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On System Identification of Complex
Systems from Finite Data

Saligrama R. Venkatesh and Munther A. Dahleh

Abstract—System identification deals with computation of
mathematical models from an a priori chosen model-class, for
an unknown system from finite noisy data. The popular max-
imum-likelihood principle is based on picking a model from a
chosen model-parameterization that maximizes the likelihood
of the data. Most other principles including set-membership
identification can be thought of as extensions of this principle in so
far as the concept of choosing a model to fit the data is concerned.
Although these principles have been extremely successful in
addressing several problems in identification and control, they
have not been completely effective in addressing the question of
identification in the context of uncertainty in the model class/pa-
rameterization. We introduce a new principle for identification in
this paper. The principle is based on choosing a model from the
model-parameterization which best approximates the unknown
real system belonging to a more complex space of systems which
do not lend themselves to a finite-parameterization. The principle
is particularly effective for robust control as it leads to a precise
notion of parametric and nonparametric error and the identifi-
cation problem can be equivalently perceived as that of robust
convergence of the parameters in the face of unmodeled errors.
The main difficulty in its application stems from the interplay
of noise and unmodeled dynamics and requires developing novel
two-step algorithms that amount to annihilation of the unmodeled
error followed by averaging out the noise. The principle contri-
butions of the paper are in establishing: 1) robust convergence
for a large class of systems, topologies, and unmodeled errors; 2)
sample path based finite-time polynomial rate of convergence; and
3) annihilation-correlation algorithms, for linearly parameterized
model structures, thus, illustrating significant improvements over
prediction-error and set-membership approaches.

Index Terms—Control-oriented identification, polynomial
sample-complexity, robust control, robust learning, statistics,
undermodeling.

I. INTRODUCTION

SYSTEM identification deals with choosing mathemat-
ical models from aknown model setto characterize the

input–output behavior of an unknown system from finite noisy
data. Noise, finite length of data, and time variation are some of
the issues that limits the choice of a complex model set. There
are many instances when this limitation is significant enough
that it becomes necessary to deal with situations where no
model in the model set can adequately describe the real system
behavior. One common situation encountered is in the context
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of high-order time-varying dynamics where rate of variation
precludes choosing models of high complexity. Another situa-
tion encountered is when lumped parameter models are used to
characterize a partial differential equation (PDE). The former
situation arises for instance while identifying acoustic transfer
functions in a changing cabin environment (see [38]) and the
latter situation arises while modeling the vertical dynamics of
a ultra-high-rise elevator (see [3] and [33]).

In this paper, we limit our attention to linear systems and de-
scribe the means of dealing with system identification in in-
stances when the real system cannot be adequately described
by a chosen model set. In these instances, it is useful to con-
ceptualize a larger, more complex set to which the real system
belongs, and the idea in identification is to understand how well,
how fast, and how easily can we approximate any arbitrary ele-
ment in the complex set with some element in the chosen model
set. A useful notion to describe complexity in this context is
that of Kolmogorov -width (see [25] and [30]). We deal with
such systems where Kolmogorov-width is, uniformly over all

, bounded away from zero. This means that the real
systems/instances under consideration are inherently complex
in that a choice of a larger dimensional model set does nota
priori guarantee better representation of the real system.

At this point, it is worth pointing out that the origins of
using simplified models for complex systems dates back to
[41] where notions of -widths, -entropy, and complexity
were introduced in the context of identification and control.
The notion of -entropy was used to characterize the degree
of approximation in modeling a given set of possible systems
within the class of finite-dimensional models. More recently, in
[10] and [11], the idea of using restricted-complexity models,
where the real-system may not belong to the model class, has
been advocated for identification in order to guard against over
parameterization of the estimated models.

We deal with the problem of system identification of simplified
models of possibly more complex systems by appealing to the
following principle: choose that model from the model set which
best approximates the real system.This principle, which we
call minimize-unmodeled dynamics (MUD), requires making
explicit the idea of conceptualizing the class/set to which the
real system belongs. The novelty of the formulation lies in its
effectiveness in interfacing identification with robust control
design. Every formulation in system identification has a nat-
ural set of variables associated with it. These variables form
the basis for analyzing hypothetical situations, validating the as-
sumptions, and quantifying the quality of the empirical model
estimates. In our formulation, these variables are precisely, the
parametric and nonparametric error, and the associated sample
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complexity. The parametric error corresponds to the distance be-
tween the estimate and the best approximation measured in the
parametric space. The nonparametric error corresponds to the
distance between the system and the best approximation in the
parametric space. These variables that characterize our identifi-
cation problem naturally fall in line with robust control frame-
work.

