, a node can communicate with its neighbors.
At the end of time-slotk, nodei uses the information
it has received thus far to form an estimate ofYi.
We denote this estimate bŷYi(k). The estimates of all
nodes in the network at the end of time slotk are
denoted by the vector̂Y (k) = [Ŷ1(k) . . . Ŷn(k)]

′.
And, the estimates of nodes in setS are denoted by
ŶS(k) = [Ŷ1(k) . . . Ŷm(k)]′.

The nodes communicate via point-to-point noisy chan-
nels. The network structure is described by a graph,
G = (V,E), whereV is the set of nodes andE is the
set of edges,(i, j). If node i communicates with nodej
via channel with capacityCij > 0, then (i, j) ∈ E. If
(i, j) /∈ E, we setCij = 0. We assume that the graph is
connected.

We assume that all channels in the network are inde-
pendent, memory-less and are operating in discrete-time.
For each channel, one channel symbol is sent per unit
time. Each node generates an input for its encoder every
τ time units. For simplicity, we assume thatτ = 1. Thus,
by the end of timek, each node has generated itskth
estimate,̂Yi(k), based on thek received symbols and its
initial value.

A. Features of the Formulation

Our formulation (and results) are appropriate when
high accuracy computation must take place over net-
works with severe communication constraints. These
include cases where

1) channel capacities are diminished, due to loss of
transmission power, for example, or,

2) network topology creates information-flow bottle-
necks.
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B. Notation

The differential entropy ofY is denoted byh(Y ).
The mutual information betweenX and Y is denoted
by I(X;Y ). Most of the definitions and properties we
will need can be found in texts like [5]. When indicated,
we will need to use the most general definition of
mutual information. It can be used when the random
variables are arbitrary ensembles, not necessarily both
continuous or both discrete [26, p.9]. The conditional
mutual information is similarly defined; see [26, Ch. 3].

Finally, when the argument inh(·) is a vector of length
n, for example,Y = [Y1, . . . , Yn]

′, it is interpreted as
the joint differential entropyh(Y1, . . . , Yn). Similarly,
when the arguments inI(·; ·) are vectors of length
n, for exampleY and X, it is to be interpreted as
I(Y1, . . . , Yn;X1, . . . ,Xn).

III. M AIN RESULTS

This section contains the formal statements of our
main results. The first result, stated in section III-A is a
general lower bound on computation time. The second
result, stated in section III-B establishes the tightness
of this lower bound in the specific scenario of the
distributed computation of a sum. This involves, first,
specializing the lower bound of section III-A to the case
where nodes compute a linear combination of the initial
values in the network. Second, it involves developing a
quantized algorithm for nodes computing the sum while
communicating over erasure channels and showing that
the computation time of the algorithm matches the lower
bound for summation.

A. Result I: A General Lower Bound

The first main theorem of this paper provides a lower
bound to computation time as a function of the accuracy
desired, as specified by the mean square error, and the
uncertainty in the function that nodes must learn, as
captured by the differential entropy.

We place few assumptions on how the nodes com-
municate and compute their estimates. Namely, each
node can use only its own initial measurement and
past received messages. But, we do not specify how
the node makes its computation or exchanges messages.
Hence, our lower bound reveals the smallest time that
must elapse before it is possible to achieve the perfor-
mance desired, over all communication and computation
schemes that satisfy our assumptions. The necessity
of this time elapsing is due to the fact that initial
measurements are distributed and communication must
occur over a network with a given topology and channel
capacities.

Let V T
i = {Vi(1), . . . , Vi(T )} be the symbols received

by the decoder of nodei up to timeT. Then, Ŷi(T ) =
gi(Xi, V

T
i ). To capture the limitations arising exclusively

due to the communication structure, in deriving our
lower bound, we assume no limits on the computational
capabilities of the nodes, such as limited memory or
power. So, we make no assumptions ongi, except that
it is a measurable function.

Similarly, the messages that the node communicates
with other nodes are a function of the node’s initial
condition and messages it has received in the past. Let
Ui be transmitted by the nodei encoder. The message
transmitted byi in the lth channel use,Ui(l), is a
function of the received messages at that node,V l−1

i

and its own data,Xi, Ui(l) = ψi(V
l−1
i ,Xi). We make

no assumptions onψi, except that it is a measurable
function. The notation of this paragraph will not be
needed until Appendix A.

We consider two mean square error criteria. The
operator‖ · ‖ is to be interpreted, when the argument
is a vector,Y , as‖Y ‖2 =

∑
Y 2
i .

R1. E(‖Ŷ (T )− Y ‖2) ≤ β2−α, and,

R2. E(Ŷi(T )− Yi)
2 ≤ 2−α, for all i ∈ {1, . . . , n},

whereα ∈ R
+\{0}.

The first criterion requires that as the number of nodes
increases, the per node error is also smaller. It suggests
that as the number of nodes,n, increases, we require the
mean square errors at each of the nodes,E(Ŷi(k)−Yi)2
to decrease like1/n. This criterion is appropriate if, for
example, the initial values at the nodes are independent
and each node is to estimate the average of the initial
values in the network. As the number of nodes increases,
the variance of the average decreases. In circumstances
where this does not happen, the second criterion may be
more appropriate.

The “computation time” is the first time at which the
desired performance criterion holds. In the first of our
main results, we seek a lower bound on the computation
time, T, that holds if the desired mean square error
criterion, R1 or R2, is satisfied.

Theorem III.1. For the communication network de-
scribed above, if at time, T, the mean square error is
in an interval prescribed byα, E(Ŷi(T ) − Yi)

2 ≤ 2−α,
for every node, thenT is lower bounded by

T ≥ max
S⊂V

L̄(S)∑
i∈Sc

∑
j∈S Cij

,

whereSc = V \S and,

L̄(S) = h(YS |XS)−
|S|
2

log 2πe+ |S|α
2
.
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This theorem captures the fact that the larger the
uncertainty in the function to be estimated, or the larger
the desired accuracy, the longer it must take for any al-
gorithm to converge. Specifically, when the mean square
error decreases exponentially in the accuracy,α, the
computation time increases linearly inα, at best.

B. Result II: An Optimal Summation Algorithm

Here we consider a specific scenario of the general
formulation described in section II. As before, we have
a network of n nodes each having a random initial
condition denoted byXi. Each node needs to compute
the same separable function of the initial values.

Definition III.2. f : Rn → R is separable if there exist
functionsf1, . . . , fn such that

f(x) =

n∑

i=1

fi(xi).

Furthermore, we assumef ∈ F whereF is the class
of all separable functions withfi(xi) ≥ 1 for all xi ∈ R

and i = 1, . . . , n.

Remark In the algorithm we describe, nodei generates
samples from an exponential distribution with mean
1/fi(xi). For the algorithm to work, we must have
fi(xi) > 0 for all i. That is there is a constantc > 0
such that for alli, fi(xi) ≥ c. Let c = 1. There is no
loss of generality. And, this simplifies our expressions
where constants do not matter, as our results areO(.).

We assume that nodei can computefi(xi) without
communication. Further, we assume that there exists a
constantB such that for alli, fi(xi) ∈ [1, B + 1].
B > 0 is a constant and should be treated as a problem
parameter.

In what follows, we will assume thatfi(xi) = βixi.
This causes no loss of generality as we have assumed
that each node can computefi(xi). So, essentially, we
have relabeledfi(xi)/βi with xi.

In terms of our formulation, we have that each node
needs to compute the same quantityY , where Y =∑n

j=1 βjXj . Here we assume that these initial values are
distributed independently and uniformly in the interval
[1, B + 1]. The assumption that the distributions are
uniform and independent simplifies computations in the
derivation of our lower bound for summation.

Let A represent a realization of the initial conditions,
A = {X1 = x1, . . . ,Xn = xn}. The performance of an
algorithm,AG, used by the nodes to compute an estimate
of f(x) =

∑n
j=1 βjxj at each node, is measured by the

algorithm’s(ε, δ)-computation time,T cmp
AG (ε, δ). It is the

time until the estimates at all nodes are within a factor of
1± ε of f(x), with probability larger than1− δ. Recall
that Ŷi(k) denotes the estimate of nodei at the end of
time k.

Definition III.3. For ε > 0 and δ ∈ (0, 1), the
(ε, δ)-computing time of an algorithm,AG, denoted as
T cmp
AG (ε, δ) is defined as

T cmp
AG (ε, δ) = sup

x∈Rn

inf {k :

P(∪n
i=1{Ŷi(k) /∈ [(1− ε)f(x), (1 + ε)f(x)]}) ≤ δ

}
.

Here, the probability is taken with respect tôYi(k).
This is random because nodes communicate over noisy
channels.

As before, nodes communicate over noisy channels
that are independent and discrete-time memory-less.
Besides the assumptions of section II, we make no
additional assumptions about the channels in deriving
our lower bound for summation. Additional assumptions
will be stated where they are necessary.

The conductance,Φ(G) captures theinformation
bottle-neckin the capacitated graphG. It depends on
the connectivity or topology of the graph along with the
channel magnitude.

Definition III.4 (Conductance). The conductance of a
capacitated graphG with edge capacitiesCij, (i, j) ∈ E
is defined as

Φ(G) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S Cij

|S| .

We use the word ‘conductance’ as it co-incides with
the notion of conductance or “Cheeger” constant for
a Markov chain based on a symmetric and doubly
stochastic matrixP on the network graphG. We will
have more to say about conductance in section IV.

A lower bound for summation.Consider any algorithm,
AG, that guarantees that for any realization of the initial
values, with high probability each node has an estimate
within 1 ± ε of the true value ofY, at time T. The
information theoretic lower bound maintains that such al-
gorithm must have a computation time,T = T cmp

AG (ε, δ),
that is inversely proportional to conductance.

Theorem III.5. Nodes communicate in order for each
node to compute a linear combination of all initial values
in the network. Any algorithm that guarantees that for
all i ∈ {1, . . . , n},

P

(
|Ŷi(T )− Y | ≤ εY

∣∣∣A
)
≥ 1− δ,
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must have

T ≥ 1

Φ̃(G)
log

1

Bε2 + 1
B

2

n + κδ
,

where,Bε2 ∈
[
0, 1 − 1

B

2

n − κδ
]
, κ is a constant, and

Φ̃(G) = min
S⊂V

0<|S|≤n/2

∑
i∈Sc

∑
j∈S Cij

|S| .

