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On System ldentification of Complex
Systems from Finite Data

Saligrama R. Venkatesh and Munther A. Dahleh

Abstract—System identification deals with computation of of high-order time-varying dynamics where rate of variation
mathematical models from ana priori chosen model-class, for precludes choosing models of high complexity. Another situa-
an unknown system from finite noisy data. The popular max-  {jon encountered is when lumped parameter models are used to
imum-likelihood principle is based on picking a model from a h teri tial diff tial i PDE). The f
chosen model-parameterization that maximizes the likelihood C, arap erlzg a par !a ol 'fi egua !on( )- . e Iormer
of the data. Most other principles including set-membership Situation arises for instance while identifying acoustic transfer
identification can be thought of as extensions of this principle inso functions in a changing cabin environment (see [38]) and the
far as the concept of choosing a model to fit the data is concerned. |atter situation arises while modeling the vertical dynamics of
Although these principles have been extremely successful 'naultra-high-rise elevator (see [3] and [33]).

addressing several problems in identification and control, they . L - -

have not been completely effective in addressing the question of m this paper, we limit ou_r atte_ntlon to Ilne_ar sy_s_tem_s and (_:Ie-
identification in the context of uncertainty in the model class/pa- Scribe the means of dealing with system identification in in-
rameterization. We introduce a new principle for identification in ~ stances when the real system cannot be adequately described
this paper. The principle is based on choosing a model from the py a chosen model set. In these instances, it is useful to con-
model-parameterization which best approximates the unknown eptualize a larger, more complex set to which the real system

. . C
real system belonging to a more complex space of systems whic - .- e
do not lend themselves to a finite-parameterization. The principle hbelongs, and the idea in identification is to understand how well,

is particularly effective for robust control as it leads to a precise how fast, and how easily can we approximate any arbitrary ele-
notion of parametric and nonparametric error and the identifi- ~mentin the complex set with some element in the chosen model
cation problem can be equivalently perceived as that of robust set. A useful notion to describe complexity in this context is
convergence of the parameters in the face of unmodeled errors. that of Kolmogorowvn-width (see [25] and [30]). We deal with
The main difficulty in its application stems from the interplay . . ;

of noise and unmodeled dynamics and requires developing novel such systems where Kolmogorawvidth 'S_' uniformly over all
two-step algorithms that amount to annihilation of the unmodeled 7 € Z*, bounded away from zero. This means that the real
error followed by averaging out the noise. The principle contri- systems/instances under consideration are inherently complex
butions of the paper are in establishing: 1) robust convergence n that a choice of a larger dimensional model set doesanot

for a large class of systems, topologies, and unmodeled errors; Z)priori guarantee better representation of the real system.
sample path based finite-time polynomial rate of convergence; and At thi int it | th it t that th L f
3) annihilation-correlation algorithms, for linearly parameterized AL This point, 1t 1s worth pointing out that the ongins o
model structures, thus, illustrating significant improvements over Using simplified models for complex systems dates back to

prediction-error and set-membership approaches. [41] where notions ofn-widths, e-entropy, and complexity
Index Terms—Control-oriented  identification, polynomial ~ Were int.roduced in the context of identificatior_1 and control.
sample-complexity, robust control, robust leaming, statistics, 1he notion ofe-entropy was used to characterize the degree
undermodeling. of approximation in modeling a given set of possible systems
within the class of finite-dimensional models. More recently, in
[10] and [11], the idea of using restricted-complexity models,
where the real-system may not belong to the model class, has
SYSTEM identification deals with choosing mathematbeen advocated for identification in order to guard against over
ical models from sknown model seto characterize the parameterization of the estimated models.
input—output behavior of an unknown system from finite noisy We deal with the problem of system identification of simplified
data. Noise, finite length of data, and time variation are somem®bdels of possibly more complex systems by appealing to the
the issues that limits the choice of a complex model set. Theglowing principle: choose that model from the model set which
are many instances when this limitation is significant enougdest approximates the real systefhis principle, which we
that it becomes necessary to deal with situations where gall minimize-unmodeled dynamics (MUD), requires making
model in the model set can adequately describe the real systplicit the idea of conceptualizing the class/set to which the
behavior. One common situation encountered is in the contexhl system belongs. The novelty of the formulation lies in its
effectiveness in interfacing identification with robust control
. . _ design. Every formulation in system identification has a nat-
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complexity. The parametric error corresponds to the distance beFor the sake of brevity, we postpone discussion of related
tween the estimate and the best approximation measured inwmogk until later. We only note the fact that this topic has received
parametric space. The nonparametric error corresponds to\thde attention. It is widely perceived that system-identification
distance between the system and the best approximation in aimel robust-control pose a fundamental dichotomy. There is wide
parametric space. These variables that characterize our ideng@ficeptance among researchers that the gap between robust-con-
cation problem naturally fall in line with robust control frametrol design and traditional system identification (see, for in-
work. stance, [16] and [28], which are standard texts on the subject)
In this paper, our attention is restricted to the identificatiol$ Yet unresolved. Consequently, the subject matter has received
of stable linear time-invariant (LTI) systems from finite-noisyvide attention from as early as 1980s with an entire issue of
measurements of inputs and outputs. We are interested in b6 IEEE TRANSACTIONS on AUTOMATIC CONTROL devoted to
asymptotic as well as finite-data situations. Application of thi&is topic (see [8]). Itis our view that the question remains as to
principle to the class of LTI systems reduces to three questioR@W one can derive descriptions suitable for robust control de-
1) Does there exist an estimator for the model parameters thign from finite corrupted data, and this forms the focus of this
converge asymptotically to the best approximation? 2) Can tRaPer.
parametric and nonparametric errors be quantified? 3) How long
a data length does it take to reduce the parametric error to a pre- Il. NOTATION
specified toler_ance bound? We rgquire that the answers to thesg, * denotes the complex-conjugate transpose of the matrix
questions be independent of which element of the class/set the 7+ i the set of positive integerg.denotes the space of

real system belongs. Thus, a stringent 'requir'ement of unifo@@quences o+, £, andp > 1 denotes the space of sequences
convergence over the class of systems is desired. on Z+ bounded in the/, norm (see [17]). For a signal € ¢,

The principal difficulty arises because of an interplay bePn denotes the truncation operatt; (z) = (z(0), .. ., z(m—
tween noise and unmodeled dynamics. In the absence of nojsg, ...), X,, is the column vectafz(0), z(1), . .. ’x(n’_ 1))*

. . . . /Y
the problem, in most S{tuatlons, reduces to.a function appro AdL,.(x) is the toeplitz matrix
mation problem for which well-known solutions already exist.

In the absence of residual error, the problem reduces to a fa- z(0) 0
miliar situation dealt within classical identification (see [16], x(1) x(0) 0o -
[28], [35], and [29]): given a finite-dimensional LTI process, n(z) = : . . - @

find the best set of parameters from noisy data. However, under ' y
the influence of both, the problem is nontrivial even in the sim- en—1) z(n-2) - x(0)
plest of situations to answer the questions we posed earlifie n-point autocorrelation™(-) of a signalr is
Tackling the problem requires us to resort to a sequence of

strategies. We develop a novel two-step algorithm, where, in " 1 N n n
the first step, the unmodeled dynamics is annihilated, except for "= (=2 Z o7+ )i ro(=7) =72 (7);
transients. Application of the first step, therefore, nearly reduces =0

the identification of model parameters to the familiar problem T€01,...,n].

dealt with in the classical identification setting (see [16] andn (1) is the corresponding DFT of the autocorrelation se-
[28]). Thus, it remains to average out the noise and the traglience, i.e.,

sients. These steps require application of inputs that are per-

n—rt

sistently exciting of order infinity. Higher-order chirp inputs nt o

are constructed for this express purpose. The two-step proce- Su(k) = ri(t)exp <—J—kt>

dure, along with such special inputs, are extremely effective for =0

identification of model parameters and estimation of parametie (r) = (1/n) S0 2(r+4)y(i) is then-point cross correla-

and nonparametric error. We show that our goals can not or&l&”n between two signals, arf.,(-) is the corresponding cross-

be attained asymptotically, but also that, for any prespecifigﬂectrm density.z, ) is the inner product of two signaisand
error, a relatively short length of data is required. Some of theger,, any infinite sequence(-), # denotes the fourier trans-

ideas have already appeared in our earlier publications (see [ ng N(m, o) denotes the Gaussian distribution with mean

[32]). and standard deviation. P,,{A}, =.,{A} denotes the proba-

The organization of the paper is as follows. Section IV introﬁility and expected value of an event A real-valued function
duces the framework and in the context of a simple finite-im- satisfyingg(n) < Cn, is said to bey = O(n). For an LTI

pulse response (.FIR) model-parametgrization tq motivate ble systeml”, 7" denotes theé\-transform (or the:~*-trans-
problem formulation to follow later. This section is also use )
to informally introduce other approaches—classical identifica-
tion and set-membership identification—to discuss results per-
taining to this example. This serves to motivate the problem
setup and the general purpose of the paper. In Section V, the FIR' his section broadly describes the framework that will be
example is used as the basis to understand the key requiremeaesl in the rest of the paper. We assume that the real system is
of the input. The subsequent sections then present LTI ident#icausal shift-invariant operatérbelonging to a normed linear
cation of complex systems in limited-complexity parameterizapace? that takes inputs i to system outputs id. In sev-

tions for several different topologies. eral instances, we will further restrict the systéirto belong

Ill. PRELIMINARIES
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to ana priori setZ. However, thea priori setZ is such that it whereL and0 < p < 1 are known constants. This space
does not lend itself to finite-parameterizations, a notion that wi not complex if/; norm is used as the distance measure. To
be made precise shortly. The objective is to “identify” the realee this we pick an FIR model-parameterizat@p;r of order
process from input—output data. In most instances, we assupé& log(p). Then, for every systerfi’ € Z, there is a corre-
that we are free to choose the inputis long as we constrain sponding element igz;r which is no further than in the 4,

the amplitude in time, i.eJjul|- < 1. This constraint could norm. However, if we define the norm By ;- |t(k)/p"| the
arise from practical considerations to limit the input toa regimgass of systems becomes complex. Similarly gheinit ball,
where assumptions of linearity hold. We suppose that naise, A, is a class of complex systems as long as the norm measure
enters additively at the output of the process and corrupts teehe/; norm. However, withy - . |§(k)p"|, p < 1 (6(k) is
measurements. Noise is modeled by means of temporal ctite impulse response sequenceé\Vf as the norm measure, the
straints (probabilistic or set-valued) on noise sample-paths.4nunit ball is no longer complex.

the set-valued case there is someld&tfrom which the noise .

can take any sample path, i.€y(0), w(1),...,w(n)) € W, B. Noise Models

and in the probabilistic situation, noise is assumed to be a stain this subsection, we present stochastic and set-valued
tionary stochastic process. As a point of digression it is worthodels for noise to be used in the rest of the paper. Typically,
pointing out that it is possible to describe stochastic white noigge principle feature of noise is that it is persistent and inde-
with set-valued descriptions (see [23], [34], and [35]). Thesgendent (uncorrelated) of the input. Our goal is to describe
models have been used in the context of identification in [34tochastic and set-valued models for noise which have these
[35], [29], and [24] and have been shown to be “equivalentgatures of independence and persistency.

