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Abstract—We study the use of the FitzHugh–Nagumo (FHN)
model for capturing neural spiking. The FHN model is a widely
used approximation of the Hodgkin–Huxley model that has signif-
icant limitations. In particular, it cannot produce the key spiking
behavior of bursting. We illustrate that by allowing time-varying
parameters for the FHN model, these limitations can be overcome
while retaining its low-order complexity. This extension has appli-
cations in modeling neural spiking behaviors in the thalamus and
the respiratory center. We demonstrate the use of the FHN model
from an estimation perspective by presenting a novel parameter
estimation method that exploits its multiple time-scale properties,
and compare the performance of this method with the extended
Kalman filter in several illustrative examples. We demonstrate that
the dynamics of the spiking threshold can be recovered even in the
absence of complete specifications for the system.

Index Terms—Algorithms, biological system modeling, biomed-
ical signal processing, parameter estimation .

I. INTRODUCTION

S INCE the seminal work of Hodgkin and Huxley [10], there
has been a continued interest in the dynamical systems

viewpoint of a neuron. Hodgkin–Huxley (HH), Hindmarsh–
Rose (HR) [18], and FitzHugh–Nagumo (FHN) [8], [14] models
are among the most successful dynamical models in computa-
tional neuroscience for capturing neural spiking behaviors. A
detailed explanation of these and several other models can be
found in [11]. The HH model consists of four differential equa-
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tions with many coefficients. Although this model is capable of
generating all of the neural spiking behaviors, it is highly non-
linear. On the other hand, the HR model, which consists of three
highly coupled differential equations, can exhibit all the spiking
modes obtained from the HH model without the biophysical
details [11]. Finally, the FHN model consists of two differential
equations, and is simpler than the HH and HR models, though it
is unable to exhibit important spiking behaviors such as burst-
ing. In fact, it has been noted [11] that without using a reset
or adding noise, the FHN model cannot exhibit bursting. Our
focus is on low complexity models that can exhibit most of the
neural spiking activities that can be produced by well-known
dynamical systems models (such as the HH model). Here, we
use the term complexity to refer to the presence of redundancies
in the model in addition to its capability of capturing neural
spiking behaviors, and difficulty in parameter estimation. With
this in mind, we propose an extension to the FHN model that
has time-varying parameters, under the assumption that the time
variations of these parameters are physiologically programmed
within a neuron. We also highlight the utility of the FHN model
from an estimation perspective. We present a novel parameter
estimation method that exploits the multiple time-scale feature
of the FHN model, and compare the performance of this method
with extended Kalman filter (EKF) through illustrative exam-
ples.

In Section II, we propose an extension to the FHN model
by using a time-varying spiking threshold, and show that using
this method it is possible to obtain tonic bursting, mixed mode
firing, neural spiking with nonincreasing frequency, and vary-
ing frequency neural spiking. These spiking behaviors, which
are observed in the thalamus and the respiratory center, can be
obtained with higher order models, but not with the original
FHN model. In Section III, using the fast–slow dynamics of
the FHN model, we propose an algorithm, which we refer to as
the Fast-Slow Dynamics (FSD) Estimation Algorithm, for es-
timating the spiking threshold in the FHN model. We compare
the performance of FSD and EKF for the fixed parameter case
through illustrative examples. The examples demonstrate that
the FSD method outperforms EKF when the sensor noise vari-
ance is large or when the sampling rate is low. Then, we extend
FSD to the case when the spiking threshold is varying slowly
and one has some knowledge of the structure of the variations
(e.g., oscillatory, impulsive, etc.) of this threshold. For this case,
FSD outperforms EKF when the sampling rate is low. In order
to run the FSD algorithm, only the spiking data are used and the
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spiking threshold is estimated without using the values of the
parameters of the FHN model. However, in order to apply the
EKF algorithm, in addition to using the spiking data, we also
assumed that all of the parameters of the FHN model except for
the spiking threshold are known.

