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Abstract—A network of nodes communicate via point-  We seek to understand the limitations imposed by the
to-point memoryless independent noisy channels. Eachcommunication constraints on the nodes’ performance
node has some real-valued initial measurement or messagejn computing the desired function. The performance
The goal of each of the nodes is to acquire an estimate;s measured by the mean square error in the nodes’
of a given function of all the initial measurements in - oqrimates of the desired function. The communication

the network. As the main contribution of this paper, a . .
lower bound on computation time is derived. This bound constraints consist of (1) the topology of the network,

must be satisfied by any algorithm used by the nodes that is, the connectivity of the nodes, and (2) the noisy
to communicate and Compute, so that the mean square channels between nodes that communicate. In order to

error in the nodes’ estimate is within a given interval capture the limitation due to the communication con-

around zero. The derivation utilizes information theoretic straints, we assume that that the nodes have unlimited
inequalities reminiscent of those used in rate distortion computation capability. Each node can perform any

theory along with a novel ‘perturbation’ technique so as  amount of computation as well as encoding and decoding
to be broadly applicable. for communication.

To understand the tightness of the bound, a specific  Aq e giscuss below, the formulation of section ||
scenario is considered. Nodes are required to learn a. . . . . .
linear combination of the initial values in the network ' not the typical lnfgrmatlon .thfeoretlc fm”.‘“'?“of‘ for
while communicating over erasure channels. A distributed networks. Our setup is more similar to certain distributed
quantized algorithm is developed, and it is shown that the computation formulations. Still, we use information the-
computation time essentially scales as is implied by the oretic inequalities to derive lower bounds on information
lower bound. In particular, the computation time depends exchange between nodes necessary for the mean square
reciprocally on "conductance”, which is a property of the error in the nodes’ estimates to converge to zero.
network that captures the information-_flow bottlepeck. As Both our technique and results are different from those
a by-product, this leads to a quantized algorithm, for ot the gistributed computation results. In section V we
computlng separable functions in a network, with minimal derive a lower bound on computation time that must
computation time. e .

be satisfied byany algorithm used by the nodes to

Index Terms—Computation time, conductance, dis- communicate and compute, so that the mean square error
tributed computing, noisy networks, quantized summation. jn the nodes’ estimates is within a given interval around
zero. The bound is in terms of the channel capacities,
the size of the desired interval, and the uncertainty in
the function to be computed. To obtain this bound, we
develop a novel ‘perturbation’ technique as explained in

We consider a network of nodes communicating vigection V-C. This allows us to apply our method to obtain
a network of point-to-point memory-less independemion-trivial lower bound for any functional computation
noisy channels. Each node has a single real-valued inigs&tup.
measurement or message. The goal of each of the node@ur lower bound is a universal lower bound that holds
is to acquire an estimate of a given function of all thtor any causal distributed algorithm that can be used by
initial measurements in the network. the nodes to attain their goal of function computation.

We make minimal assumptions on how a node encodes

'\O/Ifjlbr‘luscript retCiVBO(ls Sept_emlber_Z, 200f8:Tre\;]ise? Oct%bg?]G?j-Z messages sent over the channels or decodes messages re-
e e s Ve e g “Eelved via the channels. Furthermore, we make minimal
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only require that the encoders, decoders, and estimatoese is the fastest with respect to its dependence on
are measurable and causal mappings, the output depahdsnetwork topology, as quantified by the conductance.
only the node’s initial measurement and the messag®zus our distributed quantized algorithm answers a ques-
received in the past. tion of recent interest on the design of the fastest possible
As a result, our lower bound provides a means tistributed algorithm for separable function computation
assess the optimality of distributed causal computatifor example, in the works on consensus, linear estimation
algorithms. No algorithm can achieve a desired meamnd distributed control.
square error in a computation time that is smaller than
the lower bound. This limitation is due to the distribute% Related work
nature of the algorithm, specifically, the need to com-’
municate with nodes via a network of noisy point- Our work has similarities with a vast body of works
to-point channels. Therefore, any algorithm that hastlat can be broadly categorized as distributed compu-
computation time that is equal to the lower bound kgtion, signal processing, information theory or control.
an optimal distributed algorithm for the given networkour formulation is most similar to some formulations
topology. We illustrate this in the remainder of the pap@ppearing in the distributed computation and signal pro-
for a scenario where nodes are required to learn a lin€&ssing literature. Our approach of finding a lower bound
combination of the initial values in the network whileusing information theoretic inequalities and demonstrat-
communicating over block erasure channels. ing a bound-achieving algorithm is similar to work in
In section VI, we consider a scenario where nodé&e information theory literature. Our inspiration, for
are required to learn a linear combination of the initialsing information theoretic tools on a formulation that is
values. Our lower bound suggests that in this sceet typical in information theory, comes from a similar
nario, the computation time depends reciprocally onapproach that appears in the control theory literature.
“conductance-like” term. This term is equal to “conBelow, we highlight the difference between our work and
ductance” when the the channel from nodéo node some works from the different fields mentioned above.
j has the same capacity as the channel from npottle ~ Our problem formulation is similar to certain formu-
i. Conductance essentially captures the information-fldations in the distributed computation literature, like th
bottle-neck that arises due to topology and channel ddistributed averaging and consensus literature. Each node
pacities. The more severe the communication limitationisas an initial value, a real number or vector, and needs
the smaller the conductance. When nodes communictiteexchange data with its neighbors in order to compute
over erasure channels, our conductance is identical to ehdunction of the data in the network. Results consist
graph-theoretic conductance that arises in the analysiobfa suggested algorithm together with an analysis of
mixing times in Markov chains. the algorithm. For example, upper or lower bounds are
To establish the tightness of our lower bound, we dgrovided on the time or number of messages exchanged
scribe an algorithm for computation linear combinationntil nodes compute a certain quantity with given accu-
of the initial values when nodes communicate over blo¢Rcy [16], [4], [23]. Or, conditions are provided so that
erasure channels. For this algorithm, the computationdes reach agreement asymptotically in the number of
time matches the lower bound. The algorithm that wadgorithm iterations [29], [30], [3]. In the cited work,
describe here can in fact be more generally used f@@mmunication is subject to topological constraints, but
distributed computation of separable functions, a speerfect when present.
cial case of which is the sum. The desired function, Recent studies explicity assume imperfect commu-
a sum, is simple, and the algorithm that we descrilmcation of some sort, in addition to the topological
has computational demands that are not severe. So, ¢hastraint of having direct links with neighbors only. For
time until the performance criterion is met using thisxample, in the average consensus problem, all nodes are
algorithm is primarily constrained by the limitations ormequired to asymptotically agree on the average of all
communication. the initial values in the network. In [2], [31], messages
Indeed, we show that the upper bound, on the tinage quantized but transmission is noiseless. In [14],
until this algorithm guarantees the performance criteriomessages are real-valued, but links between nodes may
depends reciprocally on conductance. Hence, we cdai probabilistically. In a parameter estimation problem
clude that the lower bound we derive using informatioponsidered in [15], messages are quantized and links may
theoretic analysis is tight in capturing the limitationsedufail probabilistically.
to the network topology. Alternatively, one can interpret In all of these works, authors assume that each node
this tightness as the fact that the algorithm we describpdates its estimate of the quantity to be computed



by linearly combining the previous estimate, receivetas at time zero a single real-valued initial value, that
data, and other information that the node possessssinfinite bits. Unlike our work, the results in [1], [25],
The computation algorithm is analyzed together witf24] hold asymptotically in the block length (number
the encoding and decoding strategies, such as the sofgsource samples or length of messages sent over the
gested quantization scheme. Asymptotic properties, swattannel, depending on the formulation).

as convergence to a consensus value, boundedness 8ut, like our work, results typically consist of two
mean square error, or unbiasedness of the estimate @ags. First, there are lower bounds. These are derived
exhibited. using information theoretic inequalities and properties.

In contrast to the consensus literature, our goal is n®econd, there is an algorithm, or proof of existence of
for nodes to ultimately agree on the same value. Rathan algorithm or code, achieving the lower bound.
the goal is for the nodes to compute a function of their Like our work, there is a common message that appro-
measurements with desired accuracy. All nodes need paate processing of data improves performance. As put
obtain the same estimate of the function. Our bounds ame[1], “network coding has to be employed to achieve
not asymptotic in the number of algorithm iterations; theptimality”. In [25], for certain functions, the rate regio
accuracy appears explicitly in the bounds on computatifor computation is larger than the rate region for data
time. exchange (equivalently, computing the identity function)

Furthermore, to obtain an optimal algorithm for sumFhat is, for computing certain functions, transmission
mation over block erasure channels, we do not constraian be made more efficient than simply transmitting
the node update rule, for the estimate of the sum, tiwe source. In [24], the authors show that for computa-
be linear. In fact, when exchanging information, noddé®n over multi-access channels, codes that utilize joint
need only keep track of the minimum of received valuesource-channel strategies outperform strategies which
So, nodes need not keep track of duplicate message®code the source and channel messages separately. Our
sender identity. Another consequence of not limiting owptimal algorithm requires that data is processed at nodes
updates to be linear is that the quantization scheme thatthey exchange messages; in particular, a node passes
we propose is relatively simple. on the minimum of all the messages it receives.

Another perspective is the information theoretic one. In a similar flavor as our work, [10] and [12] provide
Each node has access to a sequence of samples fronaritalgorithm for computation together with an algorithm-
source. Alternatively, the node receives data at some inilependent lower bound that establishes optimality of
rate. In classical network information theory, the godhe proposed algorithm. In [10], each node in the network
is for nodes to reliably exchange these samples [Blas one bit. Nodes broadcast messages to each other
In [9], the authors derive information theoretic boundga binary symmetric channels. The goal is for a fusion
on the number of bits that must be exchanged foenterto compute the parity of all the bits in the network.
nodes communicating via noiseless channels to acquallager proposes an algorithm that can be used while
each other’s data. In [1], the authors consider a poirguaranteeing a desired probability of error. He exhibits
to-point network of finite-rate noiseless channels. Than upper bound that is a constant multiple of the bits
network connects one set of nodes, the source nodibsit must be transmitted per node. Recently, it has been
to another, the destination nodes. Source nodes needtiown in [12] that this algorithm is optimal. The authors
transmit their data sequences to the destination nodesaduce an algorithm-independent lower bound that is of
The admissible rate region is characterized. the same order as the upper bound.