In this paper, our attention is restricted to the identification
of stable linear time-invariant (LTI) systems from finite-noisy
measurements of inputs and outputs. We are interested in both
asymptotic as well as finite-data situations. Application of the
principle to the class of LTI systems reduces to three questions.
1) Does there exist an estimator for the model parameters that
converge asymptotically to the best approximation? 2) Can the
parametric and nonparametric errors be quantified? 3) How long
a data length does it take to reduce the parametric error to a pre-
specified tolerance bound? We require that the answers to these
questions be independent of which element of the class/set the
real system belongs. Thus, a stringent requirement of uniform
convergence over the class of systems is desired.

The principal difficulty arises because of an interplay be-
tween noise and unmodeled dynamics. In the absence of noise
the problem, in most situations, reduces to a function approxi-
mation problem for which well-known solutions already exist.
In the absence of residual error, the problem reduces to a fa-
miliar situation dealt within classical identification (see [16],
[28], [35], and [29]): given a finite-dimensional LTI process,
find the best set of parameters from noisy data. However, under
the influence of both, the problem is nontrivial even in the sim-
plest of situations to answer the questions we posed earlier.
Tackling the problem requires us to resort to a sequence of
strategies. We develop a novel two-step algorithm, where, in
the first step, the unmodeled dynamics is annihilated, except for
transients. Application of the first step, therefore, nearly reduces
the identification of model parameters to the familiar problem
dealt with in the classical identification setting (see [16] and
[28]). Thus, it remains to average out the noise and the tran-
sients. These steps require application of inputs that are per-
sistently exciting of order infinity. Higher-order chirp inputs
are constructed for this express purpose. The two-step proce-
dure, along with such special inputs, are extremely effective for
identification of model parameters and estimation of parametric
and nonparametric error. We show that our goals can not only
be attained asymptotically, but also that, for any prespecified
error, a relatively short length of data is required. Some of these
ideas have already appeared in our earlier publications (see [36],
[32]).

The organization of the paper is as follows. Section IV intro-
duces the framework and in the context of a simple finite-im-
pulse response (FIR) model-parameterization to motivate the
problem formulation to follow later. This section is also used
to informally introduce other approaches—classical identifica-
tion and set-membership identification—to discuss results per-
taining to this example. This serves to motivate the problem
setup and the general purpose of the paper. In Section V, the FIR
example is used as the basis to understand the key requirements
of the input. The subsequent sections then present LTI identifi-
cation of complex systems in limited-complexity parameteriza-
tions for several different topologies.

For the sake of brevity, we postpone discussion of related
work until later. We only note the fact that this topic has received
wide attention. It is widely perceived that system-identification
and robust-control pose a fundamental dichotomy. There is wide
acceptance among researchers that the gap between robust-con-
trol design and traditional system identification (see, for in-
stance, [16] and [28], which are standard texts on the subject)
is yet unresolved. Consequently, the subject matter has received
wide attention from as early as 1980s with an entire issue of
the IEEE TRANSACTIONSon AUTOMATIC CONTROL devoted to
this topic (see [8]). It is our view that the question remains as to
how one can derive descriptions suitable for robust control de-
sign from finite corrupted data, and this forms the focus of this
paper.

II. NOTATION

An * denotes the complex-conjugate transpose of the matrix
. is the set of positive integers.denotes the space of

sequences on , , and denotes the space of sequences
on bounded in the norm (see [17]). For a signal ,

denotes the truncation operator:
, is the column vector ,

and is the toeplitz matrix

...
...

. . .
...

(1)

The -point autocorrelation of a signal is

is the corresponding DFT of the autocorrelation se-
quence, i.e.,

is the -point cross correla-
tion between two signals, and is the corresponding cross-
spectral density. is the inner product of two signalsand
. For any infinite sequence , denotes the fourier trans-

form. denotes the Gaussian distribution with mean
and standard deviation. , denotes the proba-
bility and expected value of an event. A real-valued function
, satisfying , is said to be . For an LTI

stable system, , denotes the -transform (or the -trans-
form).