If Cij = Cji then Φ̃(G) = Φ(G).

Again, the probability in this theorem is taken with
respect to the measure on̂Yi(T ), conditional onA, and
induced by the randomness due to communication over
channels.

An upper bound for an algorithm for summation over
block erasure channels.Next, we provide an algorithm
that guarantees, with high probability, the nodes’ esti-
mates are within the desiredε-error interval around the
true value of the sum.

Here, we assume that nodes communicate via block-
erasure channels. Specifically, if a nodei sends a channel
symbol to nodej then it is successful with probabilitypij
independently of everything else. The channel symbol is
of length logM bits, where we shall decide valueM
later. Thus, the effective capacity of the channel between
nodesi andj is Cij = pij logM . We assume thatpij =
pji. Further, we assume that the matrixP = [pij ] is a
doubly stochastic matrix.

We provide an upper bound on our algorithm’s com-
putation time. The computation time is inversely propor-
tional to conductance.

Theorem III.6. Suppose that nodei has an initial
condition,xi. There exists a distributed algorithmAPQ

by which nodes compute a sum,f(x) =
∑n

j=1 βjxj , via
communication of quantized messages. If each quantized
message islogM bits andlogM = O(log n), the quan-
tization error will be no more than a givenγ = Θ( 1n),
and for anyε ∈ (γf(x), γf(x) + 1

2) and δ ∈ (0, 1), the
computation time of the algorithm will be

T cmp
APQ(ε, δ) = O

(
ε−2 log eδ−1 log nδ

−1 log n

Φ(G)

)
.

So, settingδ = 1
n2 in the above bound, we have

T cmp
APQ

(
ε,

1

n2

)
= O

(
ε−2 log

3 n

Φ(G)

)
.

The computation time of this algorithm depends on
the network topology, via the conductance of the graph,
in the same reciprocal manner manifested by the lower
bound. Thus, we conclude that the lower bound is

tight in capturing the effect of the network topology on
computation time. Conversely, the algorithm’s running
time is optimal with respect to its dependence on the
network topology, as captured by the conductance.

IV. CONDUCTANCE: CAPTURING THE EFFECT OF

TOPOLOGY

The conductance of a graph,Φ(G), is a property that
captures the bottle-neck of information flow. It depends
on the the connectivity, or topology, of the graph, and the
magnitudes of the channel capacities. The more severe
the network constraints, the smaller the conductance. It
is also related to time it takes for information to spread
in a network; the smaller the conductance, the longer it
takes.

Φ(G) is related to the standard definition of con-
ductance utilized in Markov chain theory. Specifically,
consider a Markov chain with irreducible and aperiodic
probability transition matrixP on then nodes of graph
G. TheP may not be necessarily symmetric or doubly
stochastic. It is, however always stochastic since it is a
probability matrix. It is well known that such a Markov
chain has a unique stationary distributionπ = [πi] (cf.
Perron-Frobenius Theorem).

In the context of mixing times of Markov chains,
conductance for the aboveP , Φ(P ), is defined as

Φ(P ) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S πipij

π(S)
,

whereπ(S) =
∑

i∈S πi.
For a reversible Markov chain, the conductance is

related to the spectral gapλ, whereλ = 1 − λ2 andλ2
is the second largest eigenvalue of the transition matrix
P. By the Cheeger bound [28]

1

2
Φ2(P ) ≤ λ ≤ 2Φ(P ).

In general, theΦ(P ) is used to bound the mixing time
of the Markov chain with transition matrixP . Let H(P )
be the mixing time of the Markov chain, based on the
notion of stopping time, then the following is a well
known bound:

Ω

(
1

Φ(P )

)
= H(P ) = O

(
log n

Φ2(P )

)
.

Now, in our setupP is symmetric and doubly stochas-
tic. In this case the stationary distributionπ is uniform.
That is,πi = 1/n for all i. Therefore, the conductance
can be simplified to

Φ(P ) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S pij

|S| .
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In the case of ourlogM -bit erasure channels,Φ(G) =
Φ(P ) logM . In this sense, theΦ(G) is related to the
standard definition of conductance utilized in the context
of Markov chain theory. For more details on mixing
times of Markov chains see [22] and [28].

A. Conductance: Two examples

Consider two networks, each hasn nodes. We calcu-
late conductance for two extreme cases of connectivity
shown in Figure 1. On the one hand, we have severe
topological constraints: a ring graph. Each node may
contact only the node on its left or the node on its
right. On the other hand, we have a case of virtually
no topological constraints: a fully connected graph. Each
node may contact every other node in the network.

To compare the conductances for the two topologies,
suppose that in both cases, the links from a given node
to different nodes are equally weighted. So, for the ring
graph, letCij = C = 1

4 , for all i 6= j; for the fully
connected graph, letCij = C = 1

n , for all i 6= j.
Assume that for the ring graph,Cii =

1
2 . If the channels

were erasure channels, this would be the probability that
nodei makes contact with no other nodes. For the fully
connected graph, letCij = 1

n . So, in both cases, we
have that the sum of the capacities of channels leaving
a node is 1,

∑
j Cij = 1.

Using definition III.4 and some straightforward sim-
plifications we have that for the ring,Φ(G) = 1

n . For
the fully connected graph we haveΦ(G) = 1

2 . For two
networks with the same number of nodes, the network
with the more severe topological constraints has smaller
conductance. In general, for a ring graph, we have
Φ(G) = O( 1n), while for a fully connected graph we
haveΦ(G) = O(1).

Remark In both of these examples, conductance scales
like the reciprocal of diameter. These examples were
chosen to illustrate that conductance does capture the
topological properties of the network. In general, how-
ever, conductance and diameter are not the same.

Conductance is the natural generalization that captures
the infomation bottleneck. Conductance depends on both
channel capacities and topology of the network while

C = 1

n

C C

C = 1

4

Fig. 1. Two ways to connect six nodes: a ring graph and a fully
connected graph.

diameter is purely topological property. Generally, the
channel capacities will cause conductance and diameter
to be different.

To illustrate this, consider a complete graph with
Cij = Cji = 1/n2 instead ofCij = Cji = 1/n in
the above example. In this case, the diameter is still 1
but the reciprocal of conductance will ben. Here, our
bound is a much better lower bound than a diameter
based lower bound.

More generally, different edges may have different
channel capacities, in which case conductance and di-
ameter will again be very different. For example, if only
one of the nodes of a complete graph had incident edges
with capacities1/n2 while all the rest had capacity1/n,
conductance again evaluates ton. This node creates
the information bottleneck in the network, and this is
captured by the conductance.

B. Comparison with iterative algorithms

A popular approach for computing a linear function
of the initial values is based on linear iterations. If
nodes can communicate real numbers between them in
each time instance, the computation time for a linear
iterative algorithm based on a doubly stochastic matrix
P is proportional to the mixing time of the matrix,
H(P ) [4]. As noted earlier, the mixing timeH(P ), hence
computation time of iterative algorithm, is bounded as

1

Φ(P )
≤ H(P ) ≤ O

(
log n

Φ2(P )

)
.

Therefore, in order to obtain a fast iterative algorithm,
P must have a small mixing timeH(P ). The standard
approach of finding such aP is based on the method
of Metropolis [21] and Hastings [13]. This method does
indeed yield a symmetric and doubly stochasticP onG.

For expandergraphs the resultingP induced by the
Metropolis-Hastings method is likely to haveΦ(P ) =
Θ(1). Hence, the mixing time isO(log n), and this is
essentiallythe fastest possible mixing time. For example,
the P for a complete graph will beP = [1/n], and
it has Φ(P ) = Θ(1). In this case, both our algorithm
and the linear-iteration algorithms, based the Metropolis-
Hastings inducedP, will have essentially optimal com-
putation time. It should be noted that our algorithm,
described later, is quantized. On the other hand, a
quantized version of the linear iterative algorithm is far
from obvious and subject of recent interest and on-going
research. To the best of our knowledge, how to optimally
deal with finite-rate constraints in conjunction with the
linear iterative updates is an open question.

Certain graph topologies of interest do possessge-
ometryand are far from being expanders. Examples of
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these graphs include those arising in wireless sensor
network deployed in some geographic area [4], [8] or
a nearest neighbor network of unmanned vehicles [27].
The simplest example of a graph with geometry is the
ring graph that we considered above. The Metropolis-
Hastings method will lead to aP as discussed in
section IV-A. It hasΦ(P ) = Θ(1/n). But it is known
that for this topology, mixing time scales likeΩ(n2),
at the least. That is, mixing time scales like1/Φ2(P )
and not 1/Φ(P ). More generally, for any symmetric
P , the mixing time is known to be at leastn2 (e.g.
see [4]). Thus, the linear iterative algorithms based
on a symmetricP have computation time that scales
like n2. In contrast, our quantized algorithm will have
computation time that scales withn (which is 1/Φ(P ))
for the ring. Now the diameter of the ring graph isn and
no algorithm takes less thann or noP can have mixing
time smaller than this diametern.

In general, it can be checked that the diameter of a
graphG is at most1/Φ(P ) for any irreducible probabil-
ity matrix P . For graphs with bounded degree and with
geometry, theP induced by the Metropolis-Hastings
method has a diameter that scales like1/Φ(P ). By a
graph with geometry, we mean a graph with polynomial
growth: for any given node, the number of nodes within
distancer from that node scales asO(rd) for some
fixed constantd. Diaconis and Saloff-Coste [7] have
established that for graphs with geometry the mixing
time of any symmetric doubly stochasticP scales like
at leastD2, whereD is the diameter of the graphG.
Therefore, linear iterative algorithms will have computa-
tion time that scales likeD2. In contrast, our algorithm
will have computation time1/Φ(P ) which will be equal
to diameterD for a P given by the Metropolis-Hastings
method.

In summary, our algorithm will provide the best pos-
sible computation time scaling with respect to graph
structure for both expander graphs and graphs with
geometry.