Recent work investigates a variation on these informa-Several formulations and results relevant to compu-
tion theoretic formulations. Nodes exchange informatidation in wireless sensor networks can be found in a
for function computation rather than transmission afetailed survey by Giridhar and Kumar [11].
data. For example, in [25] there is one encoder, aln summary, our formulation is similar to that of
noiseless finite-rate channel and a decoder with sidistributed computation, but our approach is similar to
information. The authors determine the compression rdakat of information theory. We use information theoretic
region so that the decoder can obtain a function of itsequalities, reminiscent of those of rate-distortion-the
side information and the source. In [24], the authomy, in a different setting with different objectives. In
investigate the “computation capacity” region so thatarticular, we have a network of nodes whose objective
a decoder receiving information via a multiple accessto compute a given function of the nodes’ data, rather
channel obtains a function of the sources. than to communicate reliably to each other their data.

Our formulation is different in several ways. FoHence, our results are quite different from results within
example, for our lower bound for summation, each nodsdther of these categories.



We capitalize on Martins’ successful use of informa- II. PROBLEM DESCRIPTION
tion theoretic tools in [17], [18], [19], [20] to character- A network consists of, nodes, each having a random
ize fundamental performance limits of feedback control... " ’ S .

. o : ._Initial condition or value. We represent the initial condi-
systems with communication constraints. In our settlnab at nodei by the random variablel:. A realization
the information theoretic approach captures fundamen ?In y fhe . ' ]

N N of the random variable will be denoted by lower-case
performance limitations that arise in the network dUle?tters x;. Let X represent the vector of all the initial
Ll A ==

to the communication constraints. The derivation %ondition random variablegX; ... X,,J'

the lower bound is independent of the communicationE h node i ired t ¢ : functi ¢
algorithm used by the nodes. Therefore, the lower boun ach node Is required to compute a given function o
enables us to characterize the effect of the netwo the |n|t'|al con_dltlons, W'f[h continuous support. 'That
structure on algorithm running time. We propose an alg'g—’ no?ez IS reqm;ed o e_st;)rratsf\j :ﬁ{"_({); and};l- ',S
rithm to compute the sum of initial conditions for node con mu<:ﬁstrandom i’igab ?' et_ _1;[8“ 1Wh nl’
exchanging information over block erasure channels. ppose at noces bscri ??ng ° s_ebl. enever i
showing that this algorithm’s computation time achieve € use a set as a subscript 1o a vanable, we mean the
the lower bound. we conclude that the lower bound YEctor whose entries are that variable subscripted by the

J— !/
indeed tight in capturing the network constraints. eﬁements of the set.. For.exa}mplé? N D_/l Yl
We assume that time is discretized into intervals, and

enumerated by positive integefd,, 2, ... }. During each
B. Organization time step, a node can communicate with its neighbors.

In the next section, we describe the problem fo_ﬁt the end pf time-slotk, nodei uses the ipformation
mulation and necessary formalities. In section Il wii nas received thus far to form an estimate Bi
state the two main results of this paper. The first resiif¢ denote this estimate by;(k). The estimates of all
is a general lower bound on the computation time fé°des in the network at the end of time f'btate
nodes communicating over a network of point-to-poiffenoted by the vectok’ (k) = [Yi(k) ... Y (k)"
independent memory-less channels. The second reétjif: the estimates of nodes in sétare denoted by
consists of two parts. First, we specialize the gene%(k) =[k) ... Ym_(k)],' . _ _
lower bound to the case of nodes computing the sumThe nodes communicate V|a.p0|nt-to-_p0|nt noisy chan-
of their initial values. Second, we describe a quantiz&§!S- The network structure is described by a graph,
algorithm for computation of sum and show that it§’ = (V. ), whereV is the set of nodes anfl is the
computation time achieves our lower bound with respe¥gt Of €dgesti, j). If node: communicates with nodg
to the dependence on the network structure. via channel with capacitC;; > 0, then (i, j) € E. If

In section IV we illustrate how network topology,(:7) ¢ £, we setC;; = 0. We assume that the graph is
through conductance, affects the computation time. \g#@nnected. _ _
compare our quantized algorithm with the popular linear W& assume that all channels in the network are inde-
iterative algorithms. The comparison suggests that fBgndent, memory-less and are operating in discrete-time.

network structures witsmallconductance our algorithm FOr €ach channel, one channel symbol is sent per unit
outperforms the popular algorithms. time. Each node generates an input for its encoder every

In section V we prove our main theorem on th& time units. For simplicity, we assume that= 1. Thus,

general lower bound. Then, we illustrate the use &Y the end of timek, each node has generated it
a novel perturbation argument, introduced in sectiGittimateY;(k), based on thé received symbols and its

\-C, to obtain a non-trivial bound when nodes comput8itial value.

any general function. In section VI-A we derive the

lower bound for the gomputation of the sum of initi%\_ Features of the Formulation

values; the computation time scales reciprocally with

conductance. In section VI-B we describe an algorithm Our formulation (and results) are appropriate when
that can be used to compute the sum via block erastfgh accuracy computation must take place over net-
channels, where the block length depends on the num!ﬁ@‘rks with severe communication constraints. These
of nodes. We derive an upper bound on its computati#iflude cases where

time; we show that this upper bound also scales inverselyl) channel capacities are diminished, due to loss of
with conductance. This establishes the optimality of our  transmission power, for example, or,

quantized algorithm for computation of summation in 2) network topology creates information-flow bottle-
terms of its dependence on the graph structure. necks.



B. Notation LetVI = {Vi(1),...,Vi(T)} be the symbols received

The differential entropy ofY” is denoted byn(y). DY the decoder of nodeup to timeT' Then,Y;(T) =
The mutual information betweeX and Y is denoted 9:(X:, V;"). To capture the limitations arising exclusively
by I(X;Y). Most of the definitions and properties wglue to the communication structure, in deriving our
will need can be found in texts like [5]. When indicatedower bound, we assume no limits on the computational
we will need to use the most general definition dtapabilities of the nodes, such as limited memory or
mutual information. It can be used when the randoRPWer. SO, we make no assumptions gnexcept that
variables are arbitrary ensembles, not necessarily bétis @ measurable function.
continuous or both discrete [26, p.9]. The conditional Similarly, the messages that the node communicates
mutual information is similarly defined; see [26, Ch. 3With other nodes are a function of the node’s initial
Finally, when the argument ih(-) is a vector of length condition and messages it has received in the past. Let
n, for example,Y = [V1,...,Y,]’, it is interpreted as U be transmitted by the nodeencoder. The message
the joint differential entropyh(Yi,...,Y,). Similarly, transmitted byi in the /'* channel useU;(l), is a
when the arguments in(-;-) are vectors of length function of the received messages at that nd@é‘,l
n, for exampleY and X, it is to be interpreted asand its own dataX;, Ui(l) = v;(V} ™", X;). We make

IV, .. Y X1, ., Xy). no assumptions on);, except that it is a measurable
function. The notation of this paragraph will not be

1. M AIN RESULTS needed until Appendix A.
We consider two mean square error criteria. The

This section contains the formal statements of our . .

, , . . ._Qperator|| - || is to be interpreted, when the argument

main results. The first result, stated in section IlI-A is a 5 5
. IS,a vectorY, as||Y|]* = > Y~

general lower bound on computation time. The second ~ : .

result, stated in section Ill-B establishes the tightne8d- E(|[Y/(T) —Y|%) < 527, and,

of this lower bound in the specific scenario of th&2. E(Y;(T) —Y;)?2 <272 forallic {1,...,n},

distributed computation of a sum. This involves, firstyherea e RT\{0}.

specializing the lower bound of section Ill-A to the case The first criterion requires that as the number of nodes
where nodes compute a linear combination of the initificreases, the per node error is also smaller. It suggests
values in the network. Second, it involves developingtfat as the number of nodes, increases, we require the
quantized algorithm for nodes computing the sum whil@ean square errors at each of the noﬂé?i(k:) —Y;)?
communicating over erasure channels and showing th@ldecrease like /n. This criterion is appropriate if, for

the computation time of the algorithm matches the lowgkample, the initial values at the nodes are independent

bound for summation. and each node is to estimate the average of the initial
values in the network. As the number of nodes increases,
A. Result I: A General Lower Bound the variance of the average decreases. In circumstances

The first main theorem of this paper provides a lowdfhere this does not happen, the second criterion may be
bound to computation time as a function of the accurafjPre appropriate. o _
desired, as specified by the mean square error, and théN€ “computation time” is the first time at which the
uncertainty in the function that nodes must learn, ggsfired performance criterion holds. In the first of our
captured by the differential entropy. main results, we seek a lower bound on the computation
We place few assumptions on how the nodes CO,t[i‘l:pe,_T, that holds _if the_ Qesired mean square error
municate and compute their estimates. Namely, eagfferion, R1 or R2, is satisfied.

node can use only its own initial measurement angheorem I11.1. For the communication network de-
past received messages. But, we do not specify h@wibed above, if at time, T, the mean square error is

the node makes its computation or exchanges messagesn interval prescribed by, E(Y;(T) — Y;)? < 27,
Hence, our lower bound reveals the smallest time thgk every node, thefl is lower bounded by

must elapse before it is possible to achieve the perfor- _
mance desired, over all communication and computation T > max L(5)
schemes that satisfy our assumptions. The necessity TSV Y iege Zjes Ciy’
of this time elapsing i; due to the fact t.hat_ initi%hereSC: V\S and,

measurements are distributed and communication must
occur over a network with a given topology and channel
capacities.

L(S) = h(Ys|Xs) — @ log 2me + ysy%.



This theorem captures the fact that the larger thiene until the estimates at all nodes are within a factor of
uncertainty in the function to be estimated, or the largért ¢ of f(z), with probability larger thari — é. Recall
the desired accuracy, the longer it must take for any @hat Y;(k) denotes the estimate of nodet the end of
gorithm to converge. Specifically, when the mean squaime k.

error decreases exponentially in the accuraey,the Definition 113, For = > 0 and & € (0,1), the

computation time increases linearly in at best. (&, 8)-computing time of an algorithmAg, denoted as
T55 (,6) is defined as
B. Result Il: An Optimal Summation Algorithm

Here we consider a specific scenario of the gener<';11Tcmp(6 5) = sup inf {k :

formulation described in section Il. As before, we have Y9 vERN

a network ofn nodes each having a random initial n (v
P {Yi(k 1-— , (1 z <dp.
condition denoted byX;. Each node needs to compute (Ui {Yi(k) £ [(1 = €)f (@), (L +2)f )]} }

the same separable function of the initial values. Here, the probability is taken with respect ff@(k).

Definition 11l.2. f: R™ — R is separable if there existThis is random because nodes communicate over noisy

functions f1, ..., f,, such that channels.
N As before, nodes communicate over noisy channels
flz) = Zfz(fﬂi)- that_ are mdependent_ and dlscrete-tlme memory-less.
P Besides the assumptions of section Il, we make no

additional assumptions about the channels in deriving
our lower bound for summation. Additional assumptions
will be stated where they are necessary.