II. FHN MODEL WITH TIME-VARYING THRESHOLD

A simplified version of the HH model is the FHN model
[8], [14]: dv/dt = a(−v(v − 1)(v − b) − w + I), dw/dt =
v − cw, where v is the membrane potential, w is the recov-
ery variable, a and c are scaling parameters, I is a con-
stant stimulus current, and all the variables are dimension-
less. b (the spiking threshold) should be between zero and
one, and to obtain electrical spiking, usually b < 0.5 is cho-
sen [22]. Consequently, b is an unstable equilibrium of dv/dt =
a(−v(v − 1)(v − b)) and corresponds to the threshold between
electrical silence and electrical spiking [2]. It is recommended
to choose a >> 1 [12], c > 0 and small enough [17]. For appro-
priate constant values of the parameters, it is possible to generate
tonic spiking using FHN, i.e., the neuron spikes in a periodic
manner.

Conventionally, the parameters in the FHN model are kept
constant, and certain spiking behaviors such as bursting cannot
be obtained using this model [11]. Since I is an external input, it
can externally control the spiking mode observed in the output
(v), and induce spiking behaviors such as bursting [21]; on the
other hand, the parameters a, b, and c are governed by the mech-
anisms internal to the neuron, and their variations can be associ-
ated with some internal physiological system. We are interested
in exploiting the possibility of time variations of these internal
parameters leading to behaviors such as bursting because this
method adds an internal spiking capability to the system. The
justification of this approach is in the hypothesis that the time
variations of these parameters are physiologically programmed
within a neuron. This approach is different from [21] in the
sense that variations in the parameters represent the changes in
the mechanisms internal to the neuron versus the changes in the
stimulus current and some external force. We consider variations
in b because it is the threshold between electrical silence and
neural spiking. Moreover, physiologically, it might be the case
that this threshold is varying, causing the neurons to switch ON
and OFF, and generate bursting. The spiking threshold might
also be varying due to the stimulation. This phenomenon has
been observed in several systems including the visual cortex, so-
matosensory cortex, prefrontal cortex, neostriatum, neocortex,
hippocampus, and auditory brainstem using voltage-clamp ex-
periments [15]. Moreover, b can control the spiking frequency.
Hence, we propose that by varying b in the FHN model, it is
possible to obtain spiking modes such as bursting and varying
frequency spiking. Our proposed extension to the FHN model
which includes a time-varying threshold is

dv

dt
= a(−v(v − 1)(v − b) − w + I)

dw

dt
= v − cw,

db

dt
= εbg(t) (1)

where b ≡ b(t), εbg(t) corresponds to the rate of change in the
spiking threshold b, we assume εb << a, and g(t) can control
the spiking frequency and also cause the neurons to switch
ON and OFF. In this extension, εb << a suggests that the rate
of change of the spiking threshold is much slower than the
spiking activity. In other words, b(t) is a slowly varying function
bounded between zero and one. The changes in b(t) are restricted
to two kinds of functions. First is a class of functions in which
the spiking threshold varies due to the stimulation. In this case,
the spiking threshold b(t) can be modeled as concatenation
of two (or more) functions where the spiking threshold varies
due to the changes in the stimulus and then becomes constant.
Second is a class of functions in which the periodic variations
are programmed within the neuron. In this case, the spiking
threshold b(t) can be modeled using a periodic function. An
example of this is slow oscillations (< 1 Hz), which occur
periodically [19]. It is useful to note the differences between
model (1) and the HR model. The HR model takes the form

dv

dt
= a(−v(v − 1)(v − b) − w + n + I)

dw

dt
= v − cw,

dn

dt
= 1 − sv2 − n (2)

where n is another recovery variable, and s is a scaling param-
eter. Models (1) and (2) are different in the sense that the third
differential equation in (2) depends on v while the third equation
in (1) is not coupled to v. Also, the third differential equation in
(1) describes the spiking threshold while the third differential
equation in (2) describes a recovery variable. Hence, the pro-
posed extension to the FHN model in (1) is simpler than the
HR model in (2) and is still able to generate interesting spiking
behaviors.

In the following sections, we demonstrate through illustrative
examples that spiking patterns such as tonic bursting, mixed
mode firing, neural spiking with nonincreasing frequency, and
varying frequency neural spiking can be obtained using model
(1). The simulations were performed using MATLAB/Simulink
[13].