III. PRELIMINARIES

This section broadly describes the framework that will be
used in the rest of the paper. We assume that the real system is
a causal shift-invariant operatorbelonging to a normed linear
space that takes inputs in to system outputs in. In sev-
eral instances, we will further restrict the systemto belong
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to ana priori set . However, thea priori set is such that it
does not lend itself to finite-parameterizations, a notion that will
be made precise shortly. The objective is to “identify” the real
process from input–output data. In most instances, we assume
that we are free to choose the inputas long as we constrain
the amplitude in time, i.e., . This constraint could
arise from practical considerations to limit the input toa regime
where assumptions of linearity hold. We suppose that noise,,
enters additively at the output of the process and corrupts the
measurements. Noise is modeled by means of temporal con-
straints (probabilistic or set-valued) on noise sample-paths. In
the set-valued case there is some set from which the noise
can take any sample path, i.e.,
and in the probabilistic situation, noise is assumed to be a sta-
tionary stochastic process. As a point of digression it is worth
pointing out that it is possible to describe stochastic white noise
with set-valued descriptions (see [23], [34], and [35]). These
models have been used in the context of identification in [34],
[35], [29], and [24] and have been shown to be “equivalent”
to using stochastic models. In this paper, we will extensively
use such set-valued white-noise descriptions to model noise. In
summary, the measured outputand the input are related by
the following equation.

(2)

where , as alluded to before, is a complexa priori known set.
We will now precisely define the notion of a complex set and
the noise models that will be used in the paper.

A. Complex Priors

In this section, a notion of complexity based on Kolmogorov
-width is defined. We suppose that the real systembelongs to

some set, . We associate the notion of complexity with the set,
. Let denote any -dimensional subspace of. We say that

the set, , is complex if it has a Kolmogorov-width which is
asymptotically bounded away from zero irrespective of the size
of , i.e.,

(3)

In particular, notice that the definition implies that choosing a
more complex model parameterization does nota priori guar-
antee any reduction in the residual error. This definition is not
far-fetched as we will see in the example below. The principle
reason for such a definition stems from the need to confront
residual unmodeled dynamics as an intrinsic aspect in system
identification. In other words, our attempt is to disallow model
reduction after identifying the entire system as part of the so-
lution methodology. Although there are other ways to enforce
this requirement, such as restricting the length of data, this def-
inition is more natural. In the following example we show that
complexity depends both on the topology on the space of sys-
tems and the “cardinality” of .

Example 1: Consider, the infinite-dimensional subset of LTI
operators with the kernel satisfying

(4)

where and are known constants. This space
is not complex if norm is used as the distance measure. To
see this we pick an FIR model-parameterization, of order

. Then, for every system , there is a corre-
sponding element in which is no further than in the
norm. However, if we define the norm by the
class of systems becomes complex. Similarly theunit ball,

, is a class of complex systems as long as the norm measure
is the norm. However, with , ( is
the impulse response sequence of), as the norm measure, the

unit ball is no longer complex.

B. Noise Models

In this subsection, we present stochastic and set-valued
models for noise to be used in the rest of the paper. Typically,
the principle feature of noise is that it is persistent and inde-
pendent (uncorrelated) of the input. Our goal is to describe
stochastic and set-valued models for noise which have these
features of independence and persistency.

In the stochastic setting, these requirements are minimal and
do not pose any problem and, in fact, almost any filtered i.i.d.
process is admissible. For the sake of simplicity, we allow only
filtered (stable-linear) white-Gaussian models for noise in this
paper. Such noise processes are persistent and it remains to show
that a strong notion of independence can also be established be-
tween an arbitrary input and any noise sample path. This follows
from a large-deviations based probabilistic bound on the corre-
lation between two signals. As alluded to before, the noise
can be characterized as white-Gaussian noise filtered through a
stable linear filter , i.e.,

Lemma 1: Suppose, is as above and ,
is a fixed vector, then

(5)

Proof: We first notice the following set of inequalities:

Now, the last expression can be evaluated by means of a large
deviations-type bound (see [40]).