to using stochastic models. In this paper, we will extensively In the stochastic setting, these requirements are minimal and
use such set-valued white-noise descriptions to model noisedinot pose any problem and, in fact, almost any filtered i.i.d.
summary, the measured outpuand the input. are related by process is admissible. For the sake of simplicity, we allow only

the following equation. filtered (stable-linear) white-Gaussian models for noise in this
paper. Such noise processes are persistent and it remains to show
y(t) =Tu(t)+w(t), t=0,1,....n, T€I (2) thatastrongnotionofindependence can also be established be-

h luded to bef ) loriori k tween an arbitrary input and any noise sample path. This follows
whereZ, as alluded to before, is a complaspriori Known set. g, 4 |arge-deviations based probabilistic bound on the corre-
We W'I.I now precisely dgfme the ”9“0” of a complex set anfgltion between two signals. As alluded to before, the naise
the noise models that will be used in the paper. can be characterized as white-Gaussian noise filtered through a

. stable linear filterH, i.e.,
A. Complex Priors

In this section, a notion of complexity based on Kolmogorov w=Hv, veN(0,0) [H[<n
n-width is defined. We_ suppose that thereal syﬂébelpngsto Lemma 1: Suppose{w(.)} is as above and(¢) € [~1, 1],
some set?. We associate the notion of complexity with the set, 1 nis a fixed vector. then
7. LetG,. denote any;-dimensional subspace @f. We saythat =~ 77’ '

the set,Z, is complex if it has a Kolmogorox-width which is 1|z nov
asymptotically bounded away from zero irrespective of the size 7§ Z w(t)w(t)| =z a p S nexp <_W> )
of », i.e., t=1

Proof: We first notice the following set of inequalities:

limsupinf sup inf |[T-G| >~ > 0. (3)
P Gr TCI(v) GCG, 1 n
Pe— Zu(t)w(t) > o

In particular, notice that the definition implies that choosing a LN iy

more complex model parameterization doesa@tiori guar- 1] n
antee any reduction in the residual error. This definition is not = . Z h(t) Zu(k)v(k -t >a
far-fetched as we will see in the example below. The principle t=1 k=t

residual unmodeled dynamics as an intrinsic aspect in system
identification. In other words, our attempt is to disallow model
reduction after identifying the entire system as part of the so- <nP { 1

reason for such a definition stems from the need to confront P { 1
<

n

> ulk)yu(k)

lution methodology. Although there are other ways to enforce n P

this requirement, such as restricting the length of data, this def-

inition is more natural. In the following example we show thdNow, the last expression can be evaluated by means of a large

complexity depends both on the topology on the space of s@viations-type bound (see [40]). u

tems and the “cardinality” of . We now present a similar model in the set-valued setting. We

Example 1: Consider, the infinite-dimensional subset of LTHO this by means ad priori known set)V. A sample path for

operatorsZ with the kernel{t(k)} satisfying noise is any element that belongs to this set. The main problem

with this approach is that it is difficult to enforce independence
I ={T cT|tk)| <Lp" vk e Zt} (4) of the input from noise while still maintaining persistency. If

n
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Be IR’W} . (1)

the set is too large, for instance, belonging to unit ballin asameansto model an LTI stable systé&hg 7 of Section lIl.
independence between noise and input is lost. If the set is toayeneral, we will study identification for the following model
small, for instance, belonging to unit ball #, we sacrifice sets:
persistency. Thus, any set-based model for noise has to bal-
ance these the two extremes. Nevertheless, set-valued mod(reés_ GeTIG= A B
are useful for several reasons. In our case, we desire a uniform — €TiG= C 0
convergence property over all systems belonging to some set
1. The analysis of such algorithms becomes more streamling&ndc are fixeda priori with m statesg inputs, anch outputs,
with set-valued noise because in this case the problem formulgyy; — 1,4, parameters oB to be estimated.
tion will require uniform convergence over both noise and real For the present, our aim is to study the behavior of the FIR
systems. Also, this allows for obtaining guaranteed error bounglstimates in relation to the real process in a way that is mean-
which is aligned with robust control framework. Besides, it haggfy| for robust control. To this end, we choose theorm as
been recently shown in [35], [29] that set-valued models f@Re topology on the space of LTI systems to assess the perfor-
noise (when modeled appropriately) do not result in anymoggance of the estimate. From the perspective of robust control,
conservatism than their stochastic counterparts. With thesetjgs pest model is one that is closest to the real process i the
sues in mind, we will present the following model, which is apnorm, as this model has the smallest unmodeled dynamics asso-
propriate and balances the extremes of independence from inglied with it. Thus, the best FIR sequer@gl’) is
and persistency:
L G(T) = agmin|[T - Gl = (R} (12)

iq(t CYFIR
Viogny 250" <

< 1}
t=0 6 wheret(k) is the impulse-response sequence of the sy§fem
®) Associated with this FIR model is the nonparametric efror

qeEQ™

W, = {w € IR"| sup

where@Q™ is the class of polynomials ihof orderm over the
field of reals. We verify that the noise model is rich enough to

contain typical sample paths generated by an i.i.d. process. , h h |
Theorem 1 [Richness]Supposex(0), =(1), =(2),... is However, since we do not have access to the real sygtea

a discrete-time random process (white-Gaussian processi'® Méaningful means of computing them from input-output

Bernoulli process) with mean zero and bounded variance. Thgﬁ,ta IS necessary. We observe that edery 7' can be decom-
posed as a linear sum of the best mo@él’) € Grrr and the

=T -Gl (13)

P(Poz(t) e W,) =31 @) residual errorA(A)
whereW, is given by (6). T=G(T)+\"A, AL <7,
Proof: The proof is presented in the Appendix. u Q(T) = (#0),4(1), ..., t(m — 1)) (14)

The set-valued models are convex and balanced, i.e.,
with G(T) and \™A(\) being “orthogonal” to each other. An
wi,wa € W, = awi+(1—a)ws € W,, « €10,1]. (8) equivalent notion of a best approximation holds for the general
case as in the following proposition.
This can be seen from the fact that the constraints imposed ar@roposition 1: Supposé is a normed linear vector spage
alllinear, i.e., the setV can be alternatively characterized as a subspace df, andG- the annihilator of in the dualt7* of
7. We let the notation argmin denote the set of all minimizers.
Lypw <1 (9)  Then, the following statements are equivalent:
H /|-
whereL,, is some linear operator. By straightforward calcula- g ? iacrlgr%,f%insTome%H’e G, and(¢, A) = ||A|| for
tion, it follows that the noise model is invariant with respect to someg € G, |4 < 1. ' )

filtering with a filter of £, norm less than one. Thus, the duality theorem above characterizes the resiiual

T — G(T) as an element that is aligned with the annihilator of
IV. PROBLEM FORMULATION AND DISCUSSION G. -
The objective of this section is to formulate the problem of Now, returning to the FIR example, based on decomposition
system identification for complex priors in instances where fin (14), the input—output relation of (2) is rewritten as
nite data limits choice of a complex model set. To realize our
goal, we first present a simple example as a means of motivating y(t) = G(D)ult) + A" AN)u(t) +w(t),
the problem. Consider the example of an FIR model-parameter- t=0,1,...,n (15)
ization,Grrr of orderm, i.e.,