A. Tonic Bursting

Tonic bursting is a spiking behavior in which a neuron fires a
certain number of spikes in rapid succession and is then silent
for a period of time. Then, it repeats this pattern in a peri-
odic manner. For example, tonic bursting occurs in medullary
preBötzinger complex of rats, which is essential to the respira-
tory activity [16]. We simulated model (1) for a = 105 , I = 1,
c = 0.2, and b(t) = 0.5 + 0.1 sin(π

6 t) with initial conditions
(v, w) = (0, 0). The resultant tonic bursting behavior is shown
in Fig. 1. This is one possible way of varying b in order to
obtain tonic bursting. Different sinusoidal functions or triangu-
lar waves could also be used.

B. Mixed Mode Firing

Mixed mode is a spiking mode in which the neuron fires
a single burst when the stimulus is applied and then switches
to tonic spiking [11]. Some neurons such as lateral geniculate
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Fig. 1. Tonic bursting.

Fig. 2. Mixed mode firing.

nucleus neurons in the thalamus of ferrets exhibit mixed mode
firing [4]. We generated a sample mixed mode firing behavior
by simulating model (1) with initial conditions (v, w) = (0, 1)
and parameters a = 105 , I = 1, c = 0.2, and b(t) defined as
follows:

b(t) =
{

0.4 − 0.3 sin(π
2 t) t < 3.9149

0.44 3.9149 ≤ t < 24.

where this function could be repeated periodically. The result-
ing mixed mode firing pattern is shown in Fig. 2. This is one
possible way of generating mixed mode. Another way is to use
a triangular wave or a sinusoidal function at the beginning, and
then keep the value of b constant.

C. Neural Spiking With Nonincreasing Frequency

Neural spiking with nonincreasing frequency is another possi-
ble spiking mode obtained by varying b, in which the frequency
of every spike is less than or equal to the frequency of the pre-
vious spike. Calcium oscillations in CHO-lac-mGlu5a cells of
rats can exhibit such behavior under certain conditions [1]. We
generated a sample mixed mode spiking behavior by simulating
model (1) with initial conditions (v, w) = (0, 1), and parameters
a = 105 , I = 1, c = 0.25, and b(t) defined as follows:

b(t) =

{ 1
10

t t < 5.5

0.55 5.5 ≤ t < 24.

The resulting spiking mode with nonincreasing frequency is
shown in Fig. 3.

Fig. 3. Neural spiking with nonincreasing frequency.

Fig. 4. Varying frequency neural spiking.

D. Varying Frequency Neural Spiking

Finally, we illustrate that neural spiking with varying fre-
quency can be obtained using model (1). In this spiking ac-
tivity, the frequency of every spike varies compared to the
frequency of the previous spike. Neural spiking with varying
frequency occurs, for example, in the respiratory center of the
mouse [9]. We generated a varying frequency neural spiking be-
havior by simulating model (1) for a = 105 , I = 1, c = 0.3, and
b(t) = 1

30 (10 − 6 cos( 2πt
24 ) + 3.5 sin( 2πt

24 ) − 3.5 cos( 4πt
24 ) −

1.1720 sin( 4πt
24 )) with initial conditions (v, w) = (0, 0). The

resulting varying frequency neural spiking mode is shown in
Fig. 4. It is also possible to use other two harmonic functions
for b(t) to obtain similar spiking patterns.

The examples in Sections II-A–II-D suggest that by vary-
ing the spiking threshold using a time-varying function b(t),
one could obtain a richer set of spiking behaviors than possible
by the classical FHN model with fixed spiking threshold. Al-
though some of the examples presented use discontinuous g(t),
a smooth approximation of g(t) will have the same effect in
obtaining the desired spiking activity.