We now present a similar model in the set-valued setting. We
do this by means ofa priori known set, . A sample path for
noise is any element that belongs to this set. The main problem
with this approach is that it is difficult to enforce independence
of the input from noise while still maintaining persistency. If
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the set is too large, for instance, belonging to unit ball in,
independence between noise and input is lost. If the set is too
small, for instance, belonging to unit ball in, we sacrifice
persistency. Thus, any set-based model for noise has to bal-
ance these the two extremes. Nevertheless, set-valued models
are useful for several reasons. In our case, we desire a uniform
convergence property over all systems belonging to some set

. The analysis of such algorithms becomes more streamlined
with set-valued noise because in this case the problem formula-
tion will require uniform convergence over both noise and real
systems. Also, this allows for obtaining guaranteed error bounds
which is aligned with robust control framework. Besides, it has
been recently shown in [35], [29] that set-valued models for
noise (when modeled appropriately) do not result in anymore
conservatism than their stochastic counterparts. With these is-
sues in mind, we will present the following model, which is ap-
propriate and balances the extremes of independence from input
and persistency:

(6)

where is the class of polynomials inof order over the
field of reals. We verify that the noise model is rich enough to
contain typical sample paths generated by an i.i.d. process.

Theorem 1 [Richness]:Suppose , , is
a discrete-time random process (white-Gaussian process or
Bernoulli process) with mean zero and bounded variance. Then,

(7)

where is given by (6).
Proof: The proof is presented in the Appendix.

The set-valued models are convex and balanced, i.e.,

(8)

This can be seen from the fact that the constraints imposed are
all linear, i.e., the set can be alternatively characterized as

(9)

where is some linear operator. By straightforward calcula-
tion, it follows that the noise model is invariant with respect to
filtering with a filter of norm less than one.

IV. PROBLEM FORMULATION AND DISCUSSION

The objective of this section is to formulate the problem of
system identification for complex priors in instances where fi-
nite data limits choice of a complex model set. To realize our
goal, we first present a simple example as a means of motivating
the problem. Consider the example of an FIR model-parameter-
ization, of order , i.e.,

(10)

as a means to model an LTI stable system, of Section III.
In general, we will study identification for the following model
sets:

(11)

and are fixeda priori with states, inputs, and outputs,
and , parameters of to be estimated.

For the present, our aim is to study the behavior of the FIR
estimates in relation to the real process in a way that is mean-
ingful for robust control. To this end, we choose thenorm as
the topology on the space of LTI systems to assess the perfor-
mance of the estimate. From the perspective of robust control,
the best model is one that is closest to the real process in the
norm, as this model has the smallest unmodeled dynamics asso-
ciated with it. Thus, the best FIR sequence is

argmin (12)

where is the impulse-response sequence of the system.
Associated with this FIR model is the nonparametric error

(13)

However, since we do not have access to the real system, a
more meaningful means of computing them from input–output
data is necessary. We observe that every can be decom-
posed as a linear sum of the best model and the
residual error

(14)

with and being “orthogonal” to each other. An
equivalent notion of a best approximation holds for the general
case as in the following proposition.

Proposition 1: Suppose is a normed linear vector space,
a subspace of , and the annihilator of in the dual of

. We let the notation argmin denote the set of all minimizers.
Then, the following statements are equivalent:

1) argmin ;
2) for some , and for

some , .
Thus, the duality theorem above characterizes the residual

as an element that is aligned with the annihilator of
.
Now, returning to the FIR example, based on decomposition

in (14), the input–output relation of (2) is rewritten as

(15)

with . Suppose is the para-
metric error with the estimate of and, , the esti-
mate for based on observations up to time. Then, the
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Fig. 1. Illustration of the real systemT as an element belonging to an
infinite-strip of width in the system space,T .

parametric error is a function of the residual error and noise. To
see this, observe that if the residual error is unknown and ex-
tremely large for the FIR model-parameterization, the measure-
ments from time onwards are not meaningful and we will
have to rely on the first measurements to estimate the para-
metric part . However, there are parameters and noisy
measurements. It is well-known (see [16] and [28]) that, for this
situation, the parametric estimates will also be unreliable even
for a modest amount of noise. It is to be noted that with set-based
model for noise, the estimation error will be large, but bounded.
A way around the difficulty of obtaining poor estimates for the
model is to assume that the chosen model-parameterization (in
this instance the FIR parameterization) is “good,” i.e.,

LTI stable for some

(16)

with the norm being the norm and is in this partic-
ular instance. Note that this argument holds in the general sit-
uation too. The relationship between the real-process,, and
the model-subspace is shown in Fig. 1. In a typical prac-
tical context one often has a good idea, either from physics, or
through experience that a model-set characterizes the dominant
dynamics well, although, there is some nonzero residual error.
In such situations, the above assumption is reasonable. Also,
barring pathological cases a good estimate of the residual error
can be obtained for large enough data (this will be shown in
an example at the end of the paper). Therefore, we can always
choose another model-set if we are not happy with the residual
error for the chosen model-set. We point out that this assump-
tion is required on account of the need for error bounds based
on finite data. The length of data required to “guarantee” that
the estimates are within a pre-specified error bound is called
sample-complexity. Clearly, if the “sample-complexity” were
finite, then it will still be finite for any multiple of . In par-
ticular, for the asymptotic case, if we had finite-sample com-
plexity, then we would converge in the parametric space for
every , which is the set of all LTI stable systems.