V. PROOF OFTHEOREM III.1

In this section, we present the proof of Theorem III.1.
The core idea is to characterize the information flow be-
tween arbitrary “cut-sets” of the network. A cut divides
the network into two sets,S andSc = {1, . . . n}\S. Sup-
pose that nodes 1 tom belong to setS and nodesm+1 to
n belong to setSc. So, the estimates of the nodes in setS
at timeT are ŶS(T ) = [Ŷ1(T ) . . . Ŷm(T )]′. The initial
conditions of the nodes in setsS andSc are denoted by
XS = [X1 . . . Xm]′ andXSc = [Xm+1 . . . Xn]

′.
The quantity that will play a central role in the

proof of Theorem III.1 is the mutual information term,

I(ŶS(T );XSc |XS). This is mutual information between
the estimates of the nodes in setS and the initial
conditions of the nodes in setSc, assuming that all nodes
in S have each other’s initial conditions. Leading up to
the proof of Theorem III.1, we prove 3 lemmas related
to I(ŶS(T );XSc |XS).

In the first of our series of lemmas, we bound
I(ŶS(T );XSc |XS) from above by the mutual informa-
tion between the inputs and the outputs of the channels
that traverse the cut.

Lemma V.1. For a given cut in the network, and corre-
sponding cut-setsSc andS,

I(ŶS(T );XSc |XS) ≤
T∑

l=1

I(VS(l);USc(l)|US(l)),

whereUSc is a vector of the variables transmitted by the
encoders of the nodes inSc andVS is a vector of the
variables received via channels by the decoders of the
nodes inS. The (l) refers to thelth channel use.

In the second lemma, we bound from above
I(VS(l);USc(l)|US(l)) by the sum of the capacities of
the channels traversing the cut.

Lemma V.2. Suppose a network is represented by the
graphG = (V,E). The edges of the graph represent
channels with positive capacity. If the channels connect-
ing the nodes are memory-less and independent, then,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij.

The proof of this lemma makes apparent the value of
the conditioning in the mutual information terms. This
conditioning is equivalent to assuming that all nodes in
S have access to all information that is available at the
nodes of the setS, including information aboutXS . In
this way, we capture the information that is traversing
the cut, without including the effect of information
exchanged between nodes in the same set.

Finally, in the third lemma, we bound from below
the termI(ŶS(T );XSc |XS). We show that this term is
bounded from below by the information that must be
communicated from the nodes ofSc to the nodes ofS
in order for the nodes ofS to compute their estimates,
I(ŶS(T );YS |XS). We then bound this from below by
an expression that involves the desired performance
criterion and the desired function.

For the mean square error criterion R1, we have the
following lemma.

Lemma V.3. If E(‖Ŷ (T )− Y ‖2) ≤ β2−α then

I(ŶS(T );XSc |XS) ≥ L(S)
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where,

L(S) = h(YS |XS)−
|S|
2

log 2πeβ +
|S|
2

log |S|+ |S|α
2
,

and, |S| is the size of the setS, specifically,|S| = m.

The lower bound involves two terms. These are (1) the
desired accuracy in the nodes’ estimates, specified by the
mean square error criterion, and (2) the uncertainty in the
function to be estimated,YS, quantified by its differential
entropy. The larger the desired accuracy, the larger theα
in the mean square error criterion. This implies a larger
lower bound on the information that must be conveyed.
Also, the larger the uncertainty in the function to be
learned by the nodes in setS, the larger the differential
entropy term. Hence, the lower bound is larger.

For the mean square error criterion R2, we have the
following corollary.

Corollary V.4. If, for all i ∈ {1, . . . , n}, E(Ŷi(T ) −
Yi)

2 ≤ 2−α, then,

I(ŶS(T );XSc |XS) ≥ L̄(S),

whereL̄(S) = h(YS |XS)− |S|
2 log 2πe+ |S|α2 .

When, for alli, E(Ŷi(T )−Yi)2 ≤ 2−α, we again have
a lower bound that depends on the desired accuracy and
the uncertainty in the function to be estimated. However,
L̄(S) is smaller thanL(S) due to the weaker error
requirement of R2.

The proofs of Lemma V.1 and V.2 are in Appendix A.
In the next sections, we prove Lemma V.3 and Corol-
lary V.4. Then, we prove Theorem III.1.

A. Proof of Lemma V.3 and Corollary V.4

Recall that the lemma stated that ifE(‖Ŷ (T ) −
Y ‖2) ≤ β2−α then

I(ŶS(T );XSc |XS) ≥ L(S)

where,

L(S) = h(YS |XS)−
|S|
2

log 2πeβ +
|S|
2

log |S|+ |S|α
2
,

and, |S| is the size of the setS, specifically,|S| = m.
We start the proof by observing the following.

I(ŶS(T );XSc |XS)

(a)
=I(ŶS(T );X|XS)

(b)

≥I(ŶS(T );YS |XS)

where

(a) that is,I(W ;Y,U |U) = I(W ;Y |U), can be veri-
fied by the chain rule for mutual information:

I(W ;Y,U |U) = I(W ;Y |U) + I(W ;U |U, Y )

= I(W ;Y |U),

becauseI(W ;U |U, Y ) = 0.
(b) follows by the data processing inequality, because

Yi = fi(X).

Second, we obtain a lower bound onI(ŶS(T );YS |XS)
in terms of the desired mean square criterion. We have
the following series of inequalities.

I(ŶS(T );YS |XS)

=h(YS |XS)− h(YS |ŶS(T ),XS)

=h(YS |XS)− h(YS − ŶS(T )|ŶS(T ),XS)

(c)

≥h(YS |XS)− h(YS − ŶS(T )) (1)

where, (c) follows because conditioning reduces entropy.
Now, because the multivariate Normal maximizes en-

tropy over all distributions with the same covariance,

h(ŶS(T )− YS) ≤
1

2
log(2πe)m|Z|, (2)

where,Z is a covariance matrix whose diagonal elements
areZii = V ar(Ŷi(T ) − Yi), and |Z| denotes the deter-
minant. Recall thatS is the set containing nodes 1 tom,
so it has sizem. Also, ŶS(T )−YS is a vector of length
m. So,Z is anm by m matrix. Now,

|Z|
(d)

≤
m∏

i=1

V ar(Ŷi(T )− Yi)

≤
m∏

i=1

E(Ŷi(T )− Yi)
2

(e)

≤
(
β2−α

m

)m

. (3)

Here, (d) is due to Hadamard’s inequality [5, Ch.9]. To
see (e), we have the following proposition.

Proposition V.5. For γ > 0, subject to
∑m

i=1 yi ≤ γ and
yi ≥ 0,

∏m
i=1 yi is maximized whenyi =

γ
m .

Now, (e) follows by settingyi = E(Ŷi(T ) − Yi)
2 and

observing that

m∑

i=1

yi = E(‖ŶS(T )− YS‖2)

≤ E(‖Ŷ (T )− Y ‖2)
≤ β2−α,
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where the last inequality follows by the assumption of
our lemma.

Finally, using (3) and (2), we bound (1) from below
and obtainL(S).

Proof of Corollary V.4: Recall that in this corollary,
we had the weaker condition that for alli ∈ {1, . . . , n},
E(Ŷi(T ) − Yi)

2 ≤ 2−α. In this case, we show that we
have the smaller lower bound,

L̄(S) = h(YS |XS)−
|S|
2

log 2πe+ |S|α
2
.

To see this, observe thatE(Ŷi(T )− Yi)
2 ≤ 2−α implies

E(‖ŶS(T ) − YS‖2) ≤ |S|2−α. So, replacingβ in L(S)
of the previous lemma by|S| yields the desired result.

B. Proof of Theorem III.1

The proof proceeds in several steps. First, as shown
in Lemma V.1, for a given cut in the network and
corresponding cut-setsSc andS,

I(ŶS(T );XSc |XS) ≤
T∑

l=1

I(VS(l);USc(l)|US(l)), (4)

whereUSc is a vector of the variables transmitted by
the encoders of the nodes inSc andVS is a vector of
the variables received via channel by the decoders of the
nodes inS.

Second, by Lemma V.2, because we have assumed that
the channels connecting the nodes are memory-less and
independent,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij. (5)

Third, we combine equations (4) and (5) with Corol-
lary V.4 to obtain

T ≥ L̄(S)∑
i∈Sc

∑
j∈S Cij

, (6)

Finally, we have that

T ≥ max
S⊂V

L̄(S)∑
i∈Sc

∑
j∈S Cij

,

because (6) holds for any cut.

C. A Technical Difficulty and its Resolution

Making use of the lower bounds derived above in-
volves computing the differential entropy of the random
variables to be learned in the network, specifically,
h(YS |XS), whereYS = [Y1 . . . Ym].′ If the Yi’s are
different random variables, then the differential entropy
term is well-defined. However, if two entries ofYS are

the same random variable, for example if both aref(X),
thenh(YS |XS) will be −∞.

But, our technique and lower bound can still be used
in situations where all nodes need to learn the same
function of the initial conditions. In order to have a
non-trivial lower bound, we modify the problem slightly.
We introduce auxiliary random variables associated with
the nodes of setSc, to be learned by nodes inS.
This enables us to obtain a non-trivial lower bound for
the modified problem. This is also a lower bound for
the original problem. By proper choice of the auxiliary
random variables, the lower bound of the modified
problem can be made as large as possible, and hence
the best possible approximation for the lower bound of
the original problem. This procedure is illustrated in
Figure 2.

The aforementioned technique will be used in the
next section. In the examples below, we demonstrate
the computation ofh(YS |XS) when we introduce the
auxiliary random variables.

Example V.6 (The Solution). Let nodes{1, . . . ,m},
m ≤ n/2, belong to setS, so thatYS = [Y1 . . . Ym].′

Let Y1 = f(X) and Yi = f(X) + aiǫji for i ∈
{2, . . . ,m}. One can think ofǫji being associated with
a node in setSc, that is, ji ∈ {m + 1, . . . n}. So, node
ji’s initial condition would be(Xji , ǫji).

Furthermore, we assume thatf is separable, meaning
f(X) = fS(XS) + fSc(XSc). Finally, we assume that

Modified ProblemOriginal Problem

E(Ŷi(T )− (Y + aǫi))
2

T ≥T ≥?