with v = ||A(A)]|1. Supposd|G(T) — G™(y,w)|| is the para-

m—1
Grirn =4 G(\) = Z g(k) NP (10) metric error withG™ the estimate of#(7") and,~+", the esti-
=0 mate for~(7") based on observations up to time Then, the
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4 system?” which is not meaningful when we do not know it.
- Space of systems: T~ Therefore, the only alternative left is to define the parametric
Teeel error as follows. There are two definitions corresponding to the
/’f‘\\ set-based/probabilistic noise models
// , \~\~~\
"3 Tl &= swp swp [GT) - G ()
. (T) ~a WEW,, TET(v)
- = sup sup [[G(T)—G"(y,u)| 7
~~~~~ Fe] wCW, ||A]l<y
N ~~ao or, equivalently, in the probabilistic case we can define as that
TNeelL Y numbera™ such that
v \\‘

g -G" >a” 5 <
Fig. 1. lllustration of the real systeri® as an element belonging to an Pu {Tig%) HG(T) ¢ (y,u)” =« } <0 (18)

infinite-strip of width~ in the system spac§,.

) ) ) ) . for a pre-specified confidence lev&l An algorithm is said to
parametric error is a function of the residual error and noise. {Q ~onsistent if the parametric error converges to zéiote

see this, observe that if the residual error is unknown and §zt we require uniform convergence over all systems admis-
tremely Iarge_for the FIR model—parameter|;at|on, the measutgp|e inZ(~) which will be an important point when we consider
ments from timem onwards are not meaningful and we Willinimum prediction error techniques. As a point of digression
have to rely on the first» measurements to estimate the paray rg|ated notion of convergence and consistency has been dis-
metric part+(1'). However, there are: parameters anek n0iSy ;sse in the set-membership literature (see [19] and references
meas_urements. Itis we_ll—kno_wn (see [_16] and [28]) th‘?‘t' forthﬂslerein). Informally, an algorithm is robustly convergent if the
situation, the parametric estimates will also be unreliable eVgg s metric estimates converge to the “correct” parameters in the
foramodestamountof noise. Itis to be noted that with set-basggit of vanishing residual-error and noise. Our notion of con-
model for noise, the estimation error will be large, but boundegl, oo nce is stronger, in the LTI context, in that we require the es-
A way around the difficulty of obtaining poor estimates for thg 51es to uniformly converge to the “correct” parameters even
model is to assume that the chosen model-parameterization;{igy, o presence of nonzero residual-dynamics and noise.
this instance the FIR parameterization) is “good,” i.e., We are now left to define the notion of sample-complexity.
Again there are two definitions corresponding to set-valued and
I(y) ={T € LTI stabld ||T — G|| < v, for someG € G} probabilistic models for noise. In the former case, the sample
(16) complexity is defined as that numbaf(e,v,x) € Z* such
that, for everye, v > 0 and model-set dimension, the fol-

with the norm being thé; norm andg is Grrr in this partic- lowing holds:

ular instance. Note that this argument holds in the general sit- i

uation too. The relationship between the real-proc&ssand , Seuvl;)) TS};P [T =G| = |T = G(D)||| < e,

the model-subspacé is shown in Fig. 1. In a typical prac- WEWn TET(Y)

tical context one often has a good idea, either from physics, or Vi 2 N(e7, k). (19)

through experience that a model-set characterizes the dominant

dynamics well, although, there is some nonzero residual errgfluivalently, for the probabilistic situation, the sample com-

In such situations, the above assumption is reasonable. AlBexity is defined as the numbgr (e, ¢, v, x) such that

barring pathological cases a good estimate of the residual error

can be obtained for large enough data (this will be shown in

an example at the end of the paper). Therefore, we can always Pew {

choose another model-set if we are not happy with the residual

error for the chosen model-set. We point out that this assump- Vn > N(e, 6,7, k). (20)

tion is required on account of the need for error bounds based

on finite data. The length of data required to “guarantee” th&ample complexity is said to be polynomial Af(c, v, k) =

the estimates are within a pre-specified error bound is call&((vy/¢)*)x'), k, I € Z* for the set-valued situation and

sample-complexity. Clearly, if the “sample-complexity” wereV (e, 8, v, 1) = O((v/€)*)rtlog(r/8)), k, I € Z¥ in the

finite, then it will still be finite for any multiple ofy. In par- probabilistic situation.

ticular, for the asymptotic case, if we had finite-sample com- We will now briefly discuss the classical minimum-predic-

plexity, then we would converge in the parametric space ftion-error and the set-membership principles to see how they

everyy € R, which is the set of all LTI stable systems. fit in and address the identification problem formulated in (19),
We are now left to define the parametric error. The defin{20). We will use the FIR example to illustrate some of the de-

tion suggested earlier depends on the exact knowledge of fisgencies in applying these principles.

SWIW—@WAW—QHMz%S&
TCI(v)
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A. Minimum Prediction Error (MPE) Principle with finite data, we do not have access to the real system, and

The MPE principle operates in the context of a stochasiiae unmodeled error has to be considered in the yvorst case.
noise models and this falls well within the experimental setup 2) Proof Technique:The convergence proof in the min-
that we have in Section I11. Typically, the MPE principle is usefnum-prediction error approach works on the following prin-
in situations where some model in the model setdoes ade- CiPl€: the prediction error™ (G) converges uniformly t’(G),
quately describe the real syste However, the MPE principle @nd, therefore, the argmi(¢) converges as well. In view of -
can be generalized to the case where the real system doedipgbove ur_uform convergence issue, itis possible to generalize
necessarily belong to the model-tThis situation is termed the formulation (useupyn, <, supgcg,., , [V(G) = V(G)).
asapproximate system modelimgthe statistical identification Hfowever, convergence of the loss function is not uniform in
literature (see [2] and the references therein). The principle fhets
mains the same and the suggestion is to pick that model from
the model sey, which minimizes the prediction error (see [16] limsup sup sup [V(G) - V(G)| /= 0.
and [28]). This notion is also related to the ML principle (see no llalhsyGebrir
[16] and [28]) where the model that maximizes the likelihood ) i ) o
of data is chosen. The usual notion of consistency and convéldeed, it can be easily shown that, even with white inputs, we
gence for the approximate modeling situation is defined in tHéll have
sense of ML principle, in that, an estimator is said to be con-
sistent if the estimates converge to that model which maximizes sup sup |[V*(G) —V(@)| > ||A|2-
the likelihood function for the sef. To simplify the discussion llalh=y&ey
we use the FIR example with topology on the system space,

7. We notice that the approximation in the sensé#8fand?, Therefore, gt the bare minimum, we will need to use a different
are identical for FIR model-class. The corresponding MPE Rf0Of technique to prove parametric convergence.
this situation amounts to minimizing the squared-sum predic-3) Error Bounds: Bias error and variance is typically used

topology

tion error, i.e., to characterize residual and parametric errors. Although these
are related to parametric and nonparametric errors, they are not
G = argminV(Q) the same, and it is, in general, difficult to derive a direct corre-
Crrn spondence. In general, MPE-based approaches have not satis-
" 1 2 factorily addressed computation of such error bounds.
= argminl Z y(t) — Z g(k)u(t — k) (21) 4) Sample ComplexityPerhaps the most important prac-
Grin M3 —o tical limitation of the minimum-prediction error approach is

that, in the presence of unmodeled errors, the rate of conver-
This is the familiar least-squares algorithm, and) is the loss gence depends on the rate of convergence of the unmodeled
function. It is possible to show (see [16]) that the estimates @gror to its corresponding spectrum, i.e., we need to know the
converge for stationary stochastic noise and with stronger &shavior of
sumptions on the allowable class of systems (in [15], exponen-

tial memory bounds are assumed for the residual error). It fol- 1 N
lows that: - Z(Au(t))Q — lim . Z(Au(t))2 .
t=0 t=0
Jim " — G = gé%min/ (T — @) (w)Pu(w) This can be seen in the convergence argument used. One uses
YFIR )

the convergence of the loss function to characterize the behavior
of the estimates. At any rate, this is a serious drawback in many
real-time applications where one cannot wait for the asymptotic
where ®,, is the power spectral density of the input Thus, {5 set in order to derive a model for the system.
if the input is white, it follows thatG* = G(T). It is now 5) Colored Input: In (22), G* = G(T) if and only if the
tempting to conclude that our goal has been accomplishgghyt were white. To see this, consider
However, quite to the contrary there are several shortcomings
in the MPE results which we briefly outline below.

1) Pointwise ConvergenceThe parametric convergence, as
defined in the classical identification literature, is weaker and

not taken uniformly over all the unmodeled errors, i.e., for eveiynere the inputu is a white noise process and is a LTI
fixed systen” € 7 it is shown that ilter. In this situation, the model outputw is correlated with

the output error, which in this case is given BWu) + w.
limsup sup [V*(G) — V(G)| — 0. The typicall means of dealing v_vith such _situations in the min-
n  GEG imum prediction error formulation effectively reduces to esti-
mating AW . Alternatively, this can be thought of as whitening
Thus, the convergence is defined for each fixed “real systentkie output error before using the least-squares algorithm. How-
T € 7, and, in this sense, is pointwise. This is particularlgver, this procedure requires estimatihgresulting in inflating
important because in the absence of additional information asample-complexity, which we plan to avoid.

(T - G)w) dw, wp.1 (22)

y=GWu)+ A(Wu)+w
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6) Other Topologies:Although? norm is very useful as a be, such an embedding has severe drawbacks. Fundamentally,
measure for systems, it is not particularly useful for describirige embedding is extremely coarse. It turns out that parametric
unmodeled dynamics in the context of robust control. There aggor dian{S™) is 26 (see [31]) no matter what the input and
some special topological properties, with induced norms as islength and topologies and model-sets used. This is not very
important case, that lend themselves easily to robust control gfeasing. For one, we have an intuitive feeling that, at least in
plications. The minimum prediction error paradigm is focuseithie case of LTI stable systems, it should be possible to identify
on finding good descriptions that have good data-fit, while waot only an FIR model, but the entire system if we had infinite
need to find good models to fit systems. From this perspectivdgta. One of the reasons for the conservatism comes from the
it is difficult to see how one can formulate a “system”-fittingfact that the data-generation process includes effects that could
problem for other topologies with a MPE based approach. arise from time-varying and nonlinear behavior. The principal

reason, however, is that there is a redundancy in the parameteri-
B. Set-Membership Identification zation of the behaviors. That is, the uncertainty due to the noise
In previous work, significant effort has been focused ot 2dmits FIR models that are of norm smaller thiarThis ac-

system-identification for robust control, and the formulatioRPUNts for the fact that the diameter of uncertainty can be no

has come to be known as set-membership identification. Ti5@aller thares. It is fair to say that set-membership literature
line of research goes back to [27] and [7]. The formulatiof@s not satisfactorily resolved the issue of uncertainty with re-
has received much attention in [14], [8], [9], [21], [20], [18]spect to the model-parameterization and data effectiyely.