III. PARAMETER ESTIMATION

The parameter estimation for the HH, HR, and FHN models
is usually done using model-free methods such as simulated
annealing, genetic algorithms, differential evolution [3], EKF,
or adaptive observers [7], [20], [23]. For the class of HR and
FHN models, using coordinate transformation, it is possible to
represent the system in the adaptive observer canonical form and
develop an observer to estimate the parameters of the neuron
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Fig. 5. (Left) Phase portrait and (right) time series plot of the FHN model
during a tonic spiking mode. The dots show how one spike looks when a
sampling interval of 10−3 for the dimensionless system (for the case of a
spiking neuron, the units are in milliseconds, i.e., a sampling interval of 10−3

ms) is used for simulating tonic spiking.

with an exponential convergence rate [7], [23]. In principle, if the
model has a known structure, one could exploit it to formulate
a parameter estimation method customized to that model and
tune it to get better performance than model-free methods that
do not take advantage of the structure of the model. In the
following, we develop one such method, which we refer to as
the FSD estimation algorithm, for estimating the parameter b for
the FHN model by exploiting the fast-slow dynamics of FHN.
We then compare the performance of FSD and EKF and show
that FSD outperforms EKF in several scenarios. The potential of
the FHN model to lend itself to an efficient estimation method
such as FSD further reinforces the utility of the FHN model,
this time from the estimation point of view.

A. Estimation Algorithm for Constant Spiking Threshold in the
FHN Model

In this section, we first summarize the behavior of the FHN
model in the phase plane. Based on this, we then develop a set
of constraints that the spiking threshold b has to satisfy. These
constraints motivate the cost function used in FSD estimation
algorithm.

When the FHN model is in tonic spiking mode, the system
goes through a limit cycle in the phase plane. Fig. 5 shows the
phase portrait and corresponding time series plot of the FHN
model during a typical tonic spiking mode. The phase portrait
shows that, in the case of tonic spiking mode, the trajectories
switch between slow scale dynamics (that correspond to depolar-
ization/repolarization) and fast scale dynamics (that correspond
to upstroke/refractory). We develop a novel algorithm that ex-
ploits this two-time-scale feature of the FHN model to provide
accurate estimates of the spiking threshold b with the time series
plot of membrane potentials v as input.

We now derive constraints imposed on b by a given time
series data of v. The procedure described in the following is
inspired by the limiting behavior of the trajectories of the FHN
model in the phase plane for a >> 1. In particular, for such a
limiting case, since v does not change significantly when the
model is following the slow time-scale dynamics, we approx-

imate its derivative to be zero over the slow time-scale dy-
namics. If dv/dt = 0, then w = −v(v − 1)(v − b) + I . Then,
define f as f(v, b, I) := −v(v − 1)(v − b) + I,where f corre-
sponds to the cubic nullcline of the FHN model. Let v2 and v0
be the values of v that maximize and minimize f , respectively:
v0 = 1

3 (b + 1 −
√

b2 − b + 1), v2 = 1
3 (b + 1 +

√
b2 − b + 1).

Let w2 and w0 be the values of w corresponding to v2 and v0 ,
respectively, in the phase plane. As observed in Fig. 5, w2 and w0
do not exactly correspond to the maximum and minimum values
of f ; however, we can approximate w2 and w0 by plugging in
the values of v2 and v0 in f(v, b, I). The resulting values of w0
and w2 are given by

w0 ≈ − 2
27

√
(b2 − b + 1)3 +

2
27

b3 − 1
9
b2 − 1

9
b +

2
27

+ I

w2 ≈ 2
27

√
(b2 − b + 1)3 +

2
27

b3 − 1
9
b2 − 1

9
b +

2
27

+ I.

Let h0(b) := w0 − I and h2(b) := w2 − I . Then

h0(b) − h2(b) = − 4
27

√
(b2 − b + 1)3 (3)

h0(b) + h2(b) =
4
27

b3 − 2
9
b2 − 2

9
b +

4
27

. (4)

From the v time series data, it is possible to obtain the maximum
and minimum values of v, v1 , and v3 , respectively. As observed
in Fig. 5, the w values that, respectively, correspond to v1 and
v3 in the phase plane satisfy the cubic nullcline equation and
are approximately equal to w0 and w2 , respectively (because
dw/dt ≈ 0 on the fast manifolds). Hence, the following system
of equations is obtained

f(v1 , b, I) ≈ w0 ⇒ −v1(v1 − 1)(v1 − b) ≈ h0(b)

f(v3 , b, I) ≈ w2 ⇒ −v3(v3 − 1)(v3 − b) ≈ h2(b).