Technique

Information
Theoretic

Lower Bound

E(Ŷi(T )− Y )2 ≤ ρ ≤ ρ+ a2V ar(ǫi)

Fig. 2. Diagram illustrating the use of the information theoretic
technique to obtain a lower bound in a situation where all nodes
learn the same function.
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theXi’s andǫi’s are mutually independent. Then,

h(YS |XS)

=h (fSc(XSc), fSc(XSc) + a2ǫj2 ,

. . . , fSc(XSc) + amǫjm |XS)

(a)
=h(fSc(XSc), fSc(XSc) + a2ǫj2 ,

. . . , fSc(XSc) + amǫjm)

(b)
=h(fSc(XSc)) +

m∑

i=2

h(aiǫji)

(c)
=h(fSc(XSc)) +

m∑

i=2

h(ǫji) + log

m∏

i=2

|ai|,

where,

(a) follows because we have assumed that theXi’s and
ǫi’s are mutually independent,

(b) follows by the chain rule for differential entropy,
and again using the fact that theXi’s and ǫi’s are
mutually independent,

(c) follows using the fact thath(aiǫji) = h(ǫji) +
log |ai|, as shown in shown in [5, Ch.9].

In the next example, we assume that the functionf is
a linear function and that the auxiliary random variables
are independent Gaussian random variables. For this
scenario, we then obtain the expression for the lower
bound of Corollary V.4.

Example V.7 (Using the Solution for a Linear Function).
In addition to the assumptions in Example V.6, let
f(X) =

∑n
j=1 βjXj. We assume thatǫj2 , . . . , ǫjm are

independent and identically distributed Gaussian random
variables, with mean zero and varianceη. Then, the
differential entropy ofǫji is h(ǫji) =

1
2 log 2πeη.

So, substituting in the expression from Example V.6,
we have that

h(YS |XS) =h


∑

j∈Sc

βjXj


+

m− 1

2
log 2πeη

+ log

m∏

i=2

|ai|. (7)

To evaluateh
(∑

j∈Sc βjXj

)
, we use the Entropy

Power Inequality, namely, for independentXi’s,

22h(
∑

j∈Sc βjXj) ≥
∑

j∈Sc

22h(βjXj),

which implies that

h


∑

j∈Sc

βjXj


 ≥ 1

2
log


∑

j∈Sc

22h(βjXj)


 .

Now, if we assume that eachXi is uniformly distributed
in the interval between 1 andB + 1, Xi ∼ U [1, B + 1],
then,

h (βjXj) = log |βj |B.

So,

h


∑

j∈Sc

βjXj


 ≥ 1

2
log


B2

∑

j∈Sc

β2j




= logB +
1

2
log

∑

j∈Sc

β2j . (8)

Finally, we evaluate the lower bound of Corollary V.4
for this scenario. Recall that we had

L̄(S) = h(YS |XS)−
|S|
2

log 2πe+ |S|α
2
,

and |S| = m. Using equation (7) together with the
inequality of equation (8), we have that

L̄(S) ≥ log
B
(∑

j∈Sc β2j

) 1

2 ∏m
i=2 |ai|√

2πeη
+
m

2
(α+ log η) .

(9)

In summary, our use of basic information theoretic
definitions and inequalities has led to a lower bound that
we have applied to a formulation for distributed function
computation. The lower bound on information consists of
a term that arises due to the mean square error criterion
and a term due to the function that is to be estimated.
Using techniques of network information theory, we have
shown how the bound on information can be used to
obtain a lower bound on computation time time.

VI. A T IGHT BOUND: COMPUTATION OF THE SUM

VIA ERASURE CHANNELS

In this section, we use the techniques of the previous
section to find a lower bound on computation time when
nodes compute a sum. We present a distributed algorithm
for computation of the sum over block erasure channels
and provide an upper bound for the run-time of the
algorithm. Both bounds depend inversely on conduc-
tance, which captures the limitations due to the network
topology. Therefore, we conclude that our lower bound
is tight in capturing the effect of the network topology
via the conductance.

A. The Information Theoretic Lower Bound for Summa-
tion

In this section, we provide the proof of Theorem III.5.
We will use the techniques that we have developed
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in section V. In particular, we will use the results of
Examples V.6 and V.7, namely equation (9).

Proof of Theorem III.5:
Recall thatY =

∑n
j=1 βjXj . Suppose that we have

any realization of the initial conditions,A = {X1 =
x1, . . . ,Xn = xn}. We are given an algorithm that
guarantees, for every such realization, that at timeT
each node,i, has an estimate,̂Yi(T ), of Y :

∑n
j=1 βjxj .

Furthermore, for this algorithm, the estimatêYi(T ) is
within an ε-interval of the true value ofY, with desired
probability. That is,

P

(
|Ŷi(T )− Y | ≤ εY

∣∣∣A
)
≥ 1− δ. (10)

The proof proceeds in several steps. The proofs for
steps 1 and 2 follow this proof.

1) Any algorithm that satisfies the probability condi-
tion of equation (10) must satisfy, for small enough
δ, a mean square error criterion:

E(Ŷi(T )− Y )2 ≤ ε2E(Y 2) + κδ.

2) LetY1 = Y andYi = Y +aǫji for i ∈ {2, . . . ,m},
whereǫj2 , . . . , ǫjm are independent and identically
distributed Gaussian random variables, with mean
zero and varianceη. Let the ǫji ’s be independent
of the initial conditions,Xi. Then,

E(Ŷi(T )− Yi)
2 ≤ ε2E(Y 2) + a2η + κδ.

3) Next, letS∗ and (S∗)c be the sets for which
∑

i/∈S,j∈S Cij

|S|
is minimized, and assumeS∗ is the set with smaller
size, |S∗| ≤ n

2 . For purposes of this proof, we
enumerate the nodes in setS∗ from 1 to m. Then,
let YS∗ = [Y1 . . . Ym]′, where theYi’s are those
of Step 2.

4) Now, we can apply our information theoretic in-
equalities to this set-up. We think ofǫji being
associated with a node in set(S∗)c, that is, ji ∈
{m+1, . . . n}. So, nodeji’s initial condition would
be (Xji , ǫji). Denote[ǫj1 . . . ǫjm ] by ǫ. Using the
derivations of section V, we have that

T
∑

i∈(S∗)c

∑

j∈S∗

Cij ≥ I(ŶS∗(T );X(S∗)c |XS∗)

(a)
= I(ŶS∗(T );X(S∗)c , ǫ|XS∗)

≥ I(ŶS∗(T );YS∗ |XS∗)

≥ L̄(S∗),

where, (a) follows becausêYS∗(T ) is the vector of
estimates produced by the algorithm, and depends

on the initial conditions,Xi’s, while the ǫji ’s are
independent ofXi’s.
Recall that

L̄(S∗) = h(YS∗ |XS∗)− |S∗|
2

log 2πe+ |S∗|α
2
.

Note that from Step 2, we have that2−α =
ε2E(Y 2) + a2η + κδ. So, we haveα =
− log(ε2E(Y 2) + a2η + κδ).

5) Next, we computeh(YS∗ |XS∗) given the assump-
tions of our formulation. Recall that we have
performed these computations in Example V.7. We
obtained the following:

L̄(S∗) ≥ log
B
(∑

j∈Sc β2j

) 1

2 |a|m−1

√
2πeη

+
|S∗|
2

(
log

η

ε2E(Y 2) + a2η + κδ

)
,

where we have substituted inα =
− log(ε2E(Y 2) + a2η + κδ).

6) Finally, we make the appropriate choice of our
parameters,a and η. Assume, without loss of
generality, that

(∑
j∈Sc β2j
2πe

) 1

2

≥ 1,

otherwise, we can just scale our choices fora and

η. Let a =
(
η

1
2

B

) 1

m−1

, then,

L̄(S∗) ≥ |S∗|
2

(
log

1
ε2E(Y 2)

η + a2 + κ
η δ

)
.

Next, let η = B. Then, becausem− 1 < n
2 ,

a2 <

(
1

B

) 2

n

.

Observe thatE(Y 2) ≤ MB2, whereM is some
integer. So,

ε2E(Y 2)

η
+ a2 ≤ ε2MB +

(
1

B

) 2

n

.

Combining with Step 4, we have that

T
∑

i∈(S∗)c

∑

j∈S∗

Cij ≥
|S∗|
2

log
1

ε2MB +
(
1
B

) 2

n + κ
B δ

.

Rearranging, we have that

T ≥ 1

2

1
∑

i∈(S∗)c

∑
j∈S∗ Cij

|S∗|

log
1

ε2MB +
(
1
B

) 2

n + κ
B δ

.
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Here, we must have ε2M ∈[
0, 1

B

(
1−

(
1
B

) 2

n − κδ
))

, in order for the
lower bound to be positive.
Finally, because we had chose ourS∗ such that∑

i∈(S)c

∑
j∈S

Cij

|S| is minimized, we have that

Φ̃(G) =

∑
i∈(S∗)c

∑
j∈S∗ Cij

|S∗| .

Remark We show in the next section that our lower
bound is tight in its reciprocal dependence on the
conductance term. So, for fixedn, we have a scaling
law that is tight in the case of severe communication
constraints, such as very small channel capacities due to
low transmission power.

In the case of increasing number of nodes, however,B
must increase exponentially withn for our lower bound
to remain valid. The requirement is a by-product of
using a formulation based on random variables together
with Information Theoretic variables. This requirement
ensures that asn increases, our bound properly captures
the number of bits that are transferred.

When we consider sums of independent identically
distributed random variables, Central Limit Theorem
type arguments imply that as the number of the ran-
dom variables increases, there is some randomness lost,
because we know that the distribution of the sum must
converge to the Normal distribution. However, in a set-
ting where the initial conditions are fixed values, as in the
case of the algorithm we describe below, the addition of
a node clearly will not reduce the information that needs
to be communicated in the network. To counterbalance
the probabilistic effects, we need to haveB increase as
the number of nodes increases.

Next, we complete the proof of Theorem III.5 by
proving the statements of Step 1 and Step 2.