We are now left to define the parametric error. The defini-
tion suggested earlier depends on the exact knowledge of the

system which is not meaningful when we do not know it.
Therefore, the only alternative left is to define the parametric
error as follows. There are two definitions corresponding to the
set-based/probabilistic noise models

(17)

or, equivalently, in the probabilistic case we can define as that
number such that

(18)

for a pre-specified confidence level. An algorithm is said to
be consistent if the parametric error converges to zero. Note
that we require uniform convergence over all systems admis-
sible in which will be an important point when we consider
minimum prediction error techniques. As a point of digression
a related notion of convergence and consistency has been dis-
cussed in the set-membership literature (see [19] and references
therein). Informally, an algorithm is robustly convergent if the
parametric estimates converge to the “correct” parameters in the
limit of vanishing residual-error and noise. Our notion of con-
vergence is stronger, in the LTI context, in that we require the es-
timates to uniformly converge to the “correct” parameters even
in the presence of nonzero residual-dynamics and noise.

We are now left to define the notion of sample-complexity.
Again there are two definitions corresponding to set-valued and
probabilistic models for noise. In the former case, the sample
complexity is defined as that number such
that, for every , and model-set dimension, the fol-
lowing holds:

(19)

Equivalently, for the probabilistic situation, the sample com-
plexity is defined as the number such that

(20)

Sample complexity is said to be polynomial if
, , for the set-valued situation and

, , in the
probabilistic situation.

We will now briefly discuss the classical minimum-predic-
tion-error and the set-membership principles to see how they
fit in and address the identification problem formulated in (19),
(20). We will use the FIR example to illustrate some of the de-
ficiencies in applying these principles.
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A. Minimum Prediction Error (MPE) Principle

The MPE principle operates in the context of a stochastic
noise models and this falls well within the experimental setup
that we have in Section III. Typically, the MPE principle is used
in situations where some model in the model set,, does ade-
quately describe the real system,. However, the MPE principle
can be generalized to the case where the real system does not
necessarily belong to the model-set. This situation is termed
asapproximate system modelingin the statistical identification
literature (see [2] and the references therein). The principle re-
mains the same and the suggestion is to pick that model from
the model set, , which minimizes the prediction error (see [16]
and [28]). This notion is also related to the ML principle (see
[16] and [28]) where the model that maximizes the likelihood
of data is chosen. The usual notion of consistency and conver-
gence for the approximate modeling situation is defined in the
sense of ML principle, in that, an estimator is said to be con-
sistent if the estimates converge to that model which maximizes
the likelihood function for the set. To simplify the discussion
we use the FIR example with topology on the system space,

. We notice that the approximation in the sense ofand
are identical for FIR model-class. The corresponding MPE in
this situation amounts to minimizing the squared-sum predic-
tion error, i.e.,

argmin

argmin (21)

This is the familiar least-squares algorithm, and is the loss
function. It is possible to show (see [16]) that the estimates do
converge for stationary stochastic noise and with stronger as-
sumptions on the allowable class of systems (in [15], exponen-
tial memory bounds are assumed for the residual error). It fol-
lows that:

argmin

(22)

where is the power spectral density of the input. Thus,
if the input is white, it follows that . It is now
tempting to conclude that our goal has been accomplished.
However, quite to the contrary there are several shortcomings
in the MPE results which we briefly outline below.

1) Pointwise Convergence:The parametric convergence, as
defined in the classical identification literature, is weaker and
not taken uniformly over all the unmodeled errors, i.e., for every
fixed system it is shown that

Thus, the convergence is defined for each fixed “real system,”
, and, in this sense, is pointwise. This is particularly

important because in the absence of additional information and

with finite data, we do not have access to the real system, and
the unmodeled error has to be considered in the worst case.