The conductance®(G) captures theinformation
Remark In the algorithm we describe, nodeyenerates bottle-neckin the capacitated grapty. It depends on
samples from an exponential distribution with meaifie connectivity or topology of the graph along with the
1/fi(xz;). For the algorithm to work, we must havechannel magnitude.

fi(z;) > 0 for all 7. That is there is a constant> 0 nognition 111.4 (Conductance)The conductance of a

such that for alli, fi(z;) > c. Letc = 1. There is no capacitated grapty with edge capacitie€;;, (i, j) € E
loss of generality. And, this simplifies our expressions ofined as

where constants do not matter, as our resultsCirg.

Furthermore, we assumgc F where F is the class
of all separable functions witlfi;(z;) > 1 for all z; € R
andi=1,...,n.

- Dies,jgs Cij
We assume that nodecan computef;(z;) without ®(G)= min T ‘JSﬁ :
communication. Further, we assume that there exists a 0<|S|<n/2
constant3 such that for alli, fi(z;) € [1,B +1]. e use the word ‘conductance’ as it co-incides with
B > 0is a constant and should be treated as a problgga, notion of conductance or “Cheeger” constant for
parameter. a Markov chain based on a symmetric and doubly

In what follows, we will assume thafi(zi) = fizi-  stochastic matrixP on the network graph. We will

This causes no loss of generality as we have assumgfle more to say about conductance in section IV.
that each node can compufgz;). So, essentially, we

have relabeled; (z:)/5; with z;. A lower bound for summationConsider any algorithm,

In terms of our formulation. we have that each nodég, that guarantees that for any realization of the initial
needs to compute the samé quanfify where Y — values, with high probability each node has an estimate
Y}éithin 1 4+ ¢ of the true value ofY, at time T. The

>_j—15;X;. Here we assume that these initial values a 2 tion th el bound maintains that such al
distributed independently and uniformly in the interva " ormation theoretic lowerbound main alnscmg such al-
orithm must have a computation timeg,= 7', (¢, ),

[1,B + 1]. The assumption that the distributions ar tis | I onal t duct
uniform and independent simplifies computations in tH atis inversely proportional to conductance.

derivation of our lower bound for summation. Theorem 111.5. Nodes communicate in order for each
Let A represent a realization of the initial conditionspode to compute a linear combination of all initial values
A={X| =ux,...,X, = z,}. The performance of anin the network. Any algorithm that guarantees that for
algorithm, AG, used by the nodes to compute an estimagdl i € {1,...,n}
of f(z) = >_;_, Bjz; at each node, is measured by the N
algorithm’s (¢, §)-computation timeZ'37"(e, d). It is the p (!Yz‘(T) —Y|< EY‘A> >1-09,

)



must have tight in capturing the effect of the network topology on
1 1 computation time. Conversely, the algorithm’s running
z ’ time is optimal with respect to its dependence on the
(G 24 1%
(@)~ Be?+ 5" Ko network topology, as captured by the conductance.

2
n

where, Be? € [O, 1- % — /15} , k IS a constant, and

IV. CONDUCTANCE: CAPTURING THE EFFECT OF

$C)= min > iese 2 jes Cij ToPOLOGY
- Scv |S| ’ The conductance of a grap(G), is a property that
0<|Sl<n/2 captures the bottle-neck of information flow. It depends
If C;j = C;; then®(G) = (G). on the the connectivity, or topology, of the graph, and the

_ o ) _ _magnitudes of the channel capacities. The more severe

Again, the probability in this theorem is taken withpe network constraints, the smaller the conductance. It
respect to the measure 6f(T'), conditional on4, and s aiso related to time it takes for information to spread
induced by the randomness due to communication oygry network; the smaller the conductance, the longer it
channels. takes.
An upper bound for an algorithm for summation over ®(G) is related to the standard definition of con-
block erasure channelsNext, we provide an algorithm ductance utilized in Markov chain theory. Specifically,
that guarantees, with high probability, the nodes’ esttonsider a Markov chain with irreducible and aperiodic
mates are within the desirederror interval around the probability transition matrix? on then nodes of graph
true value of the sum. G. The P may not be necessarily symmetric or doubly

Here, we assume that nodes communicate via bloatechastic. It is, however always stochastic since it is a
erasure channels. Specifically, if a nadends a channel probability matrix. It is well known that such a Markov
symbol to nodg then it is successful with probability; chain has a unique stationary distributien= [r;] (cf.
independently of everything else. The channel symbolferron-Frobenius Theorem).
of lengthlog M bits, where we shall decide valugl In the context of mixing times of Markov chains,
later. Thus, the effective capacity of the channel betweeanductance for the above, ®(P), is defined as

nodesi andj is C;; = p;; log M. We assume that;; = S e TiDis
pji. Further, we assume that the matiix= [p;;] is a ®(P)= min w,
doubly stochastic matrix. o<\ss%vn/2 m(5)

We provide an upper bound on our algorithm’s com-
T o wheren(S) =", .

putation time. The computation time is inversely propor- 1€ . :

tional to conductance For a reversible Markov chain, the conductance is

' related to the spectral gap where =1 — Xy and A,

Theorem 111.6. Suppose that nodeé has an initial is the second largest eigenvalue of the transition matrix

condition, z;. There exists a distributed algorithtdP<¢  P. By the Cheeger bound [28]

by which nodes compute a suff{z) = >7_, 8jz;, via 1,

communication of quantized messages. If each quantized 5 &°(P) = A <20(P).

message isog M bits andlog M = O(logn), the quan-

tization error will be no more than a given = ©(2),

and for anye € (vf(z),7f(z) + 3) andé € (0,1), the

computation time of the algorithm will be

In general, theP(P) is used to bound the mixing time
of the Markov chain with transition matri®. Let (P)

be the mixing time of the Markov chain, based on the
notion of stopping time, then the following is a well

Topo(e,0) =0 <£_2 log 65—110?; anj_l logn> known bound:
(G) Q<1>— (P) — <logn>
So, settingd = L in the above bound, we have ®(P) 2(P)
! log3 Now, in our setupP is symmetric and doubly stochas-
Tome <g, _2> =0 <g_2 & ) , tic. In this case the stationary distributianis uniform.
n 2(G) That is,m; = 1/n for all i. Therefore, the conductance

The computation time of this algorithm depends ogan be simplified to
the network topology, via the conductance of the graph,
in the same reciprocal manner manifested by the lower ®(P)= min
bound. Thus, we conclude that the lower bound is oﬁq@%p

Zies,j¢s Pij

5]



In the case of oulog M -bit erasure channel®(G) = diameter is purely topological property. Generally, the
®(P)log M. In this sense, the(G) is related to the channel capacities will cause conductance and diameter
standard definition of conductance utilized in the contetd be different.
of Markov chain theory. For more details on mixing To illustrate this, consider a complete graph with

times of Markov chains see [22] and [28]. C,; = Cj; = 1/n? instead ofC,;; = Cj; = 1/n in
the above example. In this case, the diameter is still 1
A. Conductance: Two examples but the reciprocal of conductance will be Here, our

bound is a much better lower bound than a diameter
sed lower bound.
eMore generally, different edges may have different
annel capacities, in which case conductance and di-
meter will again be very different. For example, if only
e of the nodes of a complete graph had incident edges
ith capacitiesl /n? while all the rest had capacitly/n,
conductance again evaluates #0 This node creates
etge information bottleneck in the network, and this is
(a%ptured by the conductance.

Consider two networks, each hasnodes. We calcu-
late conductance for two extreme cases of connectivﬁ
shown in Figure 1. On the one hand, we have sever
topological constraints: a ring graph. Each node ma&
contact only the node on its left or the node on it
right. On the other hand, we have a case of virtual
no topological constraints: a fully connected graph. Ea
node may contact every other node in the network.

To compare the conductances for the two topologi
suppose that in both cases, the links from a given no
to different nodes are equally weighted. So, for the rinlg _ o . _
graph, letC;; = C = %’ for all i # j; for the fully B Comparison with iterative algorithms
connected graph, le€;; = C = %, for all i@ # j. A popular approach for computing a linear function
Assume that for the ring grapltj;; = 3. If the channels of the initial values is based on linear iterations. If
were erasure channels, this would be the probability thades can communicate real numbers between them in
node: makes contact with no other nodes. For the fullgach time instance, the computation time for a linear
connected graph, le€;; = 1. So, in both cases, weiterative algorithm based on a doubly stochastic matrix
have that the sum of the capacities of channels leaviRgis proportional to the mixing time of the matrix,
anodeis 1)  C;; =1 H(P) [4]. As noted earlier, the mixing tim#&/(P), hence

Using definition 111.4 and some straightforward simeomputation time of iterative algorithm, is bounded as
plifications we have that for the ringb(G) = L. For 1 log n
the fully connected graph we hag(G) = 1. For two 0P <SH(P)<O <W> -
networks with the same number of nodes, the network ] ] . ] ]
with the more severe topological constraints has smaller! N€refore, in order to obtain a fast iterative algorithm,
conductance. In general, for a ring graph, we have Must have a small mixing time{(P). The standard

B(G) = O(l) while for a fully connected graph Weapproach of finding such & is based on the method
have®(G) :n07(1). of Metropolis [21] and Hastings [13]. This method does

indeed yield a symmetric and doubly stochagtion G.
Remark In both of these examples, conductance scalesFor expandergraphs the resulting® induced by the
like the reciprocal of diameter. These examples wekgetropolis-Hastings method is likely to havie(P) =
chosen to illustrate that conductance does capture @@1). Hence, the mixing time i€ (logn), and this is
topological properties of the network. In general, hovessentiallythe fastest possible mixing time. For example,
ever, conductance and diameter are not the same. the P for a complete graph will beP? = [1/n], and
Conductance is the natural generalization that captujegas ®(P) = O(1). In this case, both our algorithm
the infomation bottleneck. Conductance depends on beghd the linear-iteration algorithms, based the Metropolis
channel capacities and topology of the network whilgastings induced”, will have essentially optimal com-
putation time. It should be noted that our algorithm,

described later, is quantized. On the other hand, a
c=1 ( c=1 ( guantized version of the linear iterative algorithm is far
from obvious and subject of recent interest and on-going
K‘ research. To the best of our knowledge, how to optimally
C C

k deal with finite-rate constraints in conjunction with the
linear iterative updates is an open question.