Proof of Step 1:We show that for small enoughδ,
P

(
|Ŷi(T )− Y | ≤ εY

∣∣∣A
)
≥ 1 − δ implies E(Ŷi(T ) −

Y )2 ≤ ε2E(Y 2) + κδ.

First, observe that,

P

(
|Ŷi(T )− Y | ≥ εY

∣∣∣A
)
≤ δ,

is equivalent to

P

(
(Ŷi(T )− Y )2 ≥ ε2Y 2

∣∣∣A
)
≤ δ,

Next, when we condition onA, Y is a fixed number. So,
we have we have that

E
(
(Ŷi(T )− Y )2

∣∣∣A
)

=

∫ ∞

0
P

(
(Ŷi(T )− Y )2 ≥ x

∣∣∣A
)
dx

=

∫ ε2Y 2

0
P

(
(Ŷi(T )− Y )2 ≥ x

∣∣∣A
)
dx

+

∫ ∞

ε2Y 2

P

(
(Ŷi(T )− Y )2 ≥ x

∣∣∣A
)
dx

≤ε2Y 2 + δκ,

where the last inequality follows
• for the first term, because
P

(
(Ŷi(T )− Y )2 ≥ x

∣∣∣A
)
≤ 1, and,

• for the second term, because
P

(
(Ŷi(T )− Y )2 ≥ x

∣∣∣A
)

≤ δ for all

x ∈ [ε2Y 2,∞). We have also assumed that
for everyA, (Ŷi(T )− Y )2 is bounded from above.

Finally, we have that

E(Ŷi(T )− Y )2 = E
(
E
(
(Ŷi(T )− Y )2

∣∣∣A
))

,

where the outermost expectation is with respect to the
joint distribution of the initial conditions.

Proof of Step 2:We show that ifE(Ŷi(T )−Y )2 ≤
ε2E(Y 2)+κδ, thenE(Ŷi(T )−Yi)2 ≤ ε2E(Y 2)+a2η+
κδ, whereYi = Y + aǫji , and ǫji has mean zero and
varianceη and is independent of all theXi’s.

E(Ŷi(T )− Yi)
2

=E(Ŷi(T )− Y − aǫji)
2

=E(Ŷi(T )− Y )2 + E(aǫji)
2 − 2E(Ŷi(T )− Y )(aǫji)

(a)
=E(Ŷi(T )− Y )2 + E(aǫji)

2 − 2E(Ŷi(T )− Y )E(aǫji)

(b)
=E(Ŷi(T )− Y )2 + E(aǫji)

2,

where,
(a) follows becausêYi(T ) is the estimate produced by

the algorithm, and depends on the initial conditions,
Xi’s, while ǫji is independent ofXi’s, and,

(b) follows becauseǫji has mean zero.

B. An Algorithm for Summation via Block Erasure
Channels

Next, we describe the algorithm that achieves the
lower bound. That is, we exhibit the reciprocal de-
pendence of the algorithm’s computation time on the
conductance of the graph. Because the function that is
to be computed, the sum, is relatively simple, and the
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algorithm requires little computation overhead, the limi-
tations that arise are due primarily to the communication
constraints. In fact, the dependence on the algorithm’s
run-time on conductance arises due to the fact that the
algorithm uses an information spreading algorithm as a
subroutine. Information spreading depends reciprocally
on conductance: the more severe the connectivity con-
straints, the smaller the conductance and the longer it
takes for information to spread in the network.

The algorithm that we describe is based on an algo-
rithm by Mosk-Aoyama and Shah [23]. In section VI-B1
we discuss this algorithm and its applicability to our for-
mulation. In section VI-B2, we describe the contributions
of [23] in the design of an algorithm for distributed com-
putation of a separable function, in a network of nodes
using repeated communication of real-valued messages.
In section VI-B3, we describe the algorithm when the
communicated messages are quantized, and analyze how
the performance of the algorithm changes relative to the
performance of the unquantized algorithm of [23].

1) Background: The algorithm that we describe is
based on an algorithm by Mosk-Aoyama and Shah [23].
In that formulation, each node has a fixed real-valued
initial condition, that is bounded away from zero. Nodes
compute a separable function1 of the initial values in
the network. The algorithm guarantees that with some
specified probability, all nodes have an estimate of the
function value within a desiredε-interval of accuracy
around the true value. In [23], each node may contact one
of its neighbors once in each time slot. If the edge(i, j)
belongs toE, node i sends its real-valued message to
nodej with probabilitypij and with probabilitypii sends
its message to no other nodes; if(i, j) /∈ E, pij = 0.

The algorithm of [23] is a simple randomized algo-
rithm that is based on each node generating an exponen-
tially distributed random variable with mean equal to the
reciprocal of the node’s initial value. The nodes sample
from their respective distributions and make use of an
information spreading algorithm to make computations
and ultimately obtain an estimate of the desired function.

The advantage of this algorithm is that it is completely
distributed. Nodes need not keep track of the identity of
the nodes from which received information originates.
Furthermore, the algorithm is not sensitive to the order
in which information is received. In terms of its per-
formance, the algorithm’s computation time is almost
optimal in its dependence on the network topology, as
the computation time scales inversely with conductance
of the matrix representing the communication topology.

The drawback of the algorithm in [23], however, is that

1A linear function of the initial conditions is a separable function.

it requires nodes to exchange real numbers. As such, the
algorithm is not practically implementable.

Below, we quantize this algorithm, so that instead of
sending real-valued messages, nodes communicate an
appropriate number of bits. In the process of quantiza-
tion, we determine the needed number of bits; for now,
we call it logM. Now, nodei can send toj a logM -bit
message each time it makes contact. Again, the contact
between the nodes is random: nodei contacts nodej
with probability pij . This is equivalent2 to nodei com-
municating toj via a logM -bit erasure channel, where
logM bits are sent noiselessly with probabilitypij, and
there is an erasure otherwise. In this case, capacity of the
channel isCij = pij logM, so, Φ(G) = Φ(P ) logM.
We will show that the effect of communicating bits
instead of real-valued messages is to slow down the
original algorithm bylog n; however, the dependence of
computation time on conductance is unchanged.

Another difference between our formulation and the
one in [23], is that we assume that the initial conditions
lie in a bounded interval,[1, B + 1], whereas in [23]
there is no upper bound. We need this assumption to
show that our algorithm will also guarantee that with
some specified probability, all nodes have an estimate of
the function value within a desiredε-interval of accuracy
around the true value. However, due to communicating
a finite number of bits,ε cannot be arbitrarily close to
zero.

Finally, we recall that in deriving the lower bound of
the previous section, we had assumed a joint probability
distribution on the initial conditions. However, we will
describe the algorithm for fixed initial-values at the
nodes. If the initial conditions were in fact distributed
according to some joint probability density function,
the algorithm that we describe below can be used for
any realization of the initial values to guarantee, with
the desired probability, theε-accuracy criterion. So, the
algorithm satisfies the “if” condition in the statement
of Theorem III.5. As such, the computation time of the
algorithm we describe below must be bounded from
below by the expression in Theorem III.5 which includes
the reciprocal of conductance.

We provide an upper bound on the run-time and show
that, indeed, it does scale inversely with conductance.
Thus, the contribution of this work includes the non-
trivial quantized implementation of the algorithm of [23]
and its analysis. As a consequence, we obtain the fastest,

2In [23], it is assumed that each node can contact at most one
other node; but it can be contacted by more than one nodes. Under
our independent erasure channel model, each node can contact more
than one node. However, for our purposes, this is only beneficial as
it results in faster information dissemination.
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in terms of dependence on network topology, quantized
distributed algorithm for separable function computation.

2) Unquantized Function Computation:In [23], a
randomized algorithm is proposed for distributed compu-
tation of a separable function of the data in the network,
so that with some specified probability, all nodes have an
estimate of the function value within the desired interval
of accuracy. The computation algorithm assumes that
the nodes exchange real-valued messages whenever a
communication takes place. The algorithm depends on

• the properties of exponentially distributed random
variables, and,

• an information spreading algorithm used as a sub-
routine for the nodes to communicate their mes-
sages and determine the minimum of the messages.
a) The Algorithm:The following property of expo-

nential random variables plays a central role in the design
of this algorithm. LetW 1, . . . ,W n be independent ex-
ponentially distributed random variables, whereW i has
mean1/θi. Then, the minimum,W ∗ = mini=1,...,nW

i,
will also be exponentially distributed, and its mean is
1/
∑n

i=1 θi.
Suppose that nodei has an initial valueθi. Each

node needs to compute
∑n

i=1 θi. Node i generates an
exponential distribution with mean1/θi. It then draws
a sample,W i = wi, from that distribution. All nodes
do this. They exchange their samples so that each node
knows every sample. Then, each node may compute the
minimum of the samples,w∗ = mini=1,...,nw

i. w∗ is
a realization ofW ∗, which is exponentially distributed,
with mean1/

∑n
i=1 θi.

For the algorithm proposed in [23], the nodes perform
the above procedure onr samples from each node
rather than one. That is, nodei draws independentlyr
samples from its exponential distribution,W i

1, . . . ,W
i
r .

The nodes exchange information using the information
spreading algorithm described below. Ultimately, each
node acquiresW ∗

1 , . . . ,W
∗
r , whereW ∗

l is the sample-
wise minimum,W ∗

l = mini=1,...,nW
i
l . Then, for its

estimate of
∑n

i=1 θi, each of the nodes computes
r∑r

l=1W
∗
l

.

Recall that asr increases,1r
∑r

l=1W
∗
l approaches the

mean ofW ∗
1 , namely1/

∑n
i=1 θi. It is shown that, for

large enoughr, the nodes’ estimates of
∑n

i=1 θi will
satisfy the desired accuracy criterion with the desired
probability.

b) Computation of Minima Using Information
Spreading: The computation of the minimum using
the information spreading algorithm occurs as follows.
Suppose that each nodei has an initial vectorW i =

(W i
1, . . . ,W

i
r) and needs to obtain̄W = (W̄1, . . . , W̄r),

whereW̄l = mini=1,...,nW
i
l . To computeW̄ , each node

maintains an r-dimensional vector,̄̂wi = ( ˆ̄wi
1, . . . , ˆ̄w

i
r),

which is initially ˆ̄wi(0) = W i, and evolves such that
ˆ̄wi(k) contains nodei′s estimate ofW̄ at timek. Node
i communicates this vector to its neighbors; and when
it receives a message from a neighborj at timek con-
taining ˆ̄wj(k−), nodei will update its vector by setting
ˆ̄wi
l(k

+) = min( ˆ̄wi
l(k

−), ˆ̄wj
l (k

−)), for l = 1, . . . , r.
Denote withD the information spreading algorithm,

used as a subroutine to disseminate messages and com-
pute the minimum. The performance of this algorithm is
captured by theδ-information-spreading time,T spr

D (δ), at
which with probability larger than1− δ all nodes have
all messages. More formally, letSi(k) is the set of nodes
that have nodei’s message at timek, andV is the set
of nodes, the definition ofT spr

D (δ) is the following.