and [31] (also, see references the therein) where botand ~ 1he Principal difference between our formulation and
H..-error criterion were adopted. The premise behind thc,@t-membersmp identification is that, by resolving to minimize
set-membership approach is that data is generated from on&1§f Uncertainty between the model-parameterization and
several sets of possible behaviors. The goal is to choose the'§8t System, we are forced to explicitly incorporate the class
of all those behaviors that could have generated the data. To@ SPace) in which the real system belongs. Furthermore,

the idea, we consider a simple situation which is well-known fifinimization of residual dynamics sets up a decomposition
the literature. The set of behaviors is given as follows: between the model parameterization and the residual dynamics.

To summarize, we enforce a decomposition of the data into
a triple: model, residual, and noise. To avoid redundancy in
y=Goutv, [[v)lc <6 Go€ Grrr. (23)  the description of data, the residual is separated from noise
effects. Noise is independent of the process while the residual
From input—output data, which is a single sample path, the dias a special structure that is associated with a chosen model
jective is to determine the set of all consistent behaviors, chagt. Each of these elements account for different aspects in the

acterized by the above equation, i.e., experiment.
G e 8" ={G € Grrr| |(y — Gu)(k)| <6,k =0,1,...,n}. V. FIR MODEL-SETS AND INPUT DESIGN
(24) In this section, we will derive several conditions that are suf-

ficient to guarantee robust convergence of model parameters as

Thus, in a sense it is very similar to the ML principle in tha([jeﬁned by (19) and (20). We will derive these conditions in the

seeking the “mostlikely” model from a chosen model class is r ontext of FIR model setand, later, it will turn out that these con-

placed with computing all the models which are consistent wi tions hold for identification of general model sets. As a point

data. However. even this difference is understandable in view freference, it has been well established in statistical identifica-
the set-valued noise models. Historically, the interpretation fien that consistency of model estimates demands a persistency

the above formulation is that of embedding the uncertainty e>t<c_|tat|0{1 equakljto tE_e mdodet_lffnn:_ensmn on trr]]e mput.tlr_l con-t
to the data generation process. To understand this point of vidigot In set-membership identification, a much more stringen

in the above instance, consider “identification” of the proce§ ndition is required. In particular, it is shown in [5] and [26]

T with an input,», whose amplitude is bounded by unity. Con! .ﬁt n oc;dterr:o identity ar|1 FIR ?f c;r:jhen, thi |r11p:lt s\/(\elquelrl}ce
sider the case when we know,priori, that the proces%’ is will need to have every element of the spt;1,1}™. We wi

no more than at a distanéefrom the space of FIR model-pa-S€€ that in our particular situation we will need something far

rameterization in thé, norm. In this case, the “model” for the_short of the latter requirement but much more than merely sat-

data-generation process contains the input—output behaviorls&{Ing a perglstency of excn_a_tlon conqun. :
the real-system. In other words,|if(t)| < 1, we then observe We will arrive at our conditions by testing several different
that ' - inputs. First, we rewrite (2) in expanded notation by separating

the terms into model and residual error, and see that

{(y, W)y = Tu, |T — G| £ §,for someG € GFIR}

CA{(y, W)y = Gu +v,||[v||ec < 6,forsomeG € GFIR.} y(s) = Tuls) + w(s)

FIR Model Residual Error

A A

Thus, the unmodeled dynamics in the original problem can be — Zt(k)u(s —k)+ Z t(k)u(s — k) +w(s). (25)
embedded within an appropriate noise model. Be that as it may b—0 k1
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In the absence of noise, it is clear thgtse inputof unit am- 4

plitude is sufficient to recover the FIR model exactly. On the
other hand, persistent noise can only be averaged out by a per
sistent input. However, a persistent input will also “excite” the
unmodeled error. In particular, for the above equation, whenever
s > m+1, the data also contains contributions from the unmod-
eled dynamics. For periodic inputu, with (s + 1) = u(s),

the data fors = 0,17, 2I, ... can be written as

35F e Be{-112)

Dark: max of corr. coeff.

w
T

I
o

-
Ll
T

y(s) = Z t(k)u(s — k) +w(s) = (¢(0) + (1) + - - )u(0)
(L) 4+ 41+ u(L) + -+ w(s).

Magnitude of auto-correlation
N

-
-

o
n
=

Thus, one obtains information only on linear combinations of % 1000 2000 000 gt S0 0 7000

thet(k)s, and not individual coefficients. Itis, therefore, impos-

sible to determine only the model coefficients, no matter hoWg. 2. Rate of decay ahaxo <. <., [r7(7)].

long the input signal and how large the length of the period.

Therefore, no matter how large the period, in the worst case, thd.emma 2: For almost all real numbers € IR, the worst case

unmodeled error will couple with the model-set dynamics. auto correlation of the sine sweep in (26) is bounded away from
To get a better handle on the situation, we appeal to identificzero, i.e.,

tion of one-parameter models. The situation when observations ) .

equations are linear and the residual error and noise belong to hmnsup ojax [ra ()l = 1/2. @7)

convex and balanced sets has been described in detail in [30]. It -

can be shown that, for the simple case of one parameter model, Proof: See the Appendix.

a linear algorithm is optimal in achieving the minimum para- This means that in the worst case we will have the following

metric error. The least-squares algorithm is a linear algorithifoperty for the least-squares algorithm:

although not necessarily the optimal one. However, it does lead

us to understand what conditions on input need to be satisfied. limsup sup ||G(T)—G"|| = ~/2

Suppose we apply the least squares algorithm (for the one-pa- no eI

rameter FIR model). Then, the resulting unmodeled error ¢

Lo 0§i_nce, a chirp doesn't suffice, we introducehagher-order
tribution is given by

chirp, i.e.,
<Z(u2(s))l > uls) Y tk)uls — k)) w(t) = exp(iat®), acR, t=0,1,2,.... (28)
s=0 s5=0 k=1
& We have the following important property for such class of sig-
= (2 (0) 1 Y ()H(s), nals.
s=1 Theorem 2: The signaku(-) of (28) satisfies

Therefore, for consistency to hold, we need the autocorrelation log(n)
terms of the input to vanish uniformly. In principal, we canalso  max | !(7)| < L(«) s ,
use filtered inputd™u whereF is a causal stable filter andhas O<rsn—1 v

vanishing auto-correlation terms. This is based on the fact th%[r almostalke > 0, exceptfor aset of Lebesgue measure zero

N Remark: The higher-order chirp is persistently exciting of
ru(k) ‘ ) infinite order.
r:(0) Proof: See the Appendix for the proof.

Fig. 2 shows a plot of uniform decay of the autocorrelation
However, the fact remains that, at a fundamental level, thereteems with length of the higher-order chirp. Another signal that
a signak, such that the autocorrelation terms uniformly decagatisfies the uniformly decaying auto-correlation property is the
to zero. It follows that our objective is to search for such inputgandom i.i.d.process, as the following lemma shows.
Periodic inputs do not satisfy the uniformly decaying correla- Lemma 3: Supposex(t) is a discrete i.i.d. Bernoulli random
tion, and pulse inputs are not persistent. Therefore, we examgiecess with mean zero and variance 1, then
the swept-sinénput as the next candidate

w(t) = expliot?), a€R, t=01,2,... (26) P {oglﬁé‘n I (F)lle = "‘} s nexp(=nfa))  (30)

L(e) >0 (29)

n

(ri(O) H Y Fk)ri(s — k)

k=0

< ||F|ly max
0<k<n

which, as the following Lemma shows, fails the test of unwhere(«) = 1 + (1 — «/2) log,(1 — «/2) + (1 + «/2)
formly decaying correlation. log,(1 + «/2).
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TABLE | unmodeled error by using as the realization of an anticausal
MPE b oforderm system an'd filter the outpu, Wlt.h this sysFem. This amounts
Set-membership | Galois sequence to multiplying (33) by the following matrix:
MUD Continuous spectrum 01 0
Q=001 0

Application of the higher-order chirp input is equivalent to a
random input in the following sense. If with a higher-order chirghe resulting output upon algebraic manipulations can be
(noise model is white Gaussian) written as the equation at the bottom of the page where
A(Un) = (O,U(O),u(l),...,u(n - 2))*! Ak(Un) =
ANYU) andA~H(T,) = (u(1),%(2),...,u(n — 1),0).
} <6 (31) Because, the input is chosen such that and A¥(U,,) has
vanishing correlation property, it follows that the residual error

) ) ] B is perpendicular to the model output. Therefore, we see that the
then, with arandom input, we will have that the probability therginimizer of the following problem:

is a random input: such that the same event . n—oo
P (UrU,) " U, QY,, = argmin||QY;, — gU,|| "==" t(1)
geER

Pwq sup ||G"=G(T)]| =€
TEI(y)

{Pw { sup |G — G(D)|| > 6} < 6} (32) Will converge tot(1) which is the model in the model set that
TeT () minimizes the unmodeled error. In summary, the anti-causal fil-
tering results in separating the measured output into two compo-
occurs has very high probability. In other words, almost eveRgnts—model output and error—which are approximately or-
input sample drawn from a Bernoulli distribution will also typthogonal to each other with an approximate selection of the
ically satisfy uniform convergence of the parameter estimatd8put. In this way the second step is the usual parametric es-
We summarize the input conditions in three different setting ffnation for the exact case. Fig. 3 illustrates the approach. The
Table 1. extension of this approach to other cases will become clear at
Revisiting the FIR ExampleEquipped with these inputs, wethe end of next section. For now, we outline the following steps:
revisit the FIR example and apply the familiar least-squares al-1) obtain a decomposition of the system in to a model and
gorithm to form the estimates. We will decompose the least-  unmodeled dynamics;
squares algorithm in a novel way—as a combination of an- 2) determine the annihilator (filter) of the unmodeled part;
nihilation of unmodeled dynamics followed by averaging the 3) pass the output through filter;
noise—to derive a general method to target other cases. Con4) cross correlate the filtered output with the input.

sider the LS algorithm Observe that the cross-correlation step and the annihilator step
can be interchanged in the following sense. Instead of filtering
n m—1 2 the outputy, we may multiply the outputy,,, by the upper
G" = argminz y(t) — Z g(k)u(t — k) toeplitz matrix,I',,(u)* [see (1)], and then annihilate the re-
() =0 k=0 sulting vector,l',,(#)*Y,, with the annihilator. This latter ap-

1

(T () Do () LT ()Y, proach is particularly well suited for non-Hilbert spaces, such as
= — nlU nlU nlU n-
n

banach spaces, for which an annihilator cannot be characterized
explicitly. We only know that the residual-error is aligned with
As a special exampleonsider the problem of identifying the . In this situation, after denoisin@', («)*Y,,) itis possible to
second impulse response coefficient of a systensing a least- formulate an optimization problem based on the alignment con-

squares estimator. Consider dition to compute the model-estimate, thus indirectly applying
the annihilation step. We will see how this is done when we dis-
t(0) 0 cuss/; identification.
t(1) t(0) 0o -
Y= : : : : Un + Wh. (33) VI. |DENTIFICATION IN H?

t(n) tn—-1) --- #0) We consider system identification in ¥ space largely for
historical reasons. In many instances, optimal estimates on other
The impulse-response sequence of the optimal model is giveyaces can be derived using parametric estimates obtained by
by (0,#(1),0,...), and that of the unmodeled error is given byassuming &¢* topology. Finally, we believe the analysis that
(t(0),0,%(2),...). Therefore, the annihilator for the unmodeleaill follow has implications in the context of detection and es-
erroris given by = (0,1,0,0...). We attempt to annihilate the timation in signal processing, a line of thought which we do not

Error

QYn = HD)U,  +(H2AU) + A (Un) + ) + HOATH(U,) + QW

~—_—
Model Output