Fig. 1. Two ways to connect six nodes: a ring graph and a fully Certain graph topologies of interest do possges
connected graph. ometryand are far from being expanders. Examples of



these graphs include those arising in wireless sensﬁ()f/g(T);ch Xg). This is mutual information between
network deployed in some geographic area [4], [8] dhe estimates of the nodes in s8t and the initial
a nearest neighbor network of unmanned vehicles [2€bnditions of the nodes in s8t, assuming that all nodes
The simplest example of a graph with geometry is thie S have each other’s initial conditions. Leading up to
ring graph that we considered above. The Metropolifhe proof of Theorem IIl.1, we prove 3 lemmas related
Hastings method will lead to & as discussed into I(Ys(T); Xg|X5s).
section IV-A. It has®(P) = ©(1/n). But it is known In the first of our series of lemmas, we bound
that for this topology, mixing time scales lik@(n?), I(Ys(T): Xg<|Xs) from above by the mutual informa-
at the least. That is, mixing time scales lik¢®?(P) tion between the inputs and the outputs of the channels
and not1/®(P). More generally, for any symmetricthat traverse the cut.
P, the mixing time is known to be at least’ (e.g.
see [4]). Thus, the linear iterative algorithms bas
on a symmetricP have computation time that scale$
like n2. In contrast, our quantized algorithm will have -
computation time that scales with (which is 1/®(P)) I(Ys(T); Xge
for the ring. Now the diameter of the ring graphiisand
no algorithm takes less thanor no P can have mixing whereUg. is a vector of the variables transmitted by the
time smaller than this diameter. encoders of the nodes ifi and Vg is a vector of the

In general, it can be checked that the diameter ofvariables received via channels by the decoders of the
graphG is at mostl /®(P) for any irreducible probabil- nodes inS. The (1) refers to thel’* channel use.
ity matrix P. For graphs with bounded degree and with

geometry, theP induced by the Metropolis-Hastings In the second lemma, we bound from above
method has a diameter that scales likab(P). By a [(Vs(0); Us:()]Us(1)) by the sum of the capacities of

graph with geometry, we mean a graph with ponnomlarI]e channels traversing the cut.

growth: for any given node, the number of nodes withibemma V.2. Suppose a network is represented by the
distancer from that node scales a®(r?) for some graphG = (V,E). The edges of the graph represent
fixed constantd. Diaconis and Saloff-Coste [7] havechannels with positive capacity. If the channels connect-
established that for graphs with geometry the mixingg the nodes are memory-less and independent, then,
time of any symmetric doubly stochasti¢ scales like
at leastD?, where D is the diameter of the grap&'. I(Vs(1); Us=(D|Us (1) Z ZC”
Therefore, linear iterative algorithms will have computa-
tion time that scales likeD?. In contrast, our algorithm  The proof of this lemma makes apparent the value of
will have computation timé /®(P) which will be equal the conditioning in the mutual information terms. This
to diameterD for a P given by the Metropolis-Hastingsconditioning is equivalent to assuming that all nodes in
method. S have access to all information that is available at the
In summary, our algorithm will provide the best poshodes of the sef, including information abouXg. In
sible computation time scaling with respect to grapthis way, we capture the information that is traversing
structure for both expander graphs and graphs withe cut, without including the effect of information
geometry. exchanged between nodes in the same set.
Finally, in the third lemma, we bound from below
V. PROOF OFTHEOREMIII.1 the termI(Ys(T); Xg:|Xs). We show that this term is
In this section, we present the proof of Theorem lll.hounded from below by the information that must be
The core idea is to characterize the information flow béommunicated from the nodes 6f to the nodes ofS
tween arbitrary “cut-sets” of the network. A cut dividesn order for the nodes of to compute their estimates,
the network into two sets§ andS¢ = {1,...n}\S. Sup- I(Ys(T);Ys|Xs). We then bound this from below by
pose that nodes 1 t@ belong to sef and nodesn+1to an expression that involves the desired performance
n belong to sef“. So, the estimates of the nodes in Set criterion and the desired function.
attimeT areYg(T) = [Y1(T) ... Y,(T)]. The initial For the mean square error criterion R1, we have the
conditions of the nodes in sefsand S¢ are denoted by following lemma.
Xs=[X1 ... Xp] andXse = [Xpnpr ... Xl Lemma V.3. If E(||Y(T) —Y||?) < 82~ then
The quantity that will play a central role in the R
proof of Theorem Ill.1 is the mutual information term, I(Ys(T); Xge| Xs) > L(S)

Iéemma V.1. For a given cut in the network, and corre-
spondmg cut-set§“ and S,

Xs) < ZIVS ); Us=(1)|Us (1)),

€S jes
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where, (@) that is,I(W;Y,U|U) = I(W;Y|U), can be veri-
15| 15| o fied by the chain rule for mutual information:
L(S) = h(Ys|Xg) — — log 2mef + — log |S| + | S| =,
2 2 2 I(W;Y,U|U) = I(W;Y|U) + I(W;U|U,Y)
and, |S] is the size of the se$, specifically,|.S| = m. = I(W;Y|U),

The lower bound involves two terms. These are (1) the becausd (W; U|U,Y) = 0.
desired accuracy in the nodes’ estimates, specified by t&ﬁ follows by tr;e de{ta processing inequality, because
mean square error criterion, and (2) the uncertainty in the Y = fi(X).
function to be estimated’s, quantified by its differential L=
entropy. The larger the desired accuracy, the largenthe
in the mean square error criterion. This implies a larg
lower bound on the information that must be conveyed.
iAIso, t;u; Ia;}ger tze uncertairr:tyI in thehfur(;c;fion to Iloe I(?s(T);Yles)
earned by the nodes in sgt the larger the differentia -
entropy term. Hence, the lower bound is larger. =h(Ys|Xs) — h(Ys[Ys(T), Xs)

Second, we obtain a lower bound bﬁAfs(T); Ys|X5s)
terms of the desired mean square criterion. We have
e following series of inequalities.

For the mean square error criterion R2, we have the  =h(Ys|Xs) — h(Ys — Ys(T)|[Ys(T), Xs)
following corollary. (c) ~
_ _ >h(Ys|Xs) — h(Ys — Ys(T)) 1)
Corollary V.4. If, for all i € {1,...,n}, E(Y;(T) —
Y;)? < 27 then, where, (c) follows because conditioning reduces entropy.
~ _ Now, because the multivariate Normal maximizes en-
I(Ys(T); Xg:[X5) = L(S5), tropy over all distributions with the same covariance,

where L(S) = h(Ys|Xs) — 5l log 27e + |9]4. R 1
RS : hYs(T) = Ys) < 7 log(2me)™|Z], )

When, for alli, E(Y;(T)—Y;)? < 2~%, we again have 2

a lower bound that depends on the desired accuracy avitere,Z is a covariance matrix whose diagonal elements

the uncertainty in the function to be estimated. Howevene Z;; = Var(ffi(T) —Y;), and|Z| denotes the deter-

L(S) is smaller thanL(S) due to the weaker errorminant. Recall thaf is the set containing nodes 1 #,

requirement of R2. so it has sizen. Also, Ys(T) — Yy is a vector of length
The proofs of Lemma V.1 and V.2 are in Appendix Am. So, Z is anm by m matrix. Now,

In the next sections, we prove Lemma V.3 and Corol-

lary V.4. Then, we prove Theorem lIl.1. 1Z| (%) HVar(lA/i(T) ~Y))
i=1
A. Proof of Lemma V.3 and Corollary V.4 < ﬁE(?(T) v
Recall that the lemma stated that E(||Y (T) — et ' '
Y||?) < 327 then (e)

IN

27\
(25 G
m
Here, (d) is due to Hadamard’s inequality [5, Ch.9]. To

S 5 see (e), we have the following proposition.
L(S) = h(Ys|Xs) — % log 2mwef3 + % log | S|+ |S|%,

I(Ys(T); Xgc| Xs) > L(S)

where,

Proposition V.5. For~ > 0, subjectto}_;" , y; < v and

and, |S] is the size of the se$, specifically,|.S| = m. yi > 0, I, y: is maximized whery; =

We start the proof by observing the following.

~

> ' Now, (e) follows by settingy; = E(Y;(T) — Y;)? and
I(Ys(T); X observing that

@ (Ve(T); X|Xs) m
o > _ 2
(gl(f/ (1) YslXe) ;yz E(||Ys(T) —Ys|%)

Xs)

< B(|IY(T) - Y|

where < p27°,
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where the last inequality follows by the assumption dhe same random variable, for example if both Af&'),
our lemma. thenh(Ys|Xg) will be —oc.
Finally, using (3) and (2), we bound (1) from below
and obtainLZ(S). m _ )
Proof of Corollary V.4: Recall that in this corollary, ~But, our technique and lower bound can still be used

we had the weaker condition that for alE {1,...,n}, In situations where all nodes need to learn the same
E(Y;(T) - Y;)? < 2-°. In this case, we show that Wefunctlc_)n_ of the initial condltlon_s. In order to hgve a
have the smaller lower bound, non-trivial lower bound, we modify the problem slightly.
g We introduce auxiliary random variables associated with
L(S) = h(Ys|Xs) — %log2ﬂ'e—|—|5|%. the nodes of setS¢, to be learned by nodes ii.

R This enables us to obtain a non-trivial lower bound for

To see this, observe th#t(Y;(T') —Y;)? <27 implies the modified problem. This is also a lower bound for

E(||Ys(T) — Ys||?) < |S|27. So, replacings in L(S) the original problem. By proper choice of the auxiliary

of the previous lemma byS| yields the desired result.random variables, the lower bound of the modified
B problem can be made as large as possible, and hence

the best possible approximation for the lower bound of

B. Proof of Theorem III.1 the original problem. This procedure is illustrated in

The proof proceeds in several steps. First, as shov'fllrgi]ure 2

in Lemma V.1, for a given cut in the network and

corresponding cut-sets® and S, The aforementioned technique will be used in the
R T next section. In the examples below, we demonstrate
I(Ys(T); Xse| Xg) < ZI(VS(Z);USC(Z)\US(Z)), (4) the computation ofh(Ys|Xs) when we introduce the
I=1 auxiliary random variables.

where Ug. is a vector of the variables transmitted by

the encoders of the nodes Bf and Vg is a vector of

the variables received via channel by the decoders of theample V.6 (The Solution) Let nodes{1,...,m},

nodes insS. m < n/2, belong to setS, so thatYs = [V; ... V,,]/
Second, by Lemma V.2, because we have assumed thet Y, = f(X) andY; = f(X) + asej, for i €

the channels connecting the nodes are memory-less &pd .., m}. One can think of;, being associated with

independent, a node in setS¢, that is,j; € {m +1,...n}. So, node
j;'s initial condition would be(X; ,¢; ).
Vs Us- OIUs) < 33" Cy. (6) (X063
i€Se jeS
Third, we combine equations (4) and (5) with Corol- Furthermore, we assume thats separable, meaning
lary V.4 to obtain f(X) = fs(Xg) + fs-(Xge). Finally, we assume that
L(S)
T> , (6)
ZiESC Zjes Cij
Finally, we have that
L
T2 e s S ) C;,’
€8¢ £ajes =l Original Problem Modified Problem
because (6) holds for any cum. E@AT) — (V +acy)?
V. _ V)2 i - ae;
EX(T)=Y)* <p|3> <p+a*Var(e)

C. A Technical Difficulty and its Resolution

Information

Making use of the lower bounds derived above in- % % %&?ﬁ%ﬁe
volves computing the differential entropy of the random

. . o T >? T > Lower Bound
variables to be learned in the network, specifically,

— / 9,

h.(YS’XS)’ where Ys L Y1 ... Y. I.f the l'/;S are Fig. 2. Diagram illustrating the use of the information thetic
different random variables, then the differential entroR¥chnique to obtain a lower bound in a situation where allesod
term is well-defined. However, if two entries &% are learn the same function.