Definition VI.1. For a given δ ∈ (0, 1), the δ-
information-spreading time, of the algorithmD, T spr

D (δ),
is

T spr
D (δ) = inf{k : P(∪n

i=1{Si(k) 6= V }) ≤ δ}.

As argued in [23], when an information spreading
algorithmD is used where one real-number is transferred
between two nodes every time there is a communica-
tion, then with probability larger than1 − δ, for all i,
ˆ̄wi(k) = W̄ when k = rT spr

D (δ), because the nodes
propagate in the network an evolving estimate of the
minimum, anr-vector, as opposed to then r-vectors
W 1, . . . ,W n.

c) The Performance:The first of the two main
theorems of [23] provides an upper bound on the com-
puting time of the proposed computation algorithm and
the second provides an upper bound on the information
spreading time of a randomized gossip algorithm. These
theorems are repeated below for convenience as our
results build on those of [23].

Theorem VI.2. Given an information spreading algo-
rithm D with δ-spreading timeT spr

D (δ) for δ ∈ (0, 1),
there exists an algorithmA for computing separable
functions f ∈ F such that for anyε ∈ (0, 1) and
δ ∈ (0, 1),

T cmp
A (ε, δ) = O

(
ε−2 log eδ−1T spr

D

(
δ

2

))
.

In the next section, we state a theorem analogous to
this one, but for the case where the nodes are required
to communicate a finite number of bits.

Next, the upper bound on the information spread-
ing time is derived for the communication scheme, or
equivalently, the randomized gossip algorithm. We refer
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the reader to [23] for further details on the information
spreading algorithm, including an analysis of the case of
asynchronous communication. The theorem relevant to
this section follows.

Theorem VI.3. Consider any stochastic and symmetric
matrix P such that if(i, j) /∈ E, pij = 0. There exists
an information spreading algorithm,P, such that for any
δ ∈ (0, 1),

T spr
P (δ) = O

(
log n+ log δ−1

Φ(P )

)
.

3) Quantized Function Computation:The nodes need
to each acquire an estimate off(x) =

∑n
i=1 fi(xi). For

convenience, we denotefi(xi) by θi. Recall that we
have assumed that nodei can computeθi without any
communication. Further, we’ve assumed that there exists
a B for which: for all i, θi ∈ [1, B + 1].

Let y = f(x) =
∑n

i=1 θi be the quantity to be
estimated by the nodes. We denote the estimate ofy
at nodei by Ŷ Q

i . TheQ is added to emphasize that this
estimate was obtained using an algorithm for nodes that
can only communicate quantized values using messages
consisting a finite number of bits. The randomness in
Ŷ Q
i is due to the fact that the links between the nodes

may fail probabilistically, as captured byP.
Recall that the goal is to design an algorithm such

that, for large enoughk,

P

{
∩n
i=1{|Ŷ Q

i (k)− y| ≤ εy}
}
≥ 1− δ,

while communicating only a finite number of bits be-
tween the nodes. Again, we take advantage of the prop-
erties of exponentially distributed random variables, and
an information spreading algorithm used as a subroutine
for the nodes to determine the minimum of their values.

a) Computation of Minima Using Information
Spreading:We use the same scheme that was described
in VI-B2 for computation of minima using information
spreading. Now, nodei quantizes a valuê̄wi

l that it
needs to communicate to its neighbor,j, where node
i maps the valuê̄wi

l to a finite set{1, . . . M} according
to some quantization scheme. Then,logM bits have
to be communicated between the nodes beforej can
decode the message and update itsˆ̄wj

l . But, when each
communication between nodes islogM -bits, the time
until all nodes’ estimates are equal tōW with probability
larger than1 − δ will still be k = rT spr

D (δ). However,
there will be quantization error. Our choice ofM will
determine this error.

b) Summary of Algorithm & Main Theorem:The
proposed algorithm,AQ is summarized below.

1) Independently from all other nodes, nodei gen-
eratesr independent samples from an exponential
distribution, with parameterθi. If a sample is larger
than anm (which we will specify later), the node
discards the sample and regenerates it.

2) The node quantizes each of the samples accord-
ing to a scheme we describe below. The quan-
tizer maps points in the interval[0,m] to the set
{1, 2, . . . ,M}.

3) Each of the nodes performs steps 1 and 2 and
communicates its messages via the information
spreading algorithm,D, to the nodes with which
it is connected. The nodes use the information
spreading algorithm to determine the minimum of
each of ther sets of messages. AfterrT spr

D (δ) time
has elapsed, each node has obtained ther minima
with probability larger than1− δ.

4) Node i sets its estimate ofy, Ŷ Q
i , to be the

reciprocal of the average of ther minima that it
has computed.

Here, r is a parameter that will be designed so
that P

{
∩n
i=1{|Ŷ

Q
i − y| ≤ εy}

}
≥ 1 − δ is achieved.

Determining how larger andM must be leads to the
main theorem of this section.

Theorem VI.4. Given an information spreading algo-
rithm D with δ-spreading timeT spr

D (δ) for δ ∈ (0, 1),
there exists an algorithmAQ for computing separa-
ble functionsf ∈ F via communication of quantized
messages. If each quantized message islogM bits and
logM = O(log n), the quantization error will be no
more than a givenγ = Θ( 1n). Furthermore, for any
ε ∈ (γf(x), γf(x) + 1

2 ) and δ ∈ (0, 1),

T cmp
AQ (ε, δ) = O

(
ε−2 log eδ−1T spr

D

(
δ

2

))
.

Remark Here, we point out that the condition in the
theorem thatε ∈ (yγ, yγ + 1/2) reflects the fact that
due to quantization,̂Y Q

i can never get arbitrarily close
to y, no matter how larger is chosen.

Before proving this theorem, it is convenient to con-
sider the algorithm described above, excluding step 2;
that is, with no sample quantization. The derivation of
the computation time of this modified algorithm will lead
to determining the appropriate truncation parameter,m.
Next, we introduce a quantization scheme and determine
the number of bits to use in order to guarantee that the
node estimates ofy converge with desired probability;
we find that this number of bits,logM, is of the order
of log n. The details can be found in Appendix B.

Thus, we have shown how a distributed algorithm
for computing separable functions may be quantized so
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that the effect of the quantization scheme will be to
slow down the information spreading bylog n, while
the remaining performance characteristics of the original
algorithm will be virtually unchanged, especially with
respect to its dependence on conductance. This result is
stated in Theorem VI.4.

Combining the result of Theorem VI.4 with that of
Theorem VI.3 yields Theorem III.6. Comparison with a
lower bound obtained via information theoretic inequal-
ities in section VI-A reveals that the reciprocal depen-
dence between computation time and graph conductance
in the upper bound of Theorem III.6 matches the lower
bound. Hence the upper bound is tight in capturing the
effect of the graph conductanceΦ(G).

VII. D ISCUSSION ANDCONCLUSIONS

We’ve studied a network of nodes communicating over
point-to-point memoryless independent noisy channels.
Each node has an initial value. The objective of each of
the nodes is to compute a given function of the initial
values in the network. We have derived a lower bound
to the time at which the mean square error in the nodes’
estimates is within a prescribed accuracy interval.

The lower bound is a function of the channel capac-
ities, the accuracy specified by the mean square error
criterion, and the uncertainty in the function that is to
be estimated. The bound reveals that, first, the more
randomness in the function to be estimated, the larger
the lower bound on the computation time. Second, the
smaller the mean square error that is tolerated, the larger
the lower bound on the computation time. Hence there
is a trade-off captured between computation accuracy
and computation time. In addition, the lower bound can
be used to capture the dependence of the convergence
time on the structure of the underlying communication
network.

We’ve considered a network of nodes communicating
to compute a sum of the initial values in the network.
Each of the nodes is required to acquire an estimate
that is, with a specified probability, within a desired
interval of the true value of the sum. We’ve applied
our information theoretic technique to derive a lower
bound on the computation time for this scenario. We’ve
shown that whenCij = Cji, the computation time is
inversely related to a property of the network called
“conductance.” It captures the effect of both the topology
and channel capacities by quantifying the bottle-neck of
information flow.

Next, we’ve described an algorithm that can be used
in this setting of nodes computing a sum via block
erasure channels, and guarantees that with the specified
probability, each of the nodes’ estimate is within the

desired interval. We’ve determined an upper bound on
the algorithm’s computation time. We’ve shown that it
too is inversely related to conductance.

Hence, we conclude that our lower bound is tight in
capturing the effect of the communication network, via
conductance. Equivalently, our algorithm’s run-time is
optimal in its dependence on conductance. That is, we
have obtained a scaling law for convergence time as
a function of a network property, conductance. When
the number of nodes is fixed, this scaling law becomes
tighter as the communication constraints are more severe,
like diminished channel capacities.

A critical assumption in our work is that the network
is a point-to-point network of independent memoryless
channels. In this context, there is no interference or col-
lisions from other users. The limitations imposed by the
communication network are its pattern of connectivity
and the noisy channels. And in this case, the capacity of
each of the channels quantifies the bit constraints.

Furthermore, when the function to be computed is
simple, like a sum, limitations arise primarily due to
communication constraints, not the computational abili-
ties of the nodes. In such a scenario, and when in addi-
tion we assume initial measurements are independent and
channels are block-erasure channels, our results capture
the effect of topology and imperfect transmission on the
performance of nodes.