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Proof: SinceZ’()\) is an element of a closed Hilbert space

w ~
H? we know thatl’ can be decomposed as
y . T . .
— 7 T\ = 19£ G)A +AQ), Aegh (38)
From Cauchy’s integral formula, we have that
. AN
F F Ala)= | —2% g\ =
(a) / oo =0 (39)
Hence, now using Wiener's theorem on analytic functions and
i i by hypothesis, we know that
AN = (A= a)Aa(N) (40)
wf -
for an arbitrary analytic function,(-) € ¢;. It remains to show
ug s that||All; < L(a)y. To prove this, consider an eleme#it €
—_— G {0) |T — 6(1 — aX)7t|]1 < ~}, which exists by hypothesis.

Then, we observe th#(T") — 6*| < 2~. Therefore, it follows
that

Fig. 3. Process of Identification.

T = GOl = 1T = 6" (1 = aX) 7|1
explore here. With these prelimnaries, consider the sp#ce L(a) N
which consists of the space of infinite sequences satisfying S 2 6(T) = 67| < La)y
M2 — {T e T|IT|2 = Ztrace{t(k)t(k)*) < OO} \évtr;trafL(a) is some constant which only depends on the pfram-
k=0 o

We will now present the application of the two step algorithm,

Supposél1, T € H*.The inner product is then defined as  at the end of which the estimator will be precisely described.

o0 As illustrated before, it consists of two steps—annihilation and
(11,Ty) = trace <Z tl(/@g(/@) (34) cross correlation with the input—which we present below.
k=0 Step 1) Annihilation
On account of the fact tha¢? is larger than the space of BIBO Consider the input-output equation which we
stable operators we restrict oapriori set as follows: \f/v“te elaborately for the sake of transparency as
ollows:
o) ={TerlmniT-Glusaf G ryoq e 0 - 07w

W |80 &0 - o ||u(D)

whereg, as in (11), is a space of linearly parameterized stable v ) =

finite-dimensional operators. Let

G(T') = argmin||T — GJ». (36) y(n) 6(n) e e 8(0)3 Luln)
GcG 1 0 B |
. . . . 1
SinceT belongs taH?, G(T') is unique. We next discuss SISO 52 u (1) 0 8
and MIMO cases separately in the sequel. +0 i
: 0
A. SISO Systems and One-Parameter Models a® a*t oanT? 1
The SISO identification problem follows by straightforward u(0) w(0)
extension from the case of one—dimensional (1-D) parameter- u(1) n w(l)
ized models. To this end, let : :
G={6(1-—aN)"0ecR, |a < 1} u(n) w(n)
be the one dimensional subspace of SISO stable systems. The In the annihilation step, this equation is premulti-
following proposition will enable us to characterize the unmod- plied by the following annihilation matrix,,:
eled dynamics. ) N
Proposition 2: EveryT € Z(«) can uniquely be written as (1) ‘1‘ a 271
a a
~ ~ Q(T) I A = ’
) =AM+ 1Al < L(a)y, Aa) =0 (37) n =

1—aX’

whereL(a) is a constant depending only on the pole location 0 v e .- 1
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Denoting the resulting output by the symbglwe

get
2(0) w0) 0 0 7 [5(0)
zg) . %n 7@) ? 59)
(n) wn) un—1) w0y Ls(n)
] e
FOAAL | AL (41)
u(n) w(n)

where, for the first term we have used the fact that
convolution is commutative. Therefore, the convo-
lution of A with « can be equivalently written as the
convolution ofu, with A. We are now ready for our
second step.
Step 2) _Cross correlation

The second step consists of cross correlating the

outputz by the inputw, as follows:

(42)

> 2(k)yu(k)

k=0

S|

The above summation can be broken into three
terms: the first corresponding to the unmodeled
error, the second corresponding to the model output,
and the third corresponding to the noise contribu-
tion. We first focus on the unmodeled tet,,,q4,
which can be simplified in a straightforward manner
to read

Ammz%m@,nwm»%

w0) 0 - 0 7 80)
w(1)  w(0) - 0 || 8(1)
w(n) un—1) w0yl Ls(n)

Again, since(u(0),u(1),...,u(n)).A, is a convo-

245

This equation, upon algebraic manipulations, sim-
plifies to

-J+1 . . .
urnd— ZGJZ n4+1 — = T J(k_l)é(k)
=0

- Zafrzz—f(om)

7’L—J+1 g
+Z n+1 T
7,k=0

kit

(k= 5)b(k).  (43)

The second term in the last expression can be easily
disposed of by appealing to the fact that the auto-
correlation coefficients for any lag not equal to zero
uniformly decay to zero, i.e.,

n—j+1 ,

max | (7))
o<r<n n+1
< Colog(n —‘.7) n—j <Gy 108‘(”)7
n—J n n
j=0,1,....n.

Therefore, the second term can be bounded as fol-
lows:

S ik - 5)6k)

4,k=0
ket
2 n IOg(TL)
< Coll+fal +af"+ - + o)l AL =75
log(n)
< Cxy
N

Now, as far as the first term in last expression of (43)
is concerned, we observe that

n—j+1 ., 1 9
—— " (0) =7(0) - > k),
n+1 n+1 W1
n>=j3 >0

Therefore, the first term in last expression of (43)
can be rewritten as

lution, we can interchange their order. This aIIowE": i
u

us to rewrite the unmodeled contribution as

7an)

. n n—j+1 1
diag 1’71—i—17 T on+1 ""’n—i-l)
r 7u(0) 7u(1) 7u(n)

AN ) e e o)
L 70 (n) 0(n—1) 70 (O)
r6(0)

6(1)
| 5(n)

n

> (k4 1)aks(kyP(n — k+1).

k=1

(niéakmk—

Py n—+1

The first term of the above expression approaches
A(a) = 0 and, sincd|A||; < +, it follows that this
term approaches zero at an exponential rate equal to
|a|"*T1. The second term of the above expression is
handled as follows:

§:k+1 win —k+1)
k=1
1 d 1 5y
— Al £ Co—.
_n—i—lHd)\l—a)\ 2” l2 < “n
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Putting all of the above computations together, we
have A
log(n)
Aurn < O
|Aumal < Cy Jn
It now remains to analyze contributions from model v
and noise terms in (42). The noise term can be han- O G
dled in a straightforward manner
w(0)
1 w(1) y W
w(n)
. - E n " log(n) Fig. 4. Identification of model(+, in a closed loop situation by means of a
= Z ary,(k) = O . dither signalu.
k=0 \/ﬁ
Finall, we note that the model outputieast-squares algorithm. The question arises as to whether there
[1(1/n)(u(0), .., u(n))An|[3 (except for a scaling is any advantage in executing the identification problem in two
by the paramete#(1")) satisfies different steps. The results obtained here address some of the
1 2 drawbacks pointed out in Section IV. We have shown that the
linhinf ;(u(O), cnum)Ay > e > 0. convergence rate does not depend on the convergence rate of
’ 2 residual error. Also, the convergence result holds for a larger

In this way, all the terms except the model outpuflass of unmodeled dynamics (here as opposed to exponen-
vanish, and we are now ready to state our result. tally decaying(AZ, p) type errors typically assumed in [15]).

Theorem 3: The least-squares estimator given by However, these differences, although significant, does not point
n n—i to any advantage in a two-step algorithm. There are two prin-

6" = (|| Pa(1 — aX) " Lu) 7t Z Z aFy(i + k(i) ciple contexts in which such algorithms gain importance. The
i=0 k=0 first situation arises when the input is colored the second arises

when the topology on the system space is a general Hilbert—Ba-

nach space. We will present, in this section, an example of the

sup  sup 6" — 6(T)||2 < (Lo(a)y + Li(a)) [log(”)} first situation. This situation arises commonly in the context

TETL(v) wEW,, vn of closed loop identification and will be elaborated in a forth-

(44) coming paper. The second situation is discussed in detail in sub-
sequent sections.

th;%;r(lg)ly'%rgg)slzc?ocn?jntséﬁr:t qnei():z)dgrgszgl);gnacco ot of EXample 2: Consider the following numerical example
' . ' u here the system input is a filtered white noise signal

noise, and is the same as when there is no unmodeled error. 3iyhe

with the chirp input of (29) satisfies

first term arises on account of unmodeled dynamics. We see that model output Residual Error

the error uniformly approaches zero and scales linearly with the 9 - A~ <
size of the unmodeled error. Upon closer reflection, we see théf?) = qu(t) + (A= 2 A Wu(t) + w(t)
the error is completely independent of the norm of the system, 1

LAk <1, W= w e N(0,0)

i.e.,||T]|, which is a real improvement because the convergence ¥ = 1 9\
in the parameters only depends on how_good t_he approxmatwﬂere the real systeffi has been decomposed into the model,
of the real system, with model sgtwas in the first place. We

also notice that the convergence of the parameters does nottCH;e: 1/(1—.2A) andA—.2(A,) as before. We further postulate

: ; atthe filter, W, is unknown except for the fact thig' ||, < .
pend on the convergence of the residual errors in any manner. . . . S =
. . . Jowever, the inpul? « into the system is known. This situation
These answer some of the questions that we raised in Section . . e .
) g . arises in the context of closed-loop identification, as shown in
IV in the context of discussion of MPE. . : . X
T : . Fig. 4. The input: can be thought of as a dither signal employed
Remark 2: A similar result as in Theorem 3 holds in the sto; ~: e .
) . : . . _for identification purposes. The second term in the above equa-
chastic setting too. This can be described for the LS estimajor . . :
as follows: 1on will then be replaced byAw)(t), wherew, is the input to
' the real system as shown in Fig. 4. The filt&€ris generally un-
<5 > (2 21 1 known in this situation, since it is an LFT of the controller with
= - 5. the unknown system.

h ¢ dh i finitel Returning to the example at hand, we can rewrite the above
The proof presented here generalizes to any finitely parametg&—uaﬂon in a manner suitable for formulating a prediction error

ized family of stable models. At this point, it is interesting t?f&inciple. To this end, letp(t) = (1 — .2X) " Wu(t), s(t) =

Pwus sup [|07 —6(T)||2 > ¢
TEI(y)

compare the algorithm presented here with MPE and IV techy 2)A Wu(t) + w(t). Then, we have that
niques. Although we have separated the annihilation and corte- ' ’
lation into two distinct steps, the combined effect is essentially a y(t) = ()0 + s(t).
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Fig. 5. Comparison of least squares and annihilation-correlation approaches for correlated inputs.

Now, the least squares works only wh&r(¢)s(¢)} = 0. B. MIMO Systems and Finite-Dimensional Stable Models

However, when the input to the systeiu, is colored, this  the \MO case turns out to be very similar to the one-param-
is no longer true. In this case, the residual error is correlatgfl case, except for minor complications arising out of the need
with the input. In point of fact, Fig. 5 shows the behavior of, he compatible with vectors as opposed to scalars. To simplify

least squares estimates with the length of data and it is seen {H@tnotation, we introduce the following decomposition of the
the estimates do not converge to one (which is the right answefarix B-

The typical means by which this situation is handled in the MPE a m

paradigm is to form a predictog(t/t — 1;6), for y(t), where B=>" wy;H;, oy €R (45)

the notation implies that the predictor should form the estimates j=14=1

based on previous measurements of inputs and outputs anddhe H;; is am x ¢ matrix with itsijth element equal to one,
model parameted,. The parameterg are then picked such thatand all other elements equal to zero. Following on the lines of

the mean-squared prediction error is minimized, i.e., Section VI-A from Proposition 1, we have the following result.
Lo Proposition 3: EveryT € H? can be written as
6 = argmin- > ly(t) — y(t/t — 1) T =A(T)+ Q(T), GT)=argmin||T — G||a.
t=0 Geg

Without going into the details, it suffices to say that such a ZH;;(A*)’“C*(S(I@) =0, Vi, j.

procedure will amount to asking for identification of the entire b—0

system, i.e., the model along with the unmodeled error. Aparhe algorithm will be described next.

from the fact that this question will lead to an explosion in 1) First, we filter the outpug through the adjoint system as
sample-complexity the solution is generally difficult to obtain. follows:

On the other hand, our objective is to identify only the model. . .

In this regard, the annihilation followed by correlation step is 20tk = 1) = A"zo(k) + C7y(k),  wo(n) = y(n)
extremely useful. We rewrite these steps for the sake of com-  #j(k — 1) = u(k — 1) (H;jxo(k — 1)) 4 2i5(k)

pletion here. Letz(¢), ¢(¢) be given by filtering the outpuy, Vi, 5. (46)
1, respectively, with the annihilating filter, as in(41). Then, the 2) Next, the input is processed as follows, first through the
estimate fol¥™ based on length of data is given by model subspace:

. " Tt zij(k) = Awij(k — 1) + Hiju(k),  @i;(0) =0,4,j
o = <kzzo U(k)</>(k)> kZZOZ(k)U(k)- viij (k) = Cij (k)
and the outpuy;, is then processed through the adjoint
The resultis shown in Fig. 4, where it is seen that the estimates fijter