2) Proof Technique:The convergence proof in the min-
imum-prediction error approach works on the following prin-
ciple: the prediction error converges uniformly to ,
and, therefore, the argmin converges as well. In view of
the above uniform convergence issue, it is possible to generalize
the formulation (use ).
However, convergence of the loss function is not uniform in
the topology

Indeed, it can be easily shown that, even with white inputs, we
will have

Therefore, at the bare minimum, we will need to use a different
proof technique to prove parametric convergence.

3) Error Bounds: Bias error and variance is typically used
to characterize residual and parametric errors. Although these
are related to parametric and nonparametric errors, they are not
the same, and it is, in general, difficult to derive a direct corre-
spondence. In general, MPE-based approaches have not satis-
factorily addressed computation of such error bounds.

4) Sample Complexity:Perhaps the most important prac-
tical limitation of the minimum-prediction error approach is
that, in the presence of unmodeled errors, the rate of conver-
gence depends on the rate of convergence of the unmodeled
error to its corresponding spectrum, i.e., we need to know the
behavior of

This can be seen in the convergence argument used. One uses
the convergence of the loss function to characterize the behavior
of the estimates. At any rate, this is a serious drawback in many
real-time applications where one cannot wait for the asymptotic
to set in order to derive a model for the system.

5) Colored Input: In (22), if and only if the
input were white. To see this, consider

where the input is a white noise process and is a LTI
filter. In this situation, the model output is correlated with
the output error, which in this case is given by .
The typical means of dealing with such situations in the min-
imum prediction error formulation effectively reduces to esti-
mating . Alternatively, this can be thought of as whitening
the output error before using the least-squares algorithm. How-
ever, this procedure requires estimating, resulting in inflating
sample-complexity, which we plan to avoid.
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6) Other Topologies:Although norm is very useful as a
measure for systems, it is not particularly useful for describing
unmodeled dynamics in the context of robust control. There are
some special topological properties, with induced norms as an
important case, that lend themselves easily to robust control ap-
plications. The minimum prediction error paradigm is focused
on finding good descriptions that have good data-fit, while we
need to find good models to fit systems. From this perspective,
it is difficult to see how one can formulate a “system”-fitting
problem for other topologies with a MPE based approach.

B. Set-Membership Identification

In previous work, significant effort has been focused on
system-identification for robust control, and the formulation
has come to be known as set-membership identification. This
line of research goes back to [27] and [7]. The formulation
has received much attention in [14], [8], [9], [21], [20], [18]
and [31] (also, see references the therein) where both- and

-error criterion were adopted. The premise behind the
set-membership approach is that data is generated from one of
several sets of possible behaviors. The goal is to choose the set
of all those behaviors that could have generated the data. To fix
the idea, we consider a simple situation which is well-known in
the literature. The set of behaviors is given as follows:

(23)

From input–output data, which is a single sample path, the ob-
jective is to determine the set of all consistent behaviors, char-
acterized by the above equation, i.e.,

(24)

Thus, in a sense it is very similar to the ML principle in that
seeking the “most likely” model from a chosen model class is re-
placed with computing all the models which are consistent with
data. However, even this difference is understandable in view of
the set-valued noise models. Historically, the interpretation of
the above formulation is that of embedding the uncertainty in
to the data generation process. To understand this point of view
in the above instance, consider “identification” of the process

with an input, , whose amplitude is bounded by unity. Con-
sider the case when we know,a priori, that the process is
no more than at a distancefrom the space of FIR model-pa-
rameterization in the norm. In this case, the “model” for the
data-generation process contains the input–output behavior of
the real-system. In other words, if , we then observe
that

for some

for some

Thus, the unmodeled dynamics in the original problem can be
embedded within an appropriate noise model. Be that as it may

be, such an embedding has severe drawbacks. Fundamentally,
the embedding is extremely coarse. It turns out that parametric
error diam is (see [31]) no matter what the input and
its length and topologies and model-sets used. This is not very
pleasing. For one, we have an intuitive feeling that, at least in
the case of LTI stable systems, it should be possible to identify
not only an FIR model, but the entire system if we had infinite
data. One of the reasons for the conservatism comes from the
fact that the data-generation process includes effects that could
arise from time-varying and nonlinear behavior. The principal
reason, however, is that there is a redundancy in the parameteri-
zation of the behaviors. That is, the uncertainty due to the noise

admits FIR models that are of norm smaller than. This ac-
counts for the fact that the diameter of uncertainty can be no
smaller than . It is fair to say that set-membership literature
has not satisfactorily resolved the issue of uncertainty with re-
spect to the model-parameterization and data effectively.