Our general lower bound depends on the assumption
that communication occurs over a network of point-
to point independent memoryless channels. Our lower
bound for summation depends on the additional as-
sumption that the initial measurements at the nodes are
independent. This assumption primarily simplifies the
computation of the entropy term in the general lower
bound.

Our achievability result depends on the further as-
sumption that the channels are block-erasure channels,
whose block length depends on the number of nodes.
In general, the algorithm we describe for summation
will work for any network of point-to-point channels.
When the channels are block erasure channels, the com-
putation time of the algorithm depends reciprocally on
conductance and hence achieves the lower bound. For
these channels, and for the summation task, our code
is relatively simple. We believe that an area for future
work is to design optimal codes for more general point-
to-point channels. These codes will necessarily be more
sophisticated than the one we have here. Some insights
to the issues that arise in coding for computation over
multi-access channels are highlighted in the work of
Nazer and Gastpar [24].
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APPENDIX A
PROOFS OFLEMMAS V.1 AND V.2

In this appendix, we present the proofs of Lemmas V.1
and V.2, that we used in section V to derive the lower
bound of Theorem III.1.

A. Proof of Lemma V.1

We prove the following inequality:

I(ŶS(T );XSc |XS) ≤
T∑

l=1

I(VS(l);USc(l)|US(l)),

(A.11)
whereUSc is a vector of the variables transmitted by the
encoders of the nodes inSc and VS is a vector of the
variables received via channels by the decoders of the
nodes inS.

For this proof, we use the general formulation for
multi-terminal networks of [5, section 14.10]. letUi be
transmitted by the nodei encoder andVi be received
by the nodei decoder. We denote a sequence of length
N transmitted byi asUN

i = (Ui(1), Ui(2), . . . Ui(N)).
The indices in brackets represent channel use. As be-
fore, if nodes 1 tom belong to S, we have that
VS = (V1, . . . , Vm). Similarly, we have thatVS(l) =
(V1(l), . . . , Vm(l)), representing the variables received
after thel-th use of the channel.

We assume that the estimate at nodei, Ŷi(T ), is a
function of the received messages at that node,V T

i and
its own data,Xi, Ŷi(T ) = gi(V

T
i ,Xi). The message

transmitted byi in the lth channel use,Ui(l), is also a
function of the received messages at that node,V l−1

i and
its own data,Xi, Ui(l) = ψi(V

l−1
i ,Xi).

As in [5], the channel is a memoryless discrete-
time channel. In our case, for convenience, we
assume the channel to be continuous, represented
by the conditional probability distribution function
p(v1, . . . , vn|u1, . . . , un). However, we note that the in-
equalities below hold even in the case that the channel is
discrete. In this case, the random variable arguments of
I(·; ·|·) would be arbitrary ensembles, and so we use the
general definition forI(·; ·|·) as the “average conditional
information” in [26, Ch.3], and for the conditional en-
tropy, h(X|Y ), we useh(X|Y ) = I(X;X|Y ). All the
equalities and inequalities below will continue to hold.
We refer the reader to [26, Ch.3] for technical details.

The following inequalities proceed in the same manner
as Theorem 14.10.1 in [5]. For convenience, we repeat
the steps here using our notation.

I(ŶS(T );XSc |XS)

=I(ŶS(T ),XS ;XSc |XS)

(a)

≤I(V T
1 , . . . , V

T
m ,XS ;XSc |XS)

=I(VS(1), . . . , VS(T );XSc |XS)

(b)
=

T∑

l=1

I(VS(l);XSc |XS , VS(l − 1), . . . , VS(1))

(c)
=

T∑

l=1

h(VS(l)|XS , VS(l − 1), . . . , VS(1))

− h(VS(l)|XSc ,XS , VS(l − 1), . . . , VS(1))

(d)

≤
T∑

l=1

h(VS(l)|XS , VS(l − 1), . . . VS(1), US(l))

− h(VS(l)|XSc ,XS , VS(l − 1),

. . . , VS(1), US(l), USc(l))

(e)

≤
T∑

l=1

h(VS(l)|US(l))− h(VS(l)|US(l), USc(l))

(f)
=

T∑

l=1

I(VS(l);USc(l)|US(l)).

Above,

(a) holds by the data processing inequality, because
Ŷi(T ) = gi(V

T
i ,Xi),

(b) follows by the chain rule for mutual information,
(c) follows by the definition of mutual information,

(or, in the discrete channel case, it follows by
Kolmogorov’s formula [26, Ch.3] and by noting that
the entropy term is well-defined sinceVi would take
values in a discrete set),

(d) follows, for the first term, becauseUi(l) =
ψi(V

l−1
i ,Xi), so it does not change the condition-

ing; and the second part follows because condition-
ing reduces entropy,

(e) holds, for the first term, because conditioning re-
duces entropy, and for the second term, because the
channel output depends only on the current input
symbols,

(f) from the definition of mutual information.

B. Proof of Lemma V.2

In this lemma, we consider a network that is repre-
sented by the graphG = (V,E). The edges of the graph
represent channels with positive capacity. If the channels
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connecting the nodes are memoryless and independent,
we show that,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij.

For simplicity of notation in the rest of the proof,
we omit the braces after the random variables,(l). For
example, instead ofVS(l) we write VS .

As we had in the previous lemma,Ui is transmitted
by the nodei encoder. Previously, we had not specified
which nodes will receive this code letter. In our set up,
however, there is a dedicated channel between every
two nodes that have an edge between them. So, the
transmitter at nodei will send out codewords to each
of the neighbors ofi, that is allj, such that(i, j) ∈ E.
We denote the encoder’s code letter fromi to j asUij .
Ui represents all messages transmitted by the encoder of
nodei. So,Ui = {Uij}, for all j, such that(i, j) ∈ E.

Similarly, Vi is received by the nodei decoder. It
consists of all the digits received byi from its neighbors,
all j such that(j, i) ∈ E. If there is a link from nodej
to i, the code letter from nodej arrives at the decoder
of i through a channel. We denote the digit received at
i from j asVji. Vi represents all the received messages;
so,Vi = {Vji}, for all j, such that(j, i) ∈ E.

In order to make our notation in the proof simpler,
we introduce dummy random variables. In particular, we
will use Uij and Vij even if (i, j) /∈ E. Effectively,
we are introducing a link between nodesi and j.
But, in this case, we setCij = 0. So now, we let
Ui = {Ui1, . . . , Uin} andVi = {V1i, . . . , Vni}.

The key to the proof is the memorylessness and
independence of the channels. That is, the output of
a channel at any instant,Vij(l), depends only on the
channel input at that instant,Uij(l). Because of this, we
have that

I(VS ;USc |US) ≤
∑

i∈Sc

∑

j∈S

I(Vij ;Uij).

To obtain this expression, we express the mutual
information in terms of the entropy,

I(VS ;USc |US) = h(VS |US)− h(VS |USc , US).

Next, we express the entropy terms using the chain
rule. We assume that nodes 1 tom belong to setS and
nodesm+ 1 to n belong toSc. Then,

h(VS |US) =

m∑

j=1

h(Vj |Vj−1, . . . , V1, US),

and,

h(VS |USc , US) =

m∑

j=1

h(Vj |Vj−1, . . . , V1, USc , US).

Because conditioning reduces entropy, we have that

h(VS |US) ≤
m∑

j=1

h(Vj |US).

For every channel, given its input, the channel output
is independent of all other channel outputs. So,

h(VS |USc , US) =

m∑

j=1

h(Vj |USc , US).

Combining the two inequalities, we have,

I(VS ;USc |US) ≤
m∑

j=1

h(Vj |US)− h(Vj |USc , US).

Now, let j = 1 and consider the expression
h(V1|US)−h(V1|USc , US). Recall that we have assumed
that V1 = {V11, . . . , Vn1}. Also, we have thatUi =
{Ui1, . . . , Uin}. So,US includes{U11, . . . , Um1}.

For the first differential entropy term we have the
following sequence of inequalities.

h(V1|US)
(a)
=

n∑

i=1

h(Vi1|V(i−1)1, . . . , V11, US)

(b)
=

m∑

i=1

h(Vi1|Ui1)

+

n∑

i=m+1

h(Vi1|V(i−1)1, . . . , V11, US)

(c)

≤
m∑

i=1

h(Vi1|Ui1) +

n∑

i=m+1

h(Vi1),

where,

(a) follows by the chain rule,
(b) follows because the channels are independent; so,

given Ui1, Vi1 is independent of all of the other
random variables,

(c) holds because conditioning reduces entropy.

Next, observe that

h(V1|USc , US)
(d)
=

n∑

i=1

h(Vi1|V(i−1)1, . . . , V11, USc , US)

(e)
=

n∑

i=1

h(Vi1|Ui1),

where,

(d) follows by the chain rule,
(e) follows because the channels are independent; so,

given Ui1, Vi1 is independent of all of the other
random variables.
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Finally, combining these inequalities,

h(V1|US)− h(V1|USc , US) ≤
n∑

i=m+1

h(Vi1)− h(Vi1|Ui1)

=

n∑

i=m+1

I(Vi1;Ui1).

Hence we have the desired expression,

I(VS ;USc |US) ≤
∑

i∈Sc

∑

j∈S

I(Vij ;Uij).

Finally, to complete the proof, we note that

I(Vij ;Uij) ≤ Cij.

This is because, by definition,

Cij = max I(Vij ;Uij),

where the maximum is taken over all distributions of the
channel input,Uij.

APPENDIX B
PROOF OFTHEOREM VI.4

A. Determiningm

Before we state the lemma of this section, we describe
the modified computation algorithm,AQ

M, which con-
sists of steps 1 to 4 above excluding 2, and we introduce
the necessary variables.

First, node i, independently from all other nodes,
generatesr samples drawn independently from an ex-
ponential distribution, with parameterθi. If a sample
is larger thanm, the node discards the sample and
regenerates it. This is equivalent to drawing the samples
from an exponential distribution truncated atm.