rapidly converge to the right solution. We will not ponder here (k= 1) = Ay (k) + Css (k) () = 41, (n)
as to the implication of this result, but only note that the anni- Yij = Avig(R) + Crwgk),  woln) = vigin
hilation-correlation principle has a scope outside the domain of Zijx(k — 1) = u(k — 1)* Hiqvij(k — 1) + 25, (k)
traditional algorithms encountered in classical identification. Yk, 1,4, j. 47
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3) DetermineB™ = ZU aH;; whereq; is the solution H*, which is also known as the Hardy—Sobolov norm. The
to following set ofrmq equations: notation will become clear shortly. Consider systefsand

m q Ty € H*'. By Parseval’s theorem, we have
Yo igztinal0) = 245(0). 4.4

27
= (T By = o [ 5 (expif)Ea(exp(i6) 46
The following theorem states that the estimBteconverges to 0277 - . . .
the optimal. +/ d17 (exp(if) dIs(exp(if) (51)
Theorem 4: The estimato3™ satisfies 0 de do
sup sup ||B" - B2 < qulog(n) The reason for the notation should now be clearf the norm is
TEL () weEW, n defined by summing th&(> norm of the operator with th(?

whereL is some constant that depends only on the mattitesO"M of its derivative [see (51)]. We will mainly concern our-
andC selves with such spaces for simplicity in notation. Also, in [39]

S@'md [32], we have shown that we can go even further by syn-
thesizing nonconservative robust controllers agahist type
uncertainties. This follows from the fact that the image of an
H?1 ball is an ellipse at each frequency. Based on this fact,
a novel IQC approach is developed for robustness analysis for
As we have seen, thi® metric lends to designing efficient structured perturbations. Furthermore, the set of all robustly sta-

algorithms for identification. Tractable robustness analysislizing controllers is derived. These factors sufficiently justify

problems are usually those that can be reduced to analyziweloping identification results.

the stability of a system(s, that is perturbed by an element With these prelimnaries we next discuss the identification

belonging to an uncertain unit ball in the topology undesroblem. As before, the class of systems belong to following

consideration. However, unit balls if¢> allow unstable prior:

systems and it is not clear how one can analyze problems of

this nature. To deal with this problem we introduce a class of Z(y) = {7 € LTI| || — G||»=1 < 7, for someG € G.}

topologies that have the Hilbert—Space structure and yet satisfy (52)

the requirements of robust control. The robustness analysis and

control for such topologies have been dealt with in [39], [32)s in the previous section, the identification is carried out in

Proof: The proof is a direct extension of the 1-D Sl
case, and is omitted.

VII. HARDY—SOBOLOV SPACES

and we deal with the identification problem here. two steps. The first step is the annihilation step. In order to do
Supposé” is a normed linear vector space defined by s e need to characterize the separation between unmod-
o eled dynamics and the model parameterizagioim the familiar
H(r) = {T € T | r(k) tracdt(k)t*(k)) < OO} (48) one-parameter model parameterizatidn= 6/(1 — a)), this
k=0 separation is particularly easy given by

with the inner product defined by -
T
ucy +AT), AD)=> O(k) i

0 T =
(T, Ta) = > r(k) racety (k)5 (k)) (49) L—a) pr Qi
k=0 (&S}
k 2
wherer(k) is a positive-weighting function that is monotoni- DN =(A—a)z,  zeH
cally increasing and satisfying the inequality k=0
r(k) > klog(k) + 1. In order to perform the annihilation step efficiently, we need to

define the adjoint system. As the reader may recall frontife
Then, the class of systems will all bedn This gives a Hilbert- sjtuation, the annihilation of the unmodeled error is obtained
space structure with norm denoted bfr). This structure is py running the input and the output of the system backward
useful in the context of identification. As a pOint of digressiorthrough the adjoint System_ We now construct the adjoint System
observe that by setting(k) = p*, p > 1 we obtain the fa- £, Since, the model parameterization is finite the adjofil
miliar class of functions that are analytic on the disc of radiygso be finite and is the adjoint of the state-space realization of

1/p. The salient feature of these class of topologies is that th@s impulse response function given fy 2a, 5a2, . . . , (k2 +
are stronger than botH,, and/; as the following proposition 1),* )
shows.
Proposition 4: Supposél” € H(r). Then, [ A B
F
1Tl < 1Tl < COMT 3. (50) | G| Dy

— 2 3
Proof: The proof follows by the usual Cauchy—Schwartz 36 @ _31/ @ 1/()“

1
inequality, and is omitted. [ | _ 0 (53)

The norm may be motivated in the frequency domain for the 0 0 1 0 '
case whem(k) = k*+1. We denote such spaces by the symbol, L —2/a 1/a> -1/a® ‘ 0
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Following along the lines of{*> case, we are now ready to To this end, consider the 1-D case, i.e., giEnc H, the
describe the algorithm which involves annihilation and subsebjective is to determin&(7") where,
quent averaging with the input as shown schematically in Fig.

e 6(T) = argmin
3. Specifically, we have () egeR 1—aX|2.

from inputsy andw. For simplicity we consider the noiseless

T —

(59)

371(/{} - 1) = Alxl(k) + Bly(/{}), 371(71) =0 (54) case here, i.e.,
z1(k —1) = w(k — 1)(Cra1(k — 1) + Diy(k — 1)) + 21 (k) y(s) = Tu(s), s=0,1,....
(55)

The question arises whether there is a weighted least-squares
z2(k — 1) = Ayza(k) + Brup(k), z2(n) =0 (56)  criterion such as

2

) (60)

22(]{} - 1) = U,(l{} - 1)(01372(/{} - 1) + Dlufl(k' - 1)) + 22(]{}) 0
where0 < w(t), so thatd® — 6(T) uniformly over all

no__ H 2
57) 6" = argmin» <v () ‘y(t) - )
T € Z(v). The input, in this case, is assumed to be a Bernoulli

bER ;0

whereu s, = (1 — aX)~tu. The estimate foé(7’) is given by

process. To simplify the notation, lgt, = (1,a,a?,...,a")",
g — #1(0) V, = diag{v(0),v(1),...,v(n)}, R, = diag{1,2,...,(n +
22(0). D241}, A, = (8(0),8(1),...,8(n))*. The weighted least

) squares algorithm can be characterized using the projection
We can now extend the algorithm for the MIMO case as Wellegrem. The optimal estimate at timesatisfies

The following theorem characterizes the decomposition. n
Proposition 5: Consider the model spaggin (11). Every 202(3) <y(3) L < ! u) (3)) < ! u) (s) =0.
T € ‘H?! can be written uniquely as =0 1—aX 1—aX
This implies that
T=G(T)+ A(D), n

SR+ DH (ADFCL8(0) =0, Vi j 2V (st + 0 -0 (2 50) )
() =0

k
wheref;; is as in (45). L Therefore, the expected value of parametric effor ¢(7) can
Proof: The proof follows from the projection theorem ONye characterized by

Hilbert spaces, and is omitted. [ | _ ) .
We follow the steps for the(? identification problem and ob- E{([Val'n(w) Anl|2)0(T) — 67}
tain a similar estimator except for minor changes corresponding = E{(0n () A V2T, (WA} (61)

to the processing. First, we determine a state-space characigil-concentrate on the LHS of the above equality. It follows that,
zation, Ay, By, €1, D, of the adjoint operator as we did in (53) oy the Bernoulli input, there is a constafit> 1 such that
Next, replace the matrice$, B, C, andD by A;, By, C1, and -

D; in (46), (47). We have the following theorem for identifica-

2
tion on 31, C M <1
Theorem 5: Consider the setup given in (2), and the estimator ST v(t)
B™ derived as described above. Then, =0 o
Therefore, the expression on the LHS of (61) can be simplified
log(n) as
sup  sup [|B" = Bll2 < Lypg— = (58) _ n

A ILz.1 <y wCW, vn E{([Valn(w)Aal316(T) — 67 ])}

. : . S v3(t)
wherelL is a constant depending on matricésandC. < [ =0 =(10(T) — O"

Proof: The proof is identical except for the fact that = C =te() - 0"}

an ¢; bound on the unmodeled dynamics is unnecessary

ro. . . .
|A]l22: < ~ by Proposition 4 suffices. fl@ow, it follows in a straightforward manner that the RHS in (61)

can be simplified to

A. Analysis of the Weighted Least-Squares Algorithm E{(Tn(w)An) Vil n(w)An}
Recall that, in Section IV, we had pointed out that there are S ~ — 2
L ’ R . i = A’ dia t), t),..., A,
several situations where the annihilation-correlation algorithm ™ g{;” ®) ;U ®) v (n)}
gains significance. We showed one situation when the inputs — A" H,(v)A

are correlated in Section V. We will present a second situation i . n y

here where we show that for the general hilbert space topoloff§€re Hn(v) = diagid>J_ov™(), oo, v*(¢), ..., v*(n)}.
presented in the previous section estimates based on generaliya$: We also know that, for any there is a length such that
least-squares algorithms do not converge to the right solution. |A Ry An| € Co(n? + D]a"™ = — 0
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Therefore, lettings,,(v) = (3, v*(t)), we have It can also be verified that these minimizers are unique. So,
={6(T) — 6|} the set of minimizerg.,,;, is given by B
. Hn(v) gmin = UG(T) = {(1 - )‘/2) 70}
z |A;}£§§1|<601An on(v) An which is not a convex set.
Ho(v) Motivated by these issues, we solve the proble adentifi-
>C; max A" n cation indirectly. However, we will see that there is a direct cor-

|45 oA =0" " 0 (V) respondence with the Hilbert-space case and the two-step algo-

A" <Rn _ /3H" (”)> |Anllz > Cs||An];  fithm. For the sake of simplicity, we only consider the one-pole
on(v) /5 case in this paper, i.e5, = §/1 — a). The general case extends

In this way, it can be seen that no matter what weigftsare N Straightforward way and is omitted. The estimator is obtained

chosen, the parametric error upon application of any weightBY Solving the following convex optimization problem:

least squares algorithm will always be bounded away from zero.

> B min
> A

. n . —
We have, therefore, established that the annihilation-correlation?” = a[)gf)l;'”z (7)) =0 > TR
algorithm is essential for robust convergence in general hilbert =0 he=—r
spaces. In this way, we have shown two instances where the (63)
annihilation-correlation methodology succeeds while the traditherem = O(log(n)). The optimization problem can be
tional MPE paradigm fails. readily converted to a linear programming problem by standard
manipulations (see [22]). The reader will recognize that the
VIIl. | DENTIFICATION IN #; formulation of the optimization problem is a consequence

of the de-noising procedure discussed in Section V, i.e., is
L (w)*(Y,, — 6, (uw)A,,)/n whereA,, is as defined in Section
VII-A and T',,(u) is given by (1). The second step is approx-
Z(y) = {T e LTI|||T = G||¢, <, forsomeG € G} (62) imately a “disguised” version of the annihilation step. To see
this notice that,

6(T) = argmin||T — 6(1 — aX) ™|,
fER

We now turn to the problem of identification in tiige norm.
As before, the procesE is an element of () given by:

and we want to find an estimatd@¥,* € G based on a datarecord
of lengthn that converges uniformly to the best-approximation

[as stated in (19)]. In the previous situation, the Hilbert-space oo

structure readily allows the construction of annihilators for the = Z sgn(6(k))a* =0,
residual dynamics. Unfortunately, this is not possible in#he k=0

situation. To see this, we characterize the decomposition in the §(k) = t(k) — 6(T)a", k=0,1,....

form of a proposition below:

F : i The fact that the Banach-space optimization above is equivalent
Proposition 6: The following statements are equivalent:

to the optimization problem of (63) will be proved next. The

1) 6(T) € argmin g7 — 6(1 — aX)~*|; main point to notice is that the second expression in the above
2) T = G+ AforsomeG € G and{v, A) = [|Al|; where equation is exactly the “orthogonality” condition that was im-
v € {(A —a)z|z € Loo} N Bloo, posed between the residual error and the model subspace in the

Close observation reveals that the residual error is aligned witiibert-space situation. We have the following theorem for the
some element of . However,G being infinite dimensional, behavior of the estimator.
it is not possible to “narrow” down the “set” of all residual dy- Theorem 6: The estimate given by the solution to the opti-
namics so that a finite set of annihilators for the “set” could baization problem in (63) satisfies (64), shown at the bottom of
constructed. More importantly, the decomposition is not convetke page, where; andc, are constants resulting from unmod-