12

the X;'s ande;’s are mutually independent. Then, Now, if we assume that eacky; is uniformly distributed
in the interval between 1 an8 + 1, X; ~ U[1, B + 1],

h(¥s|Xs) then,
=h (fs:(Xs¢), fse(Xge) + azejs, h(B8;X;) = log |3;|B.
ooy fse(Xge) + amej, | Xs)
(a) S0,
:h(fSc (Xsc)a fSC (XSC) + A2€j,,
ooy fse(Xge) + amej,,) WD BiX; > 1y B> 8
o m Ji | = 5108 J
. jese jese
Dn(fs-(Xs:) + 3 hlaies) . )
i=2 =log B + 3 log Z B;. (8)
jese

(C) m m
Sh(fs:(Xse)) + Y hlej) +log [ T lail,
i=2 i=2

Finally, we evaluate the lower bound of Corollary V.4

for this scenario. Recall that we had
where,

(a) follows because we have assumed thatXhie and L(S) = h(Ys| Xg) — 1] log 2me + ,S,E7
¢;'s are mutually independent, 2 2

(b) follows by the chain rule for differential entropy,and |S| = m. Using equation (7) together with the
and again using the fact that th€,’s ande¢;’s are inequality of equation (8), we have that
mutually independent,

(c) follows using the fact thab(asej,) = h(ej,) + B (Zjesc 5?)51‘[;’;2;%\ m
log |a;|, as shown in shown in [5, Ch.9]. L(S) > log N +5 (a+1logn).
In the next example, we assume that the functfas €)

a linear function and that the auxiliary random variables | summary, our use of basic information theoretic
are independent Gaussian random variables. For thisiinitions and inequalities has led to a lower bound that
scenario, we then obtain the expression for the lowge have applied to a formulation for distributed function
bound of Corollary V.4. computation. The lower bound on information consists of
Example V.7 (Using the Solution for a Linear Functian) @ term that arises due to the mean square error criterion
In addition to the assumptions in Example V.6, lind a term due to the function that is to be estimated.
F(X) = 37, 8;X;. We assume thatj,,....c;, are Using techniques of network information theory, we have

independent and identically distributed Gaussian rand&oWn how the bound on information can be used to
variables, with mean zero and variange Then, the ©OPtain a lower bound on computation time time.
differential entropy ofe;, is h(ej,) = % log 2men.

So, substituting in the expression from Example V.6,VI. A TIGHT BOUND: COMPUTATION OF THE SUM

we have that VIA ERASURE CHANNELS
m—1 In this section, we use the techniques of the previous
W(Ys|Xs) =h | > BiX; | + 5 log2men section to find a lower bound on computation time when
jese nodes compute a sum. We present a distributed algorithm

m for computation of the sum over block erasure channels
+log[Jlail- () and provide an upper bound for the run-time of the

=2 algorithm. Both bounds depend inversely on conduc-
tance, which captures the limitations due to the network
topology. Therefore, we conclude that our lower bound
is tight in capturing the effect of the network topology

To evaluateh (Zjesc piX;), we use the Entropy
Power Inequality, namely, for independeXit’s,

92h(Ejese BiXi) > Z 22h(B;X;) via the conductance.
jese
which implies that A. The Information Theoretic Lower Bound for Summa-
tion
h D B8X, | = %log > 2B In this section, we provide the proof of Theorem II1.5.

jese jese We will use the techniques that we have developed



in section V. In particular, we will use the results of
Examples V.6 and V.7, namely equation (9).
Proof of Theorem III.5:

Recall thaty” = >°7_, 3;X;. Suppose that we have
any realization of the initial conditionsd = {X; =
x1,...,X, = z,}. We are given an algorithm that
guarantees, for every suchAreaIization, that at time
each nodej, has an estimate;; (7)), of Y: 370, B;x;.
Furthermore, for this algorithm, the estima‘f/@(T) is
within an e-interval of the true value oY, with desired
probability. That is,

p (|2(T) Y| < z—:Y‘A) >1-46  (10)

The proof proceeds in several steps. The proofs for
steps 1 and 2 follow this proof.
1) Any algorithm that satisfies the probability condi-
tion of equation (10) must satisfy, for small enough
0, @ mean square error criterion:

E(Yi(T) - Y)? < 2E(Y?) + k.
2) LetY; =Y andY; =Y +aej, fori € {2,...,m},
wheree;,, ..., ¢€;,, are independent and identically

distributed Gaussian random variables, with mean
zero and variance. Let thee;,’'s be independent
of the initial conditions,X;. Then,

E(Y,(T) - Y;)? < 2E(Y?) + a®n + k.
3) Next, letS* and (S*)¢ be the sets for which
> igs,jes Cij
S|
is minimized, and assum€’ is the set with smaller
size, [S*| < . For purposes of this proof, we
enumerate the nodes in s&t from 1 to m. Then,
let Y. = [Y1 ... Y], where theY;'s are those
of Step 2.
4) Now, we can apply our information theoretic in-

equalities to this set-up. We think af;, being
associated with a node in se$*)c, that is, j; €
{m+1,...n}. So, nodej;’s initial condition would
be (Xj,,¢;,). Denotele;, ... € ] by e. Using the
derivations of section V, we have that

T Z > Cij > I(Ys(T); X(54) | X5+)
)e jeS*

@ I(Ys-(T); X(g+ye, €| X5-)

> I(i}s* (T), YS* Xs*)
> L(S"),

where, (a) follows becausé- (T) is the vector of

estimates produced by the algorithm, and depends

5)

6)
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on the initial conditions X;’s, while thee;,’s are
independent ofX;’s.
Recall that

L(S*) = h(

Note that from Step 2, we have that®
e2E(Y?) + a’y + ké. So, we havea
—log(e?E(Y?) + a’n + K6).

Next, we computé(Ys-|Xg-) given the assump-
tions of our formulation. Recall that we have
performed these computations in Example V.7. We
obtained the following:

S* a
Yoo | Xg<) — | 5 | log 2me + |S*|§

1

B (Y5 62) " la"?

L(S*) > 1
( )_ 8 2men
|S™| n
1
T Og52E(Y2)+a2n—|—ﬁ5 ’
where we have substituted ina =

—log(e?E(Y?) + a’n + K9).

Finally, we make the appropriate choice of our
parametersa and n. Assume, without loss of
generality, that

2\ 2
<Zjesc BJ) > 1’
2me -

otherwise, we can just scale our choicesdand
7. Leta = (%) , then,

S (og 1
2 ezE(yz)+ T8

Next, letn = B. Then, because: — 1 < 2 5

Nz
2 J—
e (1)

Observe thatF(Y?) < M B2, where M is some
integer. So,

L(5*) >

2B(Y?)
n
Combining with Step 4, we have that

D DIDBIIEE e

i€(S+)e jES* e2MB + (35)

N2
2<2MB =) .
+a° <e + B

+ 50
Rearranging, we have that
1 1 1

T>— lo 5 .
T 2 Xicste 2jes+ Cis & e2MB + (%); + 50

15|
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Here, we must have £2M € Next, when we condition onl, Y is a fixed number. So,
0,4 (1-(5)" — né)) , in order for the we have we have that

lower bound to be positive. E ((?(T) - Y)2‘A)
innally,zbecause we had chose oit such that ‘
ic(sye 2ojes Cii s L oo .
% is minimized, we have that :/O P ((YZ-(T) Y2 > x‘A) da
e’y .
< Sy Yyes C =[P (F@) -2 2 afa) ds
P(G) = 5 . o
+/ P ((2(T) YR x(A) dz
. 2 ;2Y2
<e?Y* + ik,

Remark We show in the next section that our Iowe(/vhere the last inequality follows
bound is tight in its reciprocal dependence on the

o for the first term, because
conductance term. So, for fixee, we have a scaling PTAT) — V2> 2l A) <1 d
law that is tight in the case of severe communication <( (1) =Yy 2z ) = 4, and,
the second term, because

constraints, such as very small channel capacities due t8 ~
low transmission power. P ((Yi(T) ~Y)? > x‘A> < ¢ for all
In the case of increasing number of nodes, howeRer, T € [£2Y2,90). We have also assumed that
must increase exponentially with for our lower bound for every A, (Y;(T) —Y)* is bounded from above.
to remain valid. The requirement is a by-product dfinally, we have that
using a formulation based on random variables together = 9 - 9
with Information Theoretic variables. This requirement EY(T) YY) =E (E <(Yi(T) —Y) ‘A)) )
ensures that as increases, our bound properly captureghere the outermost expectation is with respect to the
the number of bits that are transferred. joint distribution of the initial conditions. n
When we consider sums of independent identically ~Proof of Step 2:We show that ifE(Y;(T) —Y)? <
distributed random variables, Central Limit Theorem®E(Y?2)+ x4, then E(Y;(T) - Y;)? < e2E(Y?) +a2n+
type arguments imply that as the number of the rard, whereY; = Y + ae;,, and¢;, has mean zero and
dom variables increases, there is some randomness lgatiancen and is independent of all th&;’s.
because we know that the distribution of the sum must
converge to the Normal distribution. However, in a set- E(Y,(T) - Yi)*
ting where the initial conditions are fixed values, as in theE( (T
case of the algorithm we describe below, the addition of Y(T
a node clearly will not reduce the information that nee
to be communicated in the network. To counterbalaneeE( (T
the probabilistic effects, we need to hakeincrease as (
the number of nodes increases. i

) —
) —
)Y)
) -
) —

( T

where,

Next, we complete the proof of Theorem Iil.5 by(a) follows becauséAfi(T) is the estimate produced by

proving the statements of Step 1 and Step 2. . o E .
fof S _ h hat f I the algorithm, and depends on the initial conditions,
Proof of Step 1: We show that for small enough X,'s, while ¢;, is independent ofX,’s, and,

Yi(T) = Y| < 5Y‘A> > 1 -9 implies E(Y;(T) = (b) follows because;, has mean zero.
Y)? < e2E(Y?) + Kd. -
First, observe that,