The principal difference between our formulation and
set-membership identification is that, by resolving to minimize
the uncertainty between the model-parameterization and
real system, we are forced to explicitly incorporate the class
(or space) in which the real system belongs. Furthermore,
minimization of residual dynamics sets up a decomposition
between the model parameterization and the residual dynamics.
To summarize, we enforce a decomposition of the data into
a triple: model, residual, and noise. To avoid redundancy in
the description of data, the residual is separated from noise
effects. Noise is independent of the process while the residual
has a special structure that is associated with a chosen model
set. Each of these elements account for different aspects in the
experiment.

V. FIR MODEL-SETS AND INPUT DESIGN

In this section, we will derive several conditions that are suf-
ficient to guarantee robust convergence of model parameters as
defined by (19) and (20). We will derive these conditions in the
context of FIR model set and, later, it will turn out that these con-
ditions hold for identification of general model sets. As a point
of reference, it has been well established in statistical identifica-
tion that consistency of model estimates demands a persistency
of excitation equal to the model dimension on the input. In con-
trast, in set-membership identification, a much more stringent
condition is required. In particular, it is shown in [5] and [26]
that in order to identify an FIR of order , the input sequence
will need to have every element of the set, . We will
see that in our particular situation we will need something far
short of the latter requirement but much more than merely sat-
isfying a persistency of excitation condition.

We will arrive at our conditions by testing several different
inputs. First, we rewrite (2) in expanded notation by separating
the terms into model and residual error, and see that

(25)
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In the absence of noise, it is clear that apulse inputof unit am-
plitude is sufficient to recover the FIR model exactly. On the
other hand, persistent noise can only be averaged out by a per-
sistent input. However, a persistent input will also “excite” the
unmodeled error. In particular, for the above equation, whenever

, the data also contains contributions from the unmod-
eled dynamics. For aperiodic input , with ,
the data for can be written as

Thus, one obtains information only on linear combinations of
the s, and not individual coefficients. It is, therefore, impos-
sible to determine only the model coefficients, no matter how
long the input signal and how large the length of the period.
Therefore, no matter how large the period, in the worst case, the
unmodeled error will couple with the model-set dynamics.

To get a better handle on the situation, we appeal to identifica-
tion of one-parameter models. The situation when observations
equations are linear and the residual error and noise belong to
convex and balanced sets has been described in detail in [30]. It
can be shown that, for the simple case of one parameter model,
a linear algorithm is optimal in achieving the minimum para-
metric error. The least-squares algorithm is a linear algorithm,
although not necessarily the optimal one. However, it does lead
us to understand what conditions on input need to be satisfied.
Suppose we apply the least squares algorithm (for the one-pa-
rameter FIR model). Then, the resulting unmodeled error con-
tribution is given by

Therefore, for consistency to hold, we need the autocorrelation
terms of the input to vanish uniformly. In principal, we can also
use filtered inputs where is a causal stable filter andhas
vanishing auto-correlation terms. This is based on the fact that

However, the fact remains that, at a fundamental level, there be
a signal , such that the autocorrelation terms uniformly decay
to zero. It follows that our objective is to search for such inputs.
Periodic inputs do not satisfy the uniformly decaying correla-
tion, and pulse inputs are not persistent. Therefore, we examine
theswept-sineinput as the next candidate

(26)

which, as the following Lemma shows, fails the test of uni-
formly decaying correlation.

Fig. 2. Rate of decay ofmax jr (�)j.

Lemma 2: For almost all real numbers , the worst case
auto correlation of the sine sweep in (26) is bounded away from
zero, i.e.,

(27)

Proof: See the Appendix.
This means that in the worst case we will have the following

property for the least-squares algorithm:

Since, a chirp doesn’t suffice, we introduce ahigher-order
chirp, i.e.,

(28)

We have the following important property for such class of sig-
nals.

Theorem 2: The signal of (28) satisfies

(29)

for almost all , except for a set of Lebesgue measure zero.
Remark: The higher-order chirp is persistently exciting of

infinite order.
Proof: See the Appendix for the proof.

Fig. 2 shows a plot of uniform decay of the autocorrelation
terms with length of the higher-order chirp. Another signal that
satisfies the uniformly decaying auto-correlation property is the
random i.i.d.process, as the following lemma shows.