This system of equations can be simplified using (3) and (4) as

− v1(v1 − 1)(v1 − b) + v3(v3 − 1)(v3 − b)

≈ h0(b) − h2(b) = − 4
27

√
(b2 − b + 1)3 (5)

− v1(v1 − 1)(v1 − b) − v3(v3 − 1)(v3 − b)

≈ h0(b) + h2(b) =
4
27

b3 − 2
9
b2 − 2

9
b +

4
27

. (6)

Equations (5) and (6) may not admit a common solution b.
Therefore, we look for the b that minimizes the sum of absolute
errors in satisfying the two equations.

Based on the aforementioned analysis, we propose the fol-
lowing algorithm for estimating the spiking threshold b when
the system is in the spiking mode. The second and third steps of
the algorithm correspond to finding the equality cost function
for (5) and (6).

Fast-Slow Dynamics Estimation Algorithm
1) Obtain the maximum and minimum values of v time series,

and denote them by v1 and v3 , respectively.
2) Let y(b) := −v1(v1 − 1)(v1 − b) + v3(v3 − 1)(v3 −

b) + 4
27

√
(b2 − b + 1)3 , and

z(b) := −v1(v1− 1)(v1− b)− v3(v3− 1)(v3− b)− 4
27 b3

+ 2
9 b2 + 2

9 b − 4
27 .
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TABLE I
ESTIMATES OF b USING THE FSD METHOD

3) The b estimate corresponds to the solution of the following
optimization problem

argminb∈[0,1]|y(b)| + |z(b)|.

We implemented the FSD algorithm on simulated time series
data as follows. The values of a, I , and c were fixed at 105 , 1, and
0.3, respectively. The values of b were chosen to be from 0.05 to
0.7 (above which there is no tonic spiking) in increments of 0.05.
For each value of b, a time series of membrane potentials v is
generated by simulating the FHN model and the FSD algorithm
is implemented on this time series data to get an estimate of b.
The estimated values of b as well as the percent error are shown
in Table I. As observed in Table I, the error is uniformly less
than 0.3%.

B. Comparison of FSD and EKF Performance for Tonic Spiking

In the previous section, a novel approach for estimating b
was proposed. In this section, we compare the b estimates given
by FSD and EKF. In order to compare FSD with EKF, process
noise and sensor noise were incorporated into the simulations
according to the following model:

dv = a(−v(t)(v(t) − 1)(v(t) − b) − w(t) + I)dt + σpdη

dw = (v(t) − cw(t))dt + σpdη, db = σpdη

vobs = v + σsς (7)

where σp and σs represent the standard deviation in the process
noise and the sensor noise, respectively. η and ς represent the
Wiener process and a standard normal random variable, respec-
tively, and vobs is the observed membrane potential. Several time
series for membrane potentials vobs were generated by simulat-
ing (7) with parameters fixed across all the time series being
a = 105 , I = 1, c = 0.3, b = 0.5, and σp = 0.1, while different
values of σs were chosen for different time series as described
in the following examples. In order to implement FSD on a time
series data, 24 tonic spikes were averaged to give data points
for a single spike, which was then used as an input to FSD.
In order to implement EKF, we discretized (7) using forward
Euler method with a sampling interval Δ, where Δ was again
varied across different time series as described in the follow-
ing examples. In each example, the same sampling interval was

used for generating the data for implementing FSD. For EKF
implementation, actual initial condition values were chosen to
be the initial estimates, and the initial covariance estimate was
set to zero.

1) In this example, σs = 0.001 was chosen to generate time
series of vobs . The b estimate obtained from FSD was
0.4980, which corresponds to 0.4% error. EKF was im-
plemented with Δ = 10−5 , and the b estimate after pro-
cessing data equivalent to one tonic spike was 0.5001,
which corresponds to 0.02% error. In this example, the
sampling rate for EKF was very high and the sensor noise
was very low, putting EKF in an advantage.

2) In this example, σs = 0.01 and Δ = 10−5 were used. The
b estimate obtained by FSD was 0.4932, which corre-
sponds to 1.3559% error. The b estimates from EKF, on the
other hand, did not converge and varied between 0.1358
and 1.47.

3) In this example, σs = 0.001 and Δ = 10−3 were used.
The b estimate obtained by FSD was 0.4929, which cor-
responds to 1.4199% error. The b estimates from EKF, on
the other hand, diverged.