Y)?+

B. An Algorithm for Summation via Block Erasure
3 (y?i(T) Y| > gy(A) <6, Channels
Next, we describe the algorithm that achieves the
lower bound. That is, we exhibit the reciprocal de-
pendence of the algorithm’s computation time on the
. conductance of the graph. Because the function that is
p ((Y,—(T) —-Y)? > EZYQ‘A) <9, to be computed, the sum, is relatively simple, and the

is equivalent to
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algorithm requires little computation overhead, the limit requires nodes to exchange real numbers. As such, the
tations that arise are due primarily to the communicatiaigorithm is not practically implementable.
constraints. In fact, the dependence on the algorithm'sBelow, we quantize this algorithm, so that instead of
run-time on conductance arises due to the fact that thending real-valued messages, nodes communicate an
algorithm uses an information spreading algorithm asappropriate number of bits. In the process of quantiza-
subroutine. Information spreading depends reciprocatipn, we determine the needed number of bits; for now,
on conductance: the more severe the connectivity came call itlog M. Now, nodei can send tg alog M-bit
straints, the smaller the conductance and the longemiessage each time it makes contact. Again, the contact
takes for information to spread in the network. between the nodes is random: nodeontacts node
The algorithm that we describe is based on an algeith probability p;;. This is equivalerftto nodei com-
rithm by Mosk-Aoyama and Shah [23]. In section VI-BInunicating toj via alog M-bit erasure channel, where
we discuss this algorithm and its applicability to our forlog M bits are sent noiselessly with probability;, and
mulation. In section VI-B2, we describe the contributionthere is an erasure otherwise. In this case, capacity of the
of [23] in the design of an algorithm for distributed comehannel isC;; = p;;log M, so, ®(G) = ®(P)log M.
putation of a separable function, in a network of nodé&e will show that the effect of communicating bits
using repeated communication of real-valued messagestead of real-valued messages is to slow down the
In section VI-B3, we describe the algorithm when theriginal algorithm bylog n; however, the dependence of
communicated messages are quantized, and analyze komputation time on conductance is unchanged.
the performance of the algorithm changes relative to theAnother difference between our formulation and the
performance of the unquantized algorithm of [23].  one in [23], is that we assume that the initial conditions
1) Background: The algorithm that we describe islie in a bounded interval[l, B 4 1], whereas in [23]
based on an algorithm by Mosk-Aoyama and Shah [23here is no upper bound. We need this assumption to
In that formulation, each node has a fixed real-valusthow that our algorithm will also guarantee that with
initial condition, that is bounded away from zero. Nodesome specified probability, all nodes have an estimate of
compute a separable functidnof the initial values in the function value within a desiredinterval of accuracy
the network. The algorithm guarantees that with sonagound the true value. However, due to communicating
specified probability, all nodes have an estimate of tlaefinite number of bits¢ cannot be arbitrarily close to
function value within a desired-interval of accuracy zero.
around the true value. In [23], each node may contact one~inally, we recall that in deriving the lower bound of
of its neighbors once in each time slot. If the edge/) the previous section, we had assumed a joint probability
belongs toF, node: sends its real-valued message tdistribution on the initial conditions. However, we will
node; with probability p;; and with probabilityp;; sends describe the algorithm for fixed initial-values at the
its message to no other nodes{ifj) ¢ E, p;; = 0. nodes. If the initial conditions were in fact distributed
The algorithm of [23] is a simple randomized algoaccording to some joint probability density function,
rithm that is based on each node generating an expont® algorithm that we describe below can be used for
tially distributed random variable with mean equal to thany realization of the initial values to guarantee, with
reciprocal of the node’s initial value. The nodes samptbe desired probability, the-accuracy criterion. So, the
from their respective distributions and make use of agorithm satisfies the “if” condition in the statement
information spreading algorithm to make computatior®f Theorem I11.5. As such, the computation time of the
and ultimately obtain an estimate of the desired functioalgorithm we describe below must be bounded from
The advantage of this algorithm is that it is completelgelow by the expression in Theorem II1.5 which includes
distributed. Nodes need not keep track of the identity ¢fe reciprocal of conductance.
the nodes from which received information originates. We provide an upper bound on the run-time and show
Furthermore, the algorithm is not sensitive to the ord#rat, indeed, it does scale inversely with conductance.
in which information is received. In terms of its perThus, the contribution of this work includes the non-
formance, the algorithm’s computation time is almogtivial quantized implementation of the algorithm of [23]
optimal in its dependence on the network topology, a&nd its analysis. As a consequence, we obtain the fastest,
the computation time scales inversely with conductance
of the matrix representing the communication topolog 2In [23], it is assumed that each node can contact at most one

. . . ther node; but it can be contacted by more than one nodeserund
The drawback of the algorithm in [23], however, is th ur independent erasure channel model, each node can toriee

than one node. However, for our purposes, this is only beakfis
A linear function of the initial conditions is a separabladtion. it results in faster information dissemination.



16

in terms of dependence on network topology, quantizéd’;, ..., W;) and needs to obtaill/ = (W1,...,W,),
distributed algorithm for separable function computatiowhere W, = min;—; __, W;. To computelV, each node

2) Unquantized Function Computationn [23], a maintains an r-dimensional vectai! = (w!,..., @),
randomized algorithm is proposed for distributed compu¢hich is initially w¢(0) = W?, and evolves such that
tation of a separable function of the data in the networl’(k) contains node’s estimate ofi/’ at time k. Node
so that with some specified probability, all nodes have arcommunicates this vector to its neighbors; and when
estimate of the function value within the desired intervidl receives a message from a neighbaat time k& con-
of accuracy. The computation algorithm assumes thatning @’ (k~), node: will update its vector by setting
the nodes exchange real-valued messages wheneve! @) = min(w(k™),w] (k7)), for L =1,...,r.
communication takes place. The algorithm depends on Denote withD the information spreading algorithm,

« the properties of exponentially distributed randordsed as a subroutine to disseminate messages and com-

variables, and, pute the minimum. The performance of this algorithm is
« an information spreading algorithm used as a suaptured by thé-information-spreading time/’;"(4), at
routine for the nodes to communicate their megvhich with probability larger tharl — § all nodes have

sages and determine the minimum of the messaga¥messages. More formally, 16} (k) is the set of nodes

a) The Algorithm:The following property of expo- that have node’s message at timé, and V' is the set
nential random variables plays a central role in the desighnodes, the definition of7>”(4) is the following.
of this algorithm. LetW!,... W™ be independent ex- pefinition VI.1. For a given§ < (0,1), the o-
ponentially distributed random variables, whéf€ has information-spreading time, of the algorithi, 75(5),
mean1/6;. Then, the minimumW* = min,—;__, W*, g
will also be exponentially distributed, and its mean is <or .
/S 6. T(6) = inf{k : P(U, {Si(k) # V}) < 6.

Suppose that node has an initial valued;. Each  ag argued in [23], when an information spreading

» .
node needs to compufe’;_, 6;. Node i generates an 4qrithmp is used where one real-number is transferred

exponential distribution with mean/0;. It then draws poyeen two nodes every time there is a communica-
Py A
a sample,W* = w', from that distribution. All nodes o, then with probability larger tham — &, for all 4,

do this. They exchange their samples so that each n%t k) — W whenk = rTSP(5), because the nodes
= = rTY'(6),

knows every sample. Then, each node may compute f}8,54ate in the network an evolving estimate of the

minimum of the samplesy® = mini—1, . w". wW* IS inimum, anr-vector, as opposed to the r-vectors
a realization ofilW*, which is exponentially distributed, Wi W
W

with mean1/3 ", 0. _ c) The Performance:The first of the two main
For the algorithm proposed in [23], the nodes performeorems of [23] provides an upper bound on the com-

the above procedure on samples from each nodey ing time of the proposed computation algorithm and

rather than one. That is, nodedraws independently o gocond provides an upper bound on the information

samples from its exponential distributioy, ..., . Sﬁ)reading time of a randomized gossip algorithm. These

The nodes exchange information using the informatiq eorems are repeated below for convenience as our
spreading algorithm described below. Ultimately, ea(‘rgsults build on those of [23]

node acquiredVy, ..., W, where W;" is the sample-
wise minimum, W = min;—;,__, Wli, Then, for its Theorem VI.2. Given an information spreading algo-
estimate ofy."_, 6;, each of the nodes computes rithm D with §-spreading timeT’'(6) for 6 € (0,1),
r there exists an algorithm4 for computing separable

m- gugc(t(i)oq)sf € F such that for anye € (0,1) and
Recall that asr increases,%Z}":1 W} approaches the ’ 5
mean of W}, namely1/> " , 6;. It is shown that, for T{™,0) =0 (5‘2 log ed 1T <§>> .
large enoughr, the nodes’ estimates of ;" , 6; will
satisfy the desired accuracy criterion with the desiredIn the next section, we state a theorem analogous to
probability. this one, but for the case where the nodes are required

b) Computation of Minima Using Informationto communicate a finite number of bits.

Spreading: The computation of the minimum using Next, the upper bound on the information spread-
the information spreading algorithm occurs as followsng time is derived for the communication scheme, or
Suppose that each nodehas an initial vectodV? = equivalently, the randomized gossip algorithm. We refer
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the reader to [23] for further details on the information 1) Independently from all other nodes, noilgen-

spreading algorithm, including an analysis of the case of eratesr independent samples from an exponential

asynchronous communication. The theorem relevant to  distribution, with parametet;. If a sample is larger

this section follows. than anm (which we will specify later), the node
discards the sample and regenerates it.

2) The node quantizes each of the samples accord-
ing to a scheme we describe below. The quan-
tizer maps points in the intervad, m| to the set

Theorem VI.3. Consider any stochastic and symmetric
matrix P such that if(i,j) ¢ E, p;; = 0. There exists
an information spreading algorithn®, such that for any

0 €(0,1), (1,2,..., M)
spr logn + log 61 3) Each of the nodes performs steps 1 and 2 and
Tp(6) =0 <W) communicates its messages via the information

spreading algorithmD, to the nodes with which

3) Quantized Function ComputatiofThe nodes need it is connected. The nodes use the information

to each acquire an estimate pfx) = >, fi(z;). For
convenience, we denotg (x;) by 6;. Recall that we
have assumed that nodecan computed; without any

spreading algorithm to determine the minimum of
each of the sets of messages. Afte? " (§) time
has elapsed, each node has obtained-theénima

communication. Further, we've assumed that there exists  with probability larger thanl — 4.

a B for which: for all i, 6; € [1, B + 1]. 4) Node i sets its estimate ofy, ?Z.Q, to be the
Let y = f(z) = >.;-,0; be the quantity to be reciprocal of the average of the minima that it

estimated by the nodes. We denote the estimatg of has computed.

at nodei by YiQ. The Q is added to emphasize that this Here, » is a parameter that will be designed so

estimate was obtained using an algorithm for nodes thagt p ﬁlnzlﬂf/iQ —y| <ey}t > 1— 6 is achieved.

can only communicate quantized values using MessagRiermining how large: and M must be leads to the

consisting a finite number of bits. The randomness [ain theorem of this section.