A convex set in/; when decomposed into the tuple of modetled error and noise respectively.
and unmodeled dynamics is no longer convex as a tuple, as seeBefore proving the theorem, we wish to point out several
from the following example. implications of the above result. The last inequality follows
Example 3: by choosingm = log(n), thus, the sample complexity is
. O(1/¢%) implying that?; identification has polynomial sample
IT={TehI'=adhi+(1-a)lxac0l]11(}) =1, co(m/ple)xity The sample complexity fof, derived here has no
To(A) = A4 (1—A/2)7"} bearing on the parallel result fé in the context of set-mem-
andg = {6(1—1/2) 1|0 ¢ R}. We see from Proposition6andber5hip _identiﬁcation (see [5] and [26_]), where the_s_amp_le
the fact thatf} is aligned withG " that G(T}) = 0. Similarly, complexity was shown to be exponential. However, it is still

we deduce thaf(1») = (1 — A/2)~*. However, now worth pondering the difference between the two approaches.
' ’ As the reader may recall, in set-membership identification, the
G(T(a)) =(1—=)\/2)7%, Va#l1. uncertainty due to unmodeled error has a redundancy with the

. _ _ c1v + ) log?(n
sup sup | [T = 6"(1—aX)~Yy = |7 = 6(T)(1 — aX)"|1| < (17 + e2) log™(n)
TEL(v) wEW,, n

(64)




VENKATESH AND DAHLEH: ON SYSTEM IDENTIFICATION OF COMPLEX SYSTEMS

251

parameterization. This accounts for the fact that the minimufihe second inequality follows from the fact that the first term in

achievable diameter of uncertainty 2 and this results in

the middle expression is the optimal solution to the optimization

exponential sample complexity. These factors prove to peoblem in (63). Next, notice that

critical in obtaining vastly different results.
Proof: The theorem is proved in several steps.

Lemma 4: Let 63 be the solution to the following optimiza-

tion problem:
v = argmin| P, (T — 6(1 — aX)™H)||1.

Then,

|17 = 65" (1 = aN) 7 |L = 177 = 6(T)(1 = aX)Hl1| < Coya™.
Proof: The following set of inequalities follows by defi-

nition:
| (T — 65 (1 — aX)™
and

Dl S NPT = (1) (1 = aX) )]s

1T = 0(T)(1 = aX) 7ML < (|7 = 65 (1 = aN) 7 a.

Together, these result in the following sequence of inequalitie%.

[ Pon(T = 65" (1 — aX) " H)]lx
(= Pu)(T = 6(T)(1 — aX) ™)k
ST —6(T) (A~ aN) ML S |IT — 65 (1 — aX
Therefore, we have that
0 < [|Bn(T = 8(T)(1 = aX)™ D)
— |Pn(T = 65" (1 = aX) D)1y
< = Pu)(T = 65" (1 = aX)7Hlu
— (I = Po)(T = 0(T)(1 — al)
< a™||(65" — 0T (L — aN) 1.
Now, from the definition ofZ(v) (see (62), it follows tha#*
andé(T) should satisfy¢j* — ¢(0)| < v and|8(T") — ¢(0)| <
~ respectively. Thereforg¢y® — 8(T)| < 2+. The result now
follows. [ |
Our next step will be to relatéy’ to 8™ of (63). To do this,
we rewritef™ in (63) as
0" =65 + 09",
With this notation, we have the following lemma.
Lemma 5:

)~ -

Il

007 < ¢y

wherec is some constant.
Proof: First, we observe that

zc(a)|80”|
m | n—7
|89n|z Z CLk+‘r n— ‘r
7=0 |k=—7
m n n—r
n m n k+7 n—7/7.
S 7yu(’r) _(90 +a ) Z a Tu (k)
n—T
7= k=—7
m
+Z _enlzak+‘rn‘r
n — T
T= k=—71
m
SZZ _e(r)nzak+‘rn‘r
n— T
=0 k=—71

ni t(k + )7~
k=—7

Now, from Lemma 4, Theorem 2 and (6), it follows that

T) =0 aMTrT (k)

k=—7
m(cay + ¢w) log(n)
n
(where¢,,, appears on account of the noise contribution). It now
follows from the above equation and Lemma 4 that

17 = 671 — aN) s < e (65)

With these prelimnaries, we are now ready to prove the theorem.
onsider

(k) (k).

m

n
2 [l

7=0

< coya™ + a1y +

-0 ’f ak+77’;”_7(k)

k=—71

m n
min E TyulT)
6CR n—r
7=0
m

<1n111 ZP (T —6(1—aX)™)

k=0
+ Z —0a7 YR (r — k)
=0,7#k
£ k)
k=0
AR iy 1P, (1~ 61— a) )

wherel;, [, are constants. The last inequality follows from (65).
Settingm == log(n), the result now follows in a straightforward
manner. |

The important fact to be noticed is that the sample-complexity
is independent of the size of the parameter. Thus even though
the priorZ() is unbounded it does not affect the identification
process. As in thé{*! case, we wish to understand whether an
appropriate signal space optimization will lead to the optimal set
of parameters. Two types of error metrics are of interest—one
based on minimizing the sum of the absolute values

min Y [y(t) tu)(1)]

and the other based on minimizing the maximum of the absolute
value

((1—aX)~

O((1 — aX)"tu)(t)|.
These problems are hard to analyze and we resorted to simu-
lating the three different approaches (MUD and the above two).
Example 4: For simplicity, we chose the systeto have an
impulse response equal te 1,1,0.... The model parameter-
ization used wag(1 — A\/3)~!. For this parameterization, the
optimal parameter in the sense#fis unique and turns out to
bed(T) = 1. We applied two different inputs: the random input

min e u(t) =
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TABLE Il ural to look at the frequency domain. In the frequency domain
the orthogonality betwee and A will also have an appro-
Process T . . . . .
Algorithm | & | 6° | Bsumated-Brror priate transformation. As we will soon see that this condition
MUD_ 11001100 11 will be redundant for the problem we are about to solve. Taking
i 6 | 5 — the corresponding DFT of the above equation, we get
Moo ~5| 8 — ~ o
= 20 (k) = (k) — Gk — AR)i(R).
and the following input which is the real part of the higher order k=0,1...,n
chirp, i.e., whereg(k), A(k), a(k), (k) are then-point DFTs ofG, A,
VB4l u(_~), y(~_), resp(_ectively._A point of concern is that the DFT oper-
u(t) =R <exp <th3>> . ation will not diagonalize causal operations as above as written
above. For large enough data, the error is insignificant and the
The outputy was obtained by adding random noise of standaabove equation holds. We now need a good frequency domain
deviation equal t0 0.2, i.e., estimate for the Sobolov norm. Recall, that the Hardy—Sobolov
y(t) = Tut)+w(t), t=0,1,...,n; w()=N(0,02). normforaisgven by
The input Iengthn was _chosen to be ?_>000. MUD was imple- 1A en = /277 A(w)A(w)* "
mented by lettingn = 5 in (63). The estimate corresponding to 0
the random input is denotett and that from chirp input is de- 2 A (w) dA(w) ¥
notedd”. The following table enumerates the results where es- +/0 dw Ao dw.

timated error corresponds to the computation of the error based ) i _
on (64). It can be readily shown that, by using Cauchy—Schwartz in-

We observed that minimizing the maximum of the absoluAuality, the estimatg™ given by

value was not stable with random excitation in that the param- . =
eter values kept oscillating. The value in Table Il corresponds to YA = =) (A(k))?
the average value obtained. ™ k=0
Although the numerical example cannot be equated with a n L R )
proof, it should point to the fact that signal-space optimization + a2 Z(A(k) - A(k+1))
will not necessarily result in parameters that are close to optimal k=0
ones in terms of minimizing thé, norm distance between theconverges to thé/>! norm as?(1/n). We organize the data in
model parameterization and the real system. to J frequency bins by filtering them through ideal filter banks

of size2x/.J. It can be shown that for white noise, the following
IX. IDENTIFICATION IN PRACTICE: ESTIMATION OF RESIDUAL  holds (see [23]):

DYNAMICS
icati : (V;, 8" ><14f,, j=01,....0-1
Real-world applications demand that there is a reasonable “

way to validate and estimate the parameters used in the pidrere S7 is the power spectrum of the signal,. Each of
information. In fact, it is usually quire hard to characterize #ese constraints and the cost functipare quadratic expres-
mathematical linear space to which the real process belongssiass of their variables. We now state the following optimization
a consequence, it is hard to verify the validity of the prior inforproblem:

mation. In practice, however, such principles are adapted to the n_1 et
application at hand with the hope of creating reasonable models — 1nin 1 Z(A(@f + Z(A(k) — A(k+1))?
of the process. The effectiveness of these principles stem from 20 dm? =0
the ability to provide models with uncertainty descriptions. Igubject to
this section, we will describe how the error bounds derived In
the last section allow us to estimate both the parametric error 1 Jk+1)—1 .
(error in the spacé) and the nonparametric error (an estimate(V;, 5%, ) = — > @) - gDai)e — Adya(i))?
of the prior~). i=jk
We will only concern ourselves with the validation and es- <145,, Jj=0,1,....,J-1

timation of parametric and nonparametric errors for the idenﬂ-
fication of systems defined on Hardy—Sobolov spaces. It is, (i)r}thogonal property. If not, let the solution Reandan respec-
this space, tha.t the problem r'educes to a quadratic Optimizatlf\)/r(]ely. By hypothesis;, the n'1inimize§s will have a componentin
problem. To this end, we define the directior P,,Go, Go € G, o € IR. Consider nowA — aGy
Zo(t) = y(t) — Gu(t) — Au(t), t=0,...,n, andG"™ + a(Gy as a candidate solution. TheseAsatisfy the con-
(G, A)ppa =0 straints of the optimization problem and moreoxer a(o has
a norm smaller tham.
with the subscripty denoting the dependence on noiseSince The proposed optimization problem can be readily converted

G andA are convolution operations in the time-domain it is nato an LMI (see [1] for details). An alternative option is to extend

should be clear that the minimizing solution will satisfy the
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10' . x T : . T Of course we do not have knowledge of the proc#&$én order
to computed(7T") and only have access to finite data. Moreover,
we want the procedure to work uniformly over all systeins
J that are within a bounded distance from the model-clds3p
illustrate this fact, we solve the problem for two cases: when the
real process i4} and when the real process isfh which have
magnitude response as shown in Fig. 6.

a) ldentification of model-parametersio simplify the
notation we denote the annihilator in state-space as follows:

10

i A | B
] C | D

- 375 —4.6875 1.9531 1
1 1 0 0 0

= 0 1 0 0 (66)

35

| —25 —1.5625 —1.9531 \ 1

Fig. 6. Frequency response Bf andT: used in the example and randomlyy s ; ; ; ; ;
generated sample-ball of systems that are at a unit magnitudd ffbm 0.8 \. allt_h this notation we apply the followmg algorlthm of Section

the algorithm in [12] for the current situation. In order to illus-z1(k — 1) = Az (k) + By(k), x(n)=20 (67)
trate the ideas involved in identification of the model and estiz, (;; — 1) = w(k — 1)(Cwy(k — 1) + Dy(k — 1)) + 21 (k)
mation of unmodeled dynamics we consider a simple example.

Example 5: Consider the systen¥’, whose magnitude re- (68)
sponse in the frequency domain is shown in Fig. 6. This systefie(k — 1) = Az2(k) + Buysi(k), (n) =0 (69)
has been chosen as follows: zo(k— 1) = ulk — 1)(Cxa(k — 1) + Dug(k — 1)) + 2z2(k)
200 (70)
T\ = . AR, AN =D s(k)Ak
1—0.8X ’ — whereu s = (1 — 0.8\)"'u. The estimate foé(T’) is given by
where, g — #1(0)
72(0)
200 —1/2
8(k) = Zé%(k)(kQ +1) 521(k) Th_ese results were compared with the least squares an(_j the
P k+1 weighted least-squares approach. The actual error is the differ-

enced(T) — 6", and the estimated error is that based on data and

whereé (k) = (A — a)v(k) andw, a vector of length 200, was a priori assumptions. To apply the least-squares algorithm we
selected using a random number generator. Notice that, infset prefiltered the input with /(1 — 0.8)). We then estimated
doing, we have normalized () to be of norm 1. The specific the bes#™ that minimized the least-squares error between the
example of a randomly generated unmodeled dynamics is offiltered input and the measured output. We experimented with
significance. We have done so here for the sake of simplicigeveral different weights for the weighted least-squares problem
The results hold for angs of norm smaller than 1. We have alscand found them to be worse than uniform weighting. Recall
chosen the optimal value 6f7T’) to be 1 for ease of exposition.that we made observations to this effect in Section VII-B. As
The class of all such systems has been shown in Fig. 6. a sample, we have used the wei¢iht2a, 5a2, . ..) in the Table

We apply a random Gaussian input of mean 0 and standa&lid The procedure applied in this paper is denoted MUD, for
deviation 1. Noise is simulated as a white Gaussian processwhimizing-unmodeled-dynamics, the least squares by LS and
mean 0 and standard deviation of 0.3. The input—output datdhge weighted least squares by WLS.