Hence, comparing the two methods, EKF is more sensitive to
the sampling interval Δ than FSD. FSD is less affected by the
sampling interval because FSD only requires the knowledge of
the maximum and minimum values of vobs for its implemen-
tation, and when we increase the sampling interval, the maxi-
mum and minimum values obtained are close to the actual ones.
Moreover, EKF does not converge if the sensor noise variance
is large.

C. Estimation Algorithm for Time-Varying Spiking Threshold
in the FHN Model

In this section, using examples, we illustrate that the FSD
estimation algorithm for constant b can also be employed for
neural spiking data generated by time-varying b, provided one
has knowledge about the structure of the time variations of
b, e.g., impulsive, harmonic, etc. The time series data were
generated by simulating the FHN model with time-varying b and
by adding sensor and process noise. In order to implement FSD
for a specific time-varying b, we averaged all the corresponding
time series data to obtain a mean time series data. For this mean
time series data, we obtained the membrane potential peaks,
and broke the data into segments corresponding to peak-to-peak
intervals. Then, using FSD algorithm for estimating constant
b as developed in Section III-A, we estimated b for each of
these segments, and associated each of these estimates with
the corresponding time segment. This gives a time series of b
estimates. Then, utilizing the knowledge of the structure of b,
we implemented multiple or linear regression (depending on the
structure of b) to fit a function to the b estimate time series. In
the cases that b was known to be concatenation of two (or more)
different functions, we broke the data into two (or more) parts at
the point(s) that the functions were concatenated, and depending
on the function in each part, linear or multiple regression was
used to fit the b estimates in each part.
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Fig. 6. Parameter estimation for neural spiking with nonincreasing frequency
using the FSD algorithm.

Fig. 7. Parameter estimation for varying frequency neural spiking using the
FSD algorithm.

Figs. 6 and 7 illustrate the results obtained from implemen-
tation of the FSD algorithm on neural spiking with nonincreas-
ing frequency and time-varying frequency neural spiking data.
Fig. 6 shows the plot of b(t) for neural spiking with nonincreas-
ing frequency, as defined in (8) and its estimate using the FSD
algorithm

b(t) =
{

αt + β t < t0

αt0 + β t0 ≤ t < 24.
(8)

Fig. 7 shows the plot of b(t) for time-varying frequency neu-
ral spiking, as defined in (9) and its estimate using the FSD
algorithm

b(t) = α + β cos

(
2πt

24

)
+ γ sin

(
2πt

24

)
+ ζ cos

(
2πt

12

)

+ κ sin

(
2πt

12

)
. (9)

In the next section, we report the results from the comparison
of FSD and EKF on the data corresponding to tonic bursting.

D. Comparison of FSD and EKF Performance for
Tonic Bursting

In this section, we compare the FSD algorithm with EKF
for tonic bursting, which can be obtained using a sinusoidal
b. For this comparison, process noise and sensor noise were
incorporated into the simulations according to the following
model:

dv = (a(−v(v − 1)(v − (α sin(λt + β) + γ)) − w + I))dt

TABLE II
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF FOR

EXAMPLE 1 FOR TIME-VARYING b

+ σpdη

dw = (v − cw)dt + σpdη, dγ = σpdη

dα = σpdη, dλ = σpdη

dβ = σpdη, vobs = v + σsς (10)

where σp and σs represent the standard deviation in the pro-
cess noise and the sensor noise, respectively. η and ς repre-
sent the Wiener process and a standard normal random vari-
able, respectively, and vobs is the observed membrane potential.
Five vobs time series were generated by simulating (10) with
the parameters fixed across all the time series being a = 105 ,
I = 1, c = 0.3, and σp = 0.1, while different values of σs

were chosen for different time series as described in the fol-
lowing examples. We obtained the time series of b estimates
from neural spiking time series data using FSD in the same
way as in Section III-C. Then, knowing that b is a sinusoid
of the form α sin( 2π

T t + β) + γ, we estimated the period T
from the time series plot of b estimates by inspection. Fi-
nally, using the trigonometric identity α sin( 2π

T t + β) + γ =
α sin( 2π

T t) cos(β) + α cos( 2π
T t)sin(β) + γ, we implemented

multiple regression to find the coefficients α, β, and γ. In or-
der to implement EKF, we discretized (10) using forward Euler
method with a sampling interval Δ, where Δ was again varied
across different time series as described in the following exam-
ples. In each example, the same sampling interval was used for
generating the data for implementing FSD. For the EKF imple-
mentation, actual initial condition values were chosen to be the
initial estimates, and the initial covariance estimate was set to
zero.