Let (W i
l )T be the random variable representing thelth

sample at nodei, where the subscript “T” emphasizes
that the distribution is truncated. Then, the probability
density function of(W i

l )T is that of an exponentially
distributed random variable,W i

l , with probability density
function fW i

l
(w) = θie

−θiw for w ≥ 0, conditioned on
the the eventAi

l = {W i
l ≤ m}. For w ∈ [0,m],

f(W i
l )T

(w) =
θie

−θiw

1− eθim
,

andf(W i
l )T

(w) = 0 elsewhere.
Second, the nodes use a spreading algorithm,D, so

that each determines the minimum over alln for each
set of samples,l = 1, . . . , r. Recall that we consider
the random variables at this stage as if there was no
quantization. In this case, the nodes compute an estimate
of W̄l = mini=1...n(W

i
l )T ; we denote the estimate of̄Wl

at nodei by ̂̄Wl

i
. Furthermore, we denote the estimates

at nodei of the minimum of each of each of ther set
of samples bŷ̄W

i
= ( ̂̄W1

i
, . . . , ̂̄Wr

i
), and the actual

minima of ther set of samples bȳW = (W̄1, . . . , W̄r).

It it is shown in [23] that by the aforementioned
spreading algorithm, with probability at least1 − δ/2,

the estimates of ther minima, ̂̄W
i
, will be be equal to

the actual minima,W̄ , for all nodes,i = 1, . . . , n, in
rT spr

D (δ/2) time slots.
Last, each of the nodes computes its estimate,Ŷi, of

y by summing ther minimum values it has computed,
inverting the sum, and multiplying byr:

Ŷi =
r

∑r
l=1
̂̄Wl

i
.

The following lemma will be needed in the proof of
Theorem VI.4.

Lemma A B.1. Let θ1, . . . , θn be real numbers such that
for all i, θi ≥ 1, y =

∑n
i=1 θi andW̄ = (W̄1, . . . , W̄r).

Furthermore, let̂W̄
i
= ( ̂̄W1

i
, . . . , ̂̄Wr

i
) and letŶi denote

node i’s estimate ofy using the modified algorithm of
this section,AQ

M.

For anyµ ∈ (0, 1/2), and forI = ((1−µ) 1y , (1+µ) 1y ),
if m ≥ lnn− ln (1− e−

µ2

6 ),

P

(
∪n
i=1{Ŷ −1

i /∈ I}|∀i ∈ V, ̂̄W
i
= W̄

)
≤ e−r µ2

6 ,

where,Ŷ −1
i = 1

r

∑r
l=1
̂̄Wl

i
.

Proof: First, note that when{∀i ∈ V, ̂̄W
i
= W̄}, we

have that for alli, Ŷ −1
i = 1

r

∑r
l=1 W̄l. So, it is sufficient

to show that

P

(
1

r

r∑

l=1

W̄l /∈ I

)
≤ e−r µ2

6 .

Let W ∗
l = mini=1,...,nW

i
l , the minimum of in-

dependent exponentially distributed random variables,
W i

l , with parametersθ1, . . . , θn respectively, thenW ∗
l

will itself be exponentially distributed with parameter
y =

∑
i θi. Observe that the cumulative distribution

function of W̄l, P(W̄l ≤ w), is identical to that of
W ∗

l , conditioned on the eventAl = {∩n
i=1A

i
l}, where

Ai
l = {W i

l ≤ m}, P(W ∗
l ≤ w|Al), (see Appendix for

proof). Hence, we have that

P

(
1

r

r∑

l=1

W̄l /∈ I

)
= P

(
1

r

r∑

l=1

W ∗
l /∈ I| ∩r

l=1 Al

)
.
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Now, becauseP(A ∩B) ≤ P(A), it follows that

P

(
1

r

r∑

l=1

W ∗
l /∈ I| ∩r

l=1 Al

)
P (∩r

l=1Al)

≤ P

(
1

r

r∑

l=1

W ∗
l /∈ I

)
.

From Cramer’s Theorem, see [6], and the properties of
exponential distributions, we have that

P

(
1

r

r∑

l=1

W ∗
l /∈ I

)
≤ e−r(µ−ln(1+µ))

and forµ ∈ (0, 1/2), e−r(µ−ln(1+µ)) ≤ e−r µ2

3 .
Next, we have thatP (∩r

l=1Al) = (P (Al))
r , because

the A1, . . . , Ar are mutually independent. Furthermore,
P (Al) ≥ 1 − ne−m. To see this, note that the com-
plement of Al is Ac

l = {∪n
i=1{W i

l > m}}, and
P
(
W i

l > m
)
= e−θim. So, by the union bound, we have

P (Ac
l ) ≤

n∑

i=1

e−θim ≤ ne−m,

where the last inequality follows because∀i, θi ≥ 1.
Finally, putting all this together, we have that

P

(
1

r

r∑

l=1

W̄l /∈ I

)
≤ (1− ne−m)−re−r µ2

3 .

Letting 1− ne−m ≥ e−
µ2

6 completes the proof.

B. Proof of Theorem VI.4

Before we proceed with the proof of the Theorem,
we describe the quantization scheme. In step 2 of the
algorithmAQ, nodei quantizes the sample it draws, a re-
alization of(W i

l )T denoted bywi
l . The quantizerQ maps

points in the interval[0,m] to the set{1, 2, . . . ,M}.
Each node also has a “codebook,”Q−1, a bijection
that maps{1, 2, . . . ,M} to {wq1 , wq2 , . . . , wqM}, chosen
such that for a givenγ, |wi

l −Q−1Q(wi
l)| ≤ γ. We will

denoteQ−1Q(wi
l) by (wi

l)Q.
While we do not further specify the choice of the

quantization points,wqk , we will use the fact that the
quantization error criterion can be achieved by a quan-
tizer that divides the interval[0,m] to no more thanM
intervals of lengthγ each. Then, the number of messages
will be M = m/γ, and the number of bits that the nodes
communicate islogM.

Proof: We seek an upper bound on the(ε, δ)-
computation time of the algorithmAQ, the time until,
with probability at least1 − δ, all nodesi = 1, . . . , n

have estimateŝY Q
i that are within a factor of1 ± ε of

y. That is,

P(∪n
i=1{Ŷ Q

i /∈ [(1 − ε)y, (1 + ε)y]}) ≤ δ.

First, suppose that we may communicate real-valued
messages between the nodes. We analyse the effect of
quantization on the convergence of the node estimates to
the desired1 ± ε factor of y. For this, we compare the
quantized algorithm,AQ, with the modified algorithm
AQ

M.
Note that for the above quantization scheme, for all

i, l and any realization of(W i
l )T denoted bywi

l ,

(wi
l)Q ∈

[
wi
l − γ,wi

l + γ
]
,

hence,

min
i=1,...,n

(wi
l)Q ∈

[
min

i=1,...,n
wi
l − γ, min

i=1,...,n
wi
l + γ

]
,

and,

1

r

r∑

l=1

min
i=1,...,n

(wi
l)Q

∈
[
1

r

r∑

l=1

min
i=1,...,n

wi
l − γ,

1

r

r∑

l=1

min
i=1,...,n

wi
l + γ

]
.

(A.12)

Note that1r
∑r

l=1min(wi
l)Q is a realization of(Ŷ Q

i )−1.
Now, suppose that the information spreading algo-

rithm, D, is used so that inO(rT spr
D (δ/2)) time,

P

(
∪n
i=1{̂̄W

i
6= W̄}

)
≤ δ

2
. (A.13)

Consider the case where{∩n
i=1{̂̄W

i
= W̄}}, we have

from Lemma A B.1 that, for anyµ ∈ (0, 1/2), if m =

lnn− ln (1− e−
µ2

6 ),

P

(
1

r

r∑

l=1

W̄l /∈
(
(1− µ)

1

y
, (1 + µ)

1

y

))
≤ e−r µ2

6 .

Combining with (A.12), we have that

P

(
∪n
i=1

{
(Ŷ Q

i )−1 /∈
(
(1− µ)

1

y
− γ, (1 + µ)

1

y
+ γ

)}

| ∩n
i=1 {̂̄W

i
= W̄}

)
≤ e−r µ2

6 ,

But the event{
(Ŷ Q

i )−1 /∈
(
(1− µ)

1

y
− γ, (1 + µ)

1

y
+ γ

)}

is equivalent to
{
(Ŷ Q

i ) /∈
(
(1 + (µ+ yγ))−1y, (1− (µ+ yγ))−1y

)}
.
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And, letting ε = µ+ yγ,

(
(1 + ε)−1, (1 − ε)−1

)
⊂ (1− 2ε, 1 + 2ε) .

So,

P

(
∪n
i=1

{
|Ŷ Q

i − y| > 2εy
}
| ∩n

i=1 {̂̄W
i
= W̄}

)
≤ e−r µ2

6 .

Letting r ≥ 6µ−2 ln 2δ−1, we have that

e−r µ2

6 ≤ δ

2
.

Combining this with (A.13) in the Total Probability
Theorem, we have the desired result,

P(∪n
i=1{Ŷ Q

i /∈ [(1− 2ε)y, (1 + 2ε)y]}) ≤ δ.

Finally, recall that when the nodes communicate their
real-valued messages, with high probability all nodes
have estimates of the minima that they need in the
computation of the estimate ofy in O(rT spr

D (δ/2)) time.
So, the computation time is of that order.

Now, for the quantization algorithm described in this
section the nodes need to communicatelogM bit mes-
sages before the appropriate minima are computed. Be-
cause we assume that this is the case, that the nodes ex-
changelogM bits at a time,T spr

D (δ) time slots are needed
until the quantized messages are disseminated and the
minima computed. Consequently, the computation time
of the quantized algorithm will beO(rT spr

D (δ/2)).

But, M = m/γ, and by design, for a givenµ we

choosem = lnn − ln (1− e−
µ2

6 ); som = O(log(n)).
Furthermore, we chooseγ, such thatγ = Θ( 1n). Then,

logM ≤ log log n+ log n,

so, logM = O(log n) bits are needed.
As we have previously seen, forµ ∈ (0, 1/2), r ≥

6µ−2 ln 2δ−1. But, µ = ε − yγ; and, γ = Θ(1/n) so,
yγ = O(1). We therefore have, forε ∈ (yγ, yγ + 1/2),

T cmp
AQ (ε, δ) = O

(
ε−2(1 + log δ−1)T spr

D (δ/2)
)
.
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