YZQ is due to the fact that the links between the nodes

may fail probabilistically, as captured . Theorem VI.4. Given an information spreading algo-

Recall that the goal is to design an algorithm sucffhm D with d-spreading timeZ77”(4) for 4 € (0,1),
that, for large enougt, there exists an algorithm4< for computing separa-

ble functionsf € F via communication of quantized
messages. If each quantized messadegs\/ bits and
log M = O(logn), the quantization error will be no
while communicating only a finite number of bits bemore than a giveny = @(%). Furthermore, for any
tween the nodes. Again, we take advantage of the prape (vf(z),vf(z) + 3) andé € (0, 1),

erties of exponentially distributed random variables, and s

an information spreading algorithm used as a subroutine ~ T'jo (€,0) = O <5‘2 loged ' Ty <—>> :

h . . 2
for the nodes to determine the minimum of their values. ; o
a) Computation of Minima Using InformationRemark Here, we point out that the condition in the

Spreading:We use the same scheme that was describB§°rem that € (yy,yv + 1/2) reflects the fact that
ue to quantizationy;* can never get arbitrarily close

in VI-B2 for computation of minima using information ,
spreading. Now, nodé quantizes a valueu; that it to y, no matter how large is chosen.
needs to communicate to its neighbgr, where node Before proving this theorem, it is convenient to con-
i maps the valuey} to a finite set{1,... M} according sider the algorithm described above, excluding step 2;
to some quantization scheme. Thdng M bits have that is, with no sample quantization. The derivation of
to be communicated between the nodes befprean the computation time of this modified algorithm will lead
decode the message and updatetits But, when each to determining the appropriate truncation parameter,
communication between nodes lisg M-bits, the time Next, we introduce a quantization scheme and determine
until all nodes’ estimates are equallio with probability the number of bits to use in order to guarantee that the
larger thanl — & will still be k& = rTX(5). However, node estimates of converge with desired probability;
there will be quantization error. Our choice 8f will we find that this number of bitdpg M, is of the order
determine this error. of logn. The details can be found in Appendix B.

b) Summary of Algorithm & Main TheorenThe Thus, we have shown how a distributed algorithm
proposed algorithmA€ is summarized below. for computing separable functions may be quantized so

P AL (T80 sl <ep}} 2 1-4,
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that the effect of the quantization scheme will be tdesired interval. We've determined an upper bound on
slow down the information spreading dggn, while the algorithm’s computation time. We've shown that it
the remaining performance characteristics of the origin@lo is inversely related to conductance.

algorithm will be virtually unchanged, especially with  Hence, we conclude that our lower bound is tight in
respect to its dependence on conductance. This resulgdgturing the effect of the communication network, via
stated in Theorem VI.4. conductance. Equivalently, our algorithm’s run-time is
Combining the result of Theorem VI.4 with that ofpptimal in its dependence on conductance. That is, we
Theorem V1.3 yields Theorem Ill.6. Comparison with §ave obtained a scaling law for convergence time as
lower bound obtained via information theoretic inequal function of a network property, conductance. When
ities in section VI-A reveals that the reciprocal depefhe number of nodes is fixed, this scaling law becomes

dence between computation time and graph conductagigter as the communication constraints are more severe,
in the upper bound of Theorem I11.6 matches the lowgke diminished channel capacities.

bound. Hence the upper bound is tight in capturing the

A critical assumption in our work is that the network
effect of the graph conductandg (). P

is a point-to-point network of independent memoryless
VII. DISCUSSION ANDCONCLUSIONS gh_annels. In this context, therg |:_=, np |nt§rference or col-
lisions from other users. The limitations imposed by the

We've studied a network of nodes communicating oVet,mmuynication network are its pattern of connectivity
point-to-point memoryless independent noisy channelg,q the noisy channels. And in this case, the capacity of
Each node has an initial value. The objective of each gf, ., of the channels quantifies the bit constraints.
the nodes is to compute a given function of the initial Furthermore. when the function to be computed is
values in the network. We have derived a lower bound' © » W uncti pu '

to the time at which the mean square error in the nodesémple’ like a sum, limitations arise primarily due to

. L . . communication constraints, not the computational abili-
estimates is within a prescribed accuracy interval. ’ P

The lower bound is a function of the channel capa(EIiss of the nodes. In such a scenario, and when in addi-

ities, the accuracy specified by the mean square erl;I o we Iassumglnll'ilal measur(;\]mentT are mdepel?dent ?nd
criterion, and the uncertainty in the function that is t annels are block-erasure cnannels, our resufts capture

be estimated. The bound reveals that, first, the mot ¢ effect of topology and imperfect transmission on the

randomness in the function to be estimated, the Iarg%?rformance of nodes.

the lower bound on the computation time. Second, the©Our general lower bound depends on the assumption
smaller the mean square error that is tolerated, the lar§f@ft communication occurs over a network of point-
the lower bound on the computation time. Hence thel@ Point independent memoryless channels. Our lower
is a trade-off captured between computation accura@gund for summation depends on the additional as-
and computation time. In addition, the lower bound ca3pmption that the initial measurements at the nodes are
be used to capture the dependence of the Convergei‘ﬁ@@pendent. This assumption primarily simplifies the
time on the structure of the underlying communicatiofPmputation of the entropy term in the general lower
network. bound.

We've considered a network of nodes communicating Our achievability result depends on the further as-
to compute a sum of the initial values in the networlsumption that the channels are block-erasure channels,
Each of the nodes is required to acquire an estimattose block length depends on the number of nodes.
that is, with a specified probability, within a desiredn general, the algorithm we describe for summation
interval of the true value of the sum. We've appliedvill work for any network of point-to-point channels.
our information theoretic technique to derive a loweWhen the channels are block erasure channels, the com-
bound on the computation time for this scenario. We'eutation time of the algorithm depends reciprocally on
shown that wherC;; = Cj;, the computation time is conductance and hence achieves the lower bound. For
inversely related to a property of the network callethese channels, and for the summation task, our code
“conductance.” It captures the effect of both the topology relatively simple. We believe that an area for future
and channel capacities by quantifying the bottle-neck wfrk is to design optimal codes for more general point-
information flow. to-point channels. These codes will necessarily be more

Next, we've described an algorithm that can be usadphisticated than the one we have here. Some insights
in this setting of nodes computing a sum via blocto the issues that arise in coding for computation over
erasure channels, and guarantees that with the specifiadti-access channels are highlighted in the work of
probability, each of the nodes’ estimate is within thslazer and Gastpar [24].
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APPENDIXA
PROOFsS OFLEMMAS V.1 AND V.2

I(Ys(T); Xse|Xs)
In this appendix, we present the proofs of Lemmas V.1 = =1 (Yg(T), Xg; Xg:|Xs)
and V.2, that we used in section V to derive the lower (a)
bound of Theorem III.1. <IVE,... VI Xg; Xge|Xs)
=I(Vs(1),...,Vs(T); Xg:|Xs)

A. Proof of Lemma V.1

1=
N

I(Vs(1); Xse

Xg, Vs(l — 1), . ,Vs(l))

~

1
We prove the following inequality:

IS
WE

h(Vs(D)[Xs, Vs(l —1),...,Vs(1))

-~
Il

T 1
Xg) < Z ); Us-(D|Us (1)), — W(Vs(1)| Xge, X5, Vol — 1),..., Vs(1))

(A.11)

whereUg. is a vector of the variables transmitted by the
encoders of the nodes ifi and Vg is a vector of the @
variables received via channels by the decoders of the = Zh(VS(l)’X&VS(l = 1), Vs(1),Us (1))
nodes inS. =1

For this proof, we use the general formulation for — h(Vs()|Xse, Xs, Vs (l — 1),
multi-terminal networks of [5, section 14.10]. &% be -, Vs(1),Us (1), Use(1))
transmitted by the nodé encoder andV; be received o T
by the nodei decoder. We denote a sequence of length < > h(Vs(1)|Us (1)) — h(Vs(D)|Us(1), Use (1))
N transmitted byi asUY = (U;(1),U;(2), ... Ui(N)). I=1
The indices in brackets represent channel use. As be- ) T
fore, if nodes 1 tom belong to S, we have that = > I(Vs(1);Us-(D)|Us(1)).
Vs = (V1,...,Vyn). Similarly, we have thatVs(l) = =1
(Vi(l),...,Vin(1)), representing the variables receiveg\pove,
after thel-th use of the chapnel. ~ _ (@) holds by the data processing inequality, because

We assume that the estimate at nadé’;(T), is a YiT) = g:(VT, X3),
function of the received messages at that ndge,and () foliows by the chain rule for mutual information,
its own data,X;, Yi(T) = g:(V{",X;). The message (c) follows by the definition of mutual information,

I(Ys(T); Xge

—
~

transmitted byi in the I channel use{/;(1), is also a (or, in the discrete channel case, it follows by
function of the received messages at that ndgle; and Kolmogorov’s formula [26, Ch.3] and by noting that
its own data,X;, U;(l) = ¢i(V; ", X;). the entropy term is well-defined sin&&would take

As in [5], the channel is a memoryless discrete- values in a discrete set),
time channel. In our case, for convenience, wed) follows, for the first term, becausé/;(I) =
assume the channel to be continuous, represented Qpi(vil—{Xi), so it does not change the condition-
by the conditional probability distribution function ing; and the second part follows because condition-
p(v1,...,vplu,. .., u,). However, we note that the in- ing reduces entropy,
equalities below hold even in the case that the channel(ig) holds, for the first term, because conditioning re-
discrete. In this case, the random variable arguments of duces entropy, and for the second term, because the
I(-;-]-) would be arbitrary ensembles, and so we use the channel output depends only on the current input
general definition fod (-; -|-) as the “average conditional symbols,
information” in [26, Ch.3], and for the conditional en- (f) from the definition of mutual informatiorm
tropy, h(X|Y), we useh(X|Y) = I(X; X|Y). All the
equalities and inequalities below will continue to hold.
We refer the reader to [26, Ch.3] for technical details.B- Proof of Lemma V.2

The following inequalities proceed in the same mannerIn this lemma, we consider a network that is repre-
as Theorem 14.10.1 in [5]. For convenience, we repesgnted by the grapf = (V, E). The edges of the graph
the steps here using our notation. represent channels with positive capacity. If the channels
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connecting the nodes are memoryless and independenBecause conditioning reduces entropy, we have that
we show that,

I(Vs(1): Us-O[Us(1) < 3 3 €y h(Vs|Us) <D h(V;|Us).
icSe jes =1
For simplicity of notation in the rest of the proof, For every channel, given its input, the channel output

we omit the braces after the random variabl@s, For s independent of all other channel outputs. So,
example, instead ofs(/) we write Vs.