1) In this example, σs = 0.001 and Δ = 10−5 were chosen
to generate the time series of vobs . We implemented FSD
and EKF, and obtained the parameter estimates and the
corresponding percent error for each of the parameters,
which are reported in Table II. In reporting the EKF esti-
mates, we ignored the estimates for which the entries of
the error covariance matrix became very large. The EKF
algorithm outperforms FSD when the process noise is low
and the sampling rate is high.

2) In this example, σs =
√

0.1 and Δ = 10−5 were used to
implement FSD and EKF. The EKF parameter estimates
became very noisy; however, the average value of the noisy
parameter estimates obtained by EKF had a small error,
and, here, we are reporting the average value of the noisy
estimates as the EKF parameter estimate. The parameter
estimates and the corresponding percent error for each of
the parameters are reported in Table III.
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TABLE III
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF FOR

EXAMPLE 2 FOR TIME-VARYING b

TABLE IV
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF FOR

EXAMPLE 3 FOR TIME-VARYING b

3) In this example, σs = 0.001 and Δ = 10−3 were used and
parameter estimates reported in Table IV were obtained
using FSD, while EKF diverged.

Through three examples, we showed how one could imple-
ment the FSD method for the case that b is a time-varying
function. Then, comparing this algorithm with EKF, we showed
that FSD performed better than EKF when the sampling rate
was low.

IV. CONCLUSION, DISCUSSION, AND FUTURE WORK

The proposed approach in extending the FHN model by vary-
ing its parameters allows for simulating more complex behaviors
than the ones that are possible by keeping the parameters con-
stant. In this paper, variations in the threshold between electrical
silence and electrical spiking were investigated. Then, an esti-
mation algorithm (the FSD algorithm) that exploits the fast-slow
dynamics of FHN was proposed. For constant b, the proposed
algorithm performed better than EKF when the sampling inter-
val was high or when the sensor noise variance was high. For
time-varying b, the FSD estimation algorithm performed better
than EKF when the sampling interval was high. Another ad-
vantage of the FSD algorithm over EKF is that when b is time
varying, and the structure of b(t) is unknown, time series of b
estimates can be obtained using FSD, which could add insight
into the structure of b(t). For the cases that b(t) is reasonably
slow, EKF can be implemented on one spike repeatedly until it
converges, while neglecting the other spikes that are generated
in the meantime. Once convergence is achieved for this spike,
EKF can be implemented on the spike generated at that moment.
One can repeat this process to obtain b estimates for the case
that the structure of b is unknown. Using this approach, EKF
neglects the spikes generated in between convergence, while
FSD gives a b estimate for every spike in the spike train. Hence,
FSD performs better than EKF in understanding the structure
of the spiking threshold. However, if the goal is not to perform
online estimation, EKF can be implemented on one spike re-
peatedly until it converges, and this process can be repeated on
all the spikes in the spike train. Using this approach, for every
spike in the spike train, a b estimate can be obtained, which adds
insight in understanding the structure of b(t). Hence, FSD and

EKF can both be used to understand the structure of the spiking
threshold when online estimation is not a concern. Moreover,
in order to run EKF in the discussed examples, it was assumed
that the values of a, I , and c are known while FSD does not
require knowledge of the parameters a, I , and c, and estimates
b only based on v time series data. The proposed method for
estimating the spiking threshold is limited to the structure of the
FHN model. Moreover, the estimation results presented are for
the case that a is very large, which results in fast dynamics, as
typically observed in physiological data. This is in contrast with
model-free methods such as EKF or adaptive observers whose
implementation is not restricted by the structure of the model.

In our future work, we plan to extend our model and estima-
tion method to other parameters of the FHN model. We also plan
to explore the physiological factors determining the parameter
variations that lead to variations in neural spiking patterns and
implement the FSD estimation algorithm on physiological data.
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