of length 1000, i.e., we have, We see two issues at stake: the parametric error estimates and
the unmodeled error. LS and WLS provide poor parametric-
y(t) = Tu(t) +w(t), y=0,1,...,n; error-estimates in addition to increasing the level of unmod-
w(-) = N(0,0.3) eled dynamics. In other words, it is extremely unlikely that the

real-process can be realistically accounted for within the error

From the input—-output datgy, «} we wish to pick a model in bounds.

the clasg = {#/1 — 0.8}, 6 € R} that minimizes the unmod- b) Estimating unmodeled errorln order to estimate the
eled-error, i.e., ' unmodeled error for when the processliswe solve the op-

timization problem presented in this section. For simplicity of
0 exposition we only use a single-filter bank for our constraints.

= 1—0.8X\ HHZ1 In such a situation the upper-bound scales as the noise-energy.

6(T) = argmin
4




254 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 2, FEBRUARY 2001

TABLE 11l
Process Ty
Algorithm | @ | % Error | Actual Error | Estimated-Error | unmodeled-error
MUD 97 3 .03 .06 1.0
LS .67 33 .33 .0002 1.9
WLS .60 40 4 .0002 2.2
Process T
Algorithm | 6 % Error | Actual Error | Estimated-Error | unmodeled error
MUD .99 1 .01 .06 1.01
LS .64 36 .36 .0002 1.95
WLS .58 42 42 .0001 2.3

25 T T T T T T T

—— For each fixed; we can solve forA(x) using Cholesky fac-
L ——  Noisy Estimate ] . . . . . .
2 Norm=200 torization noting that the matrices are sparse. This computation
turns out to bed(nlog(n)). We now need to determine that
value ofy such that

¢(n) = llg — aGe™ —adm)|; = lwl3.  (73)
This turns out to be particularly simple as it can be shown that
¢(n) is a monotonically decreasing function.@fThe solution

magnitude

0 ! ' ! L 1 L !

. frequency (rad) ——»
A T T T T T T T

n Estimate ] to the problem is shown in the bottom of in Fig. 7. The first
asf — Unmodeled Dynamics | subplot shows the noisy estimate obtained by setting
s ” (k) — 0" G(k)u(k)

magnituds
o o

A(k) =

3
T

u(k)
and predictably has a norm of 200, while the second plot shows
the denoised by the optimization problem above. The estimated
2w A4 6 Srom L2n Ldn Ler LEm o 2m unmodeled error is 0.95 which differs from the true value by
5%. This is surprisingly close to the true value of 1 especially
*dcause we only have one filter-bank.

¢) Obtaining the model-parameterizatiorhis is a hard

We also fix the parametric estimatieto be 6" obtained using problem and is outside the scope of this paper. However, since

the MUD algorithm. This simplifies our problem greatly and th&/€ can esﬁmatedthle unmodeled T}rror, I can form ?S a bas's fc(;r
solution can be obtained by applying the technique presentedjﬁpat'ng the model-structure so that it minimizes the estimate

[12]. We first write the cost function using Lagrange multiplierémmOdEIGd error. Thus for the examples under consideration it
turns out that if we change the model structure to 8ay— 0.7\

L o
u_ o
T T

>
B

Fig. 7. Noisy estimate of unmodeled dynamics and frequency respons
actual and estimated unmodeled error.

n—1 n—1 . N . . .
AENZ + AR — Ak & 1))2 the “optimal” estimate using MUD results in a value of 1.64
kzzo( (k)" + 4r? k:O( (k) (k+1)) and the unmodeled-error is 2.02. As a reality check, we also

B computed (77 ) with this model-structure and find it to be close
1 NN NN to parametric estimate of 1.64. In this way iterating over such
o S Al NE™ — Al N2 — a2 . o ) .

T 2 Z(y(‘]) 90U (F)3)" = e model-structures it is possible to show that the optimal model

=0 71 structure is indeed/(1 — 0.8)). Although, computationally
. _ - (71) cumbersome, such a procedure can be fundamentally used to
We make the following notations for ease of exposition: find a good candidate model-structure in the sense of minimal
S, = diag{S7,(0), ST, (1),... 8", (n — 1)}, unmodeled dynamics.
no_ " n n This shows how the proposed formulation provides a tradeoff
Sr = diag{ 5 (0), S (1),... Sl (n—1)}, . i ; .
" > e A . between parametric and nonparametric error estimates using
b= (S, — diag{§(0), 4(1),...4(n — 1)}5,6") measured data and the noise model. The computations are based
and on convex analysis.
1 -1 0
0, n | =1 2 1 0 .- N 1] X. CONCLUSION
R n " In this paper, a new principle for system identification was
o - - =1 2 introduced. In contrast to MPE and set-membership techniques,

The reader may recognize the expression@qras encoding Which prescribe picking a model from a model set that best
the computation of the norm with the first term representing tHiés or is consistent with the data respectively, the principle pre-

derivative component. We are led to the following first orde§ented recommends picking a model that minimizes the unmod-
conditions: eled error. The principle formulated is meaningful when one has

. A a clear idea about the original system as an element belonging
(Qn +ndiag{S., HA = nb. (72) to a complex prior, while the chosen model-set has relatively
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limited complexity. Such problems arise naturally in many in- Following on the lines of Lemma 3 and [5], we can
stances such as identification of time-varying systems where the show that, for any finite subsét of {}\| |A| = 1}
time variation prohibits estimation of high order dynamics and 1 n '
in identification of lumped parameter models for systems gov-P {_ max Zx(t))\t" > a} < Card Q) exp(—nf(a))
N Ac@ - -
erned by PDEs. t=0

The formulation leads to a crisp definition for parametric (76)
and nonparametric components, and, in general, helps stream- where f(a) is as in Lemma 3.
line identification methodology with robust control. The identi- Step2) By Bemnstein's inequality, we know that
fication problem reduces to robust convergence of the param- "
eters in the parametric space in the presence of residual dy- p d Zx(t))\tk
namics and noise. We overcome the difficulties arising from |yj<1 [dA —
residual dynamics and noise by developing novel two-step algo-
rithms, with the first step annihilating the residual dynamics and
the second step amounting to denoising the data. This method-
ology is successfully applied in a number of settings and for orem, we have ,
different topologies. The algorithm developed computationallyk (Ao)| — | X (A\)| < n¥|Xo — A| [X(Xo)], YA e Q. (78)
bears similarities with recursive estimation techniques. How-
ever, the techniques developed here are distinct in a number of

n

3wt

t=0

< n* sup
[A<1

(77)

SupposeX (\) achieves its maximum a, on the
boundary of the unit disc. By the mean-value the-

This immediately implies that

instances such as identification of limited complexity models in 1X(No)| < [ X (79)

closed-loop setting and identification of low order models when = (1= Ao — Alnk).

systems are described in general hilbert spaces. We also show Thus a uniform grid of2n* on the unit-disc will

that the algorithms have polynomial sample complexity in the guaranty that\, — A| < 1/(2n*) for some\ € Q.

number of parameters that describe the model-set for a large Therefore as a result we will have that:

number of instances. Unlike the analysis results in MPE where n

the convergence is pointwise and asymptotic, the results dev/eli ~ sup Z O a} < 2n* exp(—nf(a/2)) (80)

oped here are based on finite-time sample path analysis and hold ™ 1 <1 |1=g

equally well in set-valued as well as stochastic settings. Since,f(a) = O(1/a?) the result is easily verified.
We forsee arich set of extensions of these results and a signifstep 3)  Observe thap 1, =(t) exp(ig(t)) can be ex-

icant set of open problems that need to be resolved. We point to pressed as a multivariate polynomiakinvariables

a few of them here. First of all, it is unclear how the techniques of ordern™ i.e.,

can be generalized to rational model structures. One possible ap- n
proach is to formulate the problem in a behavioral frameworkZ z(t) exp(ig(t)) = Z
however, this is currently laden with many technical difficulties.;=; —0 =1
Another direction is in exploring the application of these ideas n no
in estimation problems. Traditionally, Kalman filtering and esti- = Z x(t) H /\f, Aj = expliay).
mation literature has assumed that the model has no uncertainty, t=0 j=1

and one could fruitfully employ some of the techniques devel- (81)
oped in the paper to address estimation problems in the situ-
ations where there is uncertainty in the dynamics. Finally, we
perceive that these techniques can be immediately generalized
to slowly time-varying systems with little difficulty.

Now, pretending that all variables except for are
fixed we obtain a result similar to (80). Extension to
the multivariate case is straightforward and will lead

us to (7).
Proof of Lemma 2:We first simplify the expression for
(1)
APPENDIX e
ra(m) = |= Y expliat®) exp(—ia(t +7)*)
Proof of Theorem 1:We discuss the case of Bernoulli " i=o
process below. P =y .
Step 1) For a fixed < m, let = |exp(—iar?) ; exp(—i2art)
n |1 —exp(—i2ar(n —7+1))
X (exp(ia)) = <Z x(t) exp(ict®) (74) N 1 — exp(—#2a7)
t=0 1 |sin(a(n — 74 1)7)
Next, notice that we can realize the above expression e sin(ar)
as a limit of an analytic function inside the unit disc. o 1 sin(a(n — 7)7) (82)
In fact, it is a polynomial of orden”: n sin(or)
B Now, if we let~ = n/2 andf3,, = an/2, we obtain
X ="M, A= explia). (75) Rus = L [s(Ban/2) | (83)
—0 n| sin(fB,)
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Supposey is a rational multiple ofr. The expression above will  Step 2) The sine function can be bounded from below by its
be equal to one for a large enoughe Z*. For as that are argument, i.e.,

|rrat|ongl multiples ofr, thg argument is a little more involved. sin(f) > eit, Vee[0,7/2] and

We define the type of an irrational number as follows. Let the

distance between a real numkerand the nearest integer be sin(t) 2 cp(m —t), V€ [r/2,7], c1, ¢z € R. (89)

denoted by< « >, i.e., Now, for¢ > 27, we know that
<= Iréig |[p — u| = min(w(mod(1)), 1 — u(mod(1))) [sin(t)| = |sin(t mod(r))| = | sin(w — ¢t mod(w)|.  (90)

p
(84) Now, from (89), it follows that:
S . ) 1 C
7 < < =
then, the typey(w) of an irrational number is defined as |cot{ey)| < )| S X5 B=a/n (91)
n(u) = sup {hl liminfn" < nu == 0} . where the notation is as in (84). Therefore, we need
e to only prove that

It is well known (see [6]) that the type of almost all irrational

n

numbers, except on a set of Lebesgue-measure zero, is equal to 1 Z 1 0 (92)
one. Therefore, there is a sequereg } such that ni= < jp >
ng < P, =— 0. Step 3) We now employ the Hardy—Littlewood theorem for
this purpose, which is restated here in our words for

Now, for such a sequence, we immediately see that the RHS is the sake of completion (see [13] and [6]).
close to 1/2 (using the property thah (k) / sin(z) grows ask
for z close to zero).

Proof of Theorem 2:

Proposition 7: For almost all irrational numbers, € [0, 27]
except on a set of Lebesgue-measure zero:

Step 1) We first simplify the autocorrelation coefficient Z; < oo. (93)
(7). Pick any irrationaky € [0,2x] and we have k? < ko -
the following lemma. m
Lemma 6: We now state Kroneckers lemma, which we employ to con-
1 n—r clude the proof.
|7 (T))? = — <n — T+ Z exp(iakt(n +k)) Lemma 7: Let a, by, be sequences such thgt is positive
" k=1 and decreasing to zero. Theén,;. , axbr < oo implies
sin(akr(n — 74+ 1) n
. . 85 : _
< sin(ckr) ) ) (#) Jim an D b =0 ®4)
k=0
It now follows that: (see [4] for a proof of Kronecker's lemma). By applying the
1 n—r above lemma, we are done. In our casg; is precisely the
|7 (T))? = — <n -7+ Z exp(takT(n +k)) positive decreasing sequence. The hypothesis of the lemma is
" k=1 satisfied by the Hardy—Littlewood theorem. Hence, we get
sin(akr(n — 7 + 1)) oo 1
’ i = lim — 0. (95
sin(akT) ; < ho o < o0 1111 Z » k — (95)
< Z sin(akr(n — 7 4 1)‘ In conclusion, we have, for almost any irrational numbee
- n2 sin(akT) [0, 2] except on a set of Lebesgue-measure zero
max |[r7(7)] =37 0 96
S - + — Z |cot{ary)] (86) 0<T§"| )l (26)

and, therefore, the higher-order chirp is a robust input. The proof

where cot-) = cos(-)/ sin(-). Itis, therefore, sufficient to prove of the rate is outside the scope of the paper, and is proved in [32]

that the second term goes to zero uniformly wrti.e., and [37].
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