As we had in the previous lemmé&; is transmitted
by the nodei encoder. Previously, we had not specified
which nodes will receive this code letter. In our set up,
however, there is a dedicated channel between evenfombining the two inequalities, we have,

m

h(Vs|Use,Us) = > h(V;|Us:, Us).
j=1

two nodes that have an edge between them. So, the m

transmitter at node will send out codewords to each (v Ug.|Ug) < Zh(leUs) — h(Vj|Use, Us).

of the neighbors of, that is allj, such that(i, j) € E. =

We denote the encoder’s code letter froro j asU;;. _ ) )
U, represents all messages transmitted by the encoder gNoW. 1€t j = 1 and consider the expression

nodei. So,U; = {Uy;}, for all j, such that(i, j) € E. h(V1|Us) —h(V1|Us<, Ug). Recall that we have assumed
Similarly, V; is received by the node decoder. It that Vi = {Vi1,....Vii}. Also, we have thatl; =

consists of all the digits received byrom its neighbors, {Uit,-- - U"_L}' S0, Us 'W'Udes{Ulh s Umi}

all j such that(j, i) € E. If there is a link from nodej For the first dlﬁerentlal entropy term we have the

to i, the code letter from nodg arrives at the decoderfollowing sequence of inequalities.

of i through a channel. We denote the digit received at n

i from j asVj;. V; represents all the received messages; h(V1|Us) @ Zh(Vﬂﬂ/(i_l)l, Vi, Us)

so,V; = {V};}, for all j, such that(j,7) € E. i=1

In order to make our notation in the proof simpler, () &
we introduce dummy random variables. In particular, we = Zh(‘/ﬂ‘Uil)
will use U;; and V;; even if (i,j) ¢ E. Effectively, =t
we are introducing a link between nodésand j. n Z Vit Vi1, - Var, Us)

But, in this case, we se€C;; = 0. So now, we let

Ui:{Uil,...,Um} andV,-:{Vh-,...,Vm}. () n
The key to the proof is the memorylessness and < Zh(W1|Uz1)+ Z h(Vi1),

independence of the channels. That is, the output of i—1

a channel at any instani/;;(/), depends only on the

i=m+1

i=m-+1

channel input at that instant/;; (/). Because of this, we where,
have that (a) follows by the chain rule,
(b) follows because the channels are independent; so,
I(Vs; Us:|Us) < Z ZI(WJ'?UU)' given U;1, Vi is independent of all of the other
iese jes random variables,

To obtain this expression, we express the mutugt) holds because conditioning reduces entropy.
information in terms of the entropy, Next. observe that

I(Vs;Use|Us) = h(Vs|Us) — h(Vs|Us:, Us).

@) ¢
Next, we express the entropy terms using the chaiftf(V1lUse, Us) = Zh(vﬂlv(i—l)h“-7V117US%US)
rule. We assume that nodes 1+.obelong to setS and =1

nodesm + 1 to n be!:ng toS¢. Then, (:e) Xn: h(Via|Ui),
h(VslUs) = 3 h(Vy Vi1, Vi, Us), -
= where,
and, (d) follows by the chain rule,
m (e) follows because the channels are independent; so,
h(Vs|Use,Us) = Zh(‘G!‘/}—l,---7V1,USC7Us)- given U;1, Vi1 is independent of all of the other

j=1 random variables.
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Finally, combining these inequalities, at node: of the n m|n|mum of each of each of theset
of samples byW = (W1 - ..,er), and the actual
h(V1|Ug) — h(V1|Use, Us) < Z h(Vi1) — h(V;1|U;1)  minima of ther set of samples byV = (Wy,..., W,.).
i=m+1 It it is shown in [23] that by the aforementioned
" spreading algorithm, with probability at least— /2,

= > I(Via;Un).

1
- the estimates of the minima, W | will be be equal to
i=m-+1

) . the actual minimaJ¥, for all nodes,; = 1,...,n, in
Hence we have the desired expression, TTgpr(6/2) time slots.
I(Vs;Use|Us) < > I(Vigs Usy). Last, each of the nodes computes its estimatepf
ieSe jes y by summing ther minimum values it has computed,

Finally, to complete the proof, we note that inverting the sum, and multiplying by.

1(Vij; Uij) < Cij. Vi=——.
This is because, by definition, 2= Wi
C;j = max I(Vi;; Uy ), The following lemma will be needed in the proof of
where the maximum is taken over all distributions of th‘gheorem vi4.
channel inputlU;;. m Lemma A B.1. Let6y,...,0, be real numbers such that
forall i, ; > 1, y = Zl 19 andW (W1,...,W,.).
APPENDIXB Furthermore, letV = (W, ,...,W, ) and letY; denote
PROOF OFTHEOREM V1.4 nodei’s estimate ofy using the modified algorithm of
A. Determiningm this section,A/Qw.

Before we state the lemma of this section, we describeFor anyu € (0,1/2), and forl = ((1—p)y, (1+4)y),
the modified computation algorithmd %, which con- i ,;, > lnp — In (1 — =),
sists of steps 1 to 4 above excluding 2, and we introduce
the necessary variables.

First, nodei, independently from all other nodes,
generates samples drawn independently from an ex-
ponential distribution, with parameték. If a sample 1_
is larger thanm, the node discards the sample an\éYhere Y ; r 2= 1Wl

regenerates it. This is equivalent to drawing the samples Proof: First, note that whe;ﬁVz eV, W W}, we

from an exponential dlstnbutlon truncatedrat _ have that for alk, Y‘ — 13 1. So, itis sufficient
Let (W})r be the random variable representing tfe to show that re=

sample at node, where the subscript “T" emphasizes

that the distribution is truncated. Then, the probability 15 2
density function of(W})r is that of an exponentially P <; ZWz ¢ I) <e "o
distributed random variablél;, with probability density

function fiy:(w) = 0;e~%v for w > 0, conditioned on

P<U"1{Y ¢V VIV = W) i

the the eventdi = {IW;} < m}. Forw € [0,m)], Let Wy = mini—; . Wy, the minimum of in-
o dependent exponentially distributed random variables,
Fwiyn (w) = b;e - W}, with parameterd;, ..., 0, respectively, thenl;
1 —ehim will itself be exponentially distributed with parameter
and fw;), (w) = 0 elsewhere. y = ».0;. Observe that the cumulative distribution

Second the nodes use a spreading algorithmso function of W;,, P(W, < w), is identical to that of
that each determines the minimum over alfor each W, conditioned on the eved; = {N, A!}, where
set of samples] = 1,...,r. Recall that we consider A} = {W; < m}, P(W}* < w|4;), (see Appendix for
the random variables at this stage as if there was ptwof). Hence, we have that
guantization. In this case, the nodes compute an estimate

of W, = min;—q_,(W#)p:; we denote the estimate 1 e - 1 —
at nodei by W, . Furthermore, we denote the estimates \ " [t
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Now, becaus@® (AN B) < P(A), it follows that have estimate?;Q that are within a factor ol + ¢ of
y. That is,

P<%§3W7¢ﬂngp&>P«@ym PUL (T2 ¢ [(1 - ey, (1 +l}) <6
=1

, First, suppose that we may communicate real-valued
<P EZWZ* ¢1|. messages between the nodes. We analyse the_ effect of
3 quantization on the convergence of the node estimates to
thfe desiredl + ¢ factor of y. For this, we compare the

From Cramer's Theorem, see [6], and the properties 8uantized algorithmAQ, with the modified algorithm

exponential distributions, we have that e
e
1 L Note that for the above quantization scheme, for all
Pl ZWz ¢ 1| <erminlitm) i,1 and any realization of ;)7 denoted byuw},
1=1

. (w))g € [w] —v,wj +],
and forp € (0,1/2), e~m=n(+m) < o=
Next, we have thaP (N]_,4;) = (P (4;))", because
the Aq,..., A, are mutually independent. Furthermore, min (wli)Q c [ min w — 7, min wl +,y}
P(4;) > 1 —ne ™. To see this, note that the com- i=L...n i=1,...,n Ti=1,...n ’
plement of 4; is Af = {Ur {W] > m}}, and gpq,
P (W} > m) = e %™. So, by the union bound, we have

hence,

T

1 ,
" - ) min (w)g
P (AZC) < Ze—eim < ne—m7 r ;zzl,...,n
i=1 1 r ' 1 T ‘
where the last inequality follows becausg 6; > 1. € [; ;Z:Hfmn wp =7, ;izfﬁi?7nwf +7] -
Finally, putting all this together, we have that (A.12)
T
P EZ W ¢l <(—ne™) e s, Note that >~7 | min(w})q i_s a reali_zation of(Yi?)—l.
[ Now, suppose that the information spreading algo-

S

rithm, D, is used so that it (r77(6/2)) time,

n

Letting 1 —ne™™ > ¢~ ¢ completes the proof. [ | . 5
p (u;;l{v‘v 4 W}) <l (a9
B. Proof of Theorem VI.4

Before we proceed with the proof of the Theorenfyonsider the case wherg) {W = W}}, we have
we describe the quantization scheme. In step 2 of tigm Lemma A B.1 that, for any. € (0,1/2), if m =
algorithm A<, nodei quantizes the sample it draws, a relan — In (1 — e”'5),
alization of (W})r denoted byw!. The quantizet) maps L ) ) .
points in the interval0,m] to the set{1,2,...,M}. P <_ZWI ¢ <(1 _#)_7(1+#)_>> <e s
Each node also has a “codebook)—', a bijection L Y Y

that maps(1,2, ..., M} t0 {wy,, Wg,, - - , Wy, }, ChOSEN Combining with (A.12), we have that
such that for a giverny, |wi — Q~1Q(w!)| < ~. We will

denoteQ~Q(wi) by (wi)g. n SQv—1 1 1

While we do not fuétr?er specify the choice of the P< =1 {(Yi ) ¢ <(1 _M)Q -7 +M)§ +7>}
quantization pointsy,, , we will use the fact that the
guantization error criterion can be achieved by a quan-
tizer that divides the intervdD, m] to no more thanV/
intervals of lengthy each. Then, the number of messages
will be M = m/~, and the number of bits that the nodes (57;@)—1 ¢ <(1 — M)l —,(1+ #)1 + 7)}
communicate idog M. Y Y

Proof: We seek an upper bound on tHe,é)- is equivalent to

computation time of the algorithmﬁQ, the time until, N
with probability at leastl — &, all nodesi = 1,....n {(YiQ) ¢ (L4 (u+yy) y, (1- (u+y’y))_1y)}.

Iy (7 =) ) < e,

But the event
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