Lemma 3: Suppose is a discrete i.i.d. Bernoulli random
process with mean zero and variance 1, then

(30)

where
.
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TABLE I

Application of the higher-order chirp input is equivalent to a
random input in the following sense. If with a higher-order chirp
(noise model is white Gaussian)

(31)

then, with a random input, we will have that the probability there
is a random input such that the same event

(32)

occurs has very high probability. In other words, almost every
input sample drawn from a Bernoulli distribution will also typ-
ically satisfy uniform convergence of the parameter estimates.
We summarize the input conditions in three different setting in
Table I.

Revisiting the FIR Example:Equipped with these inputs, we
revisit the FIR example and apply the familiar least-squares al-
gorithm to form the estimates. We will decompose the least-
squares algorithm in a novel way—as a combination of an-
nihilation of unmodeled dynamics followed by averaging the
noise—to derive a general method to target other cases. Con-
sider the LS algorithm

argmin

As a special exampleconsider the problem of identifying the
second impulse response coefficient of a systemusing a least-
squares estimator. Consider

...
...

...
...

(33)

The impulse-response sequence of the optimal model is given
by , and that of the unmodeled error is given by

. Therefore, the annihilator for the unmodeled
error is given by . We attempt to annihilate the

unmodeled error by using as the realization of an anticausal
system and filter the output, with this system. This amounts
to multiplying (33) by the following matrix:

...
...

...
...

...
The resulting output upon algebraic manipulations can be
written as the equation at the bottom of the page where

,
and .

Because, the input is chosen such that and has
vanishing correlation property, it follows that the residual error
is perpendicular to the model output. Therefore, we see that the
minimizer of the following problem:

argmin

will converge to which is the model in the model set that
minimizes the unmodeled error. In summary, the anti-causal fil-
tering results in separating the measured output into two compo-
nents—model output and error—which are approximately or-
thogonal to each other with an approximate selection of the
input. In this way the second step is the usual parametric es-
timation for the exact case. Fig. 3 illustrates the approach. The
extension of this approach to other cases will become clear at
the end of next section. For now, we outline the following steps:

1) obtain a decomposition of the system in to a model and
unmodeled dynamics;

2) determine the annihilator (filter) of the unmodeled part;
3) pass the output through filter;
4) cross correlate the filtered output with the input.

Observe that the cross-correlation step and the annihilator step
can be interchanged in the following sense. Instead of filtering
the output , we may multiply the output, , by the upper
toeplitz matrix, [see (1)], and then annihilate the re-
sulting vector, with the annihilator. This latter ap-
proach is particularly well suited for non-Hilbert spaces, such as
banach spaces, for which an annihilator cannot be characterized
explicitly. We only know that the residual-error is aligned with

. In this situation, after denoising ( ) it is possible to
formulate an optimization problem based on the alignment con-
dition to compute the model-estimate, thus indirectly applying
the annihilation step. We will see how this is done when we dis-
cuss identification.

VI. I DENTIFICATION IN

We consider system identification in an space largely for
historical reasons. In many instances, optimal estimates on other
spaces can be derived using parametric estimates obtained by
assuming a topology. Finally, we believe the analysis that
will follow has implications in the context of detection and es-
timation in signal processing, a line of thought which we do not
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Fig. 3. Process of Identification.

explore here. With these prelimnaries, consider the space
which consists of the space of infinite sequences satisfying

trace

Suppose , .The inner product is then defined as

trace (34)

On account of the fact that is larger than the space of BIBO
stable operators we restrict oura priori set as follows:

(35)

where , as in (11), is a space of linearly parameterized stable
finite-dimensional operators. Let

argmin (36)

Since belongs to , is unique. We next discuss SISO
and MIMO cases separately in the sequel.

A. SISO Systems and One-Parameter Models

The SISO identification problem follows by straightforward
extension from the case of one—dimensional (1-D) parameter-
ized models. To this end, let

be the one dimensional subspace of SISO stable systems. The
following proposition will enable us to characterize the unmod-
eled dynamics.

Proposition 2: Every can uniquely be written as

(37)

where is a constant depending only on the pole location.

Proof: Since is an element of a closed Hilbert space
we know that can be decomposed as

(38)

From Cauchy’s integral formula, we have that

(39)

Hence, now using Wiener’s theorem on analytic functions and
by hypothesis, we know that

(40)

for an arbitrary analytic function . It remains to show
that . To prove this, consider an element

, which exists by hypothesis.
Then, we observe that . Therefore, it follows
that

where is some constant which only depends on the param-
eter, .

We will now present the application of the two step algorithm,
at the end of which the estimator will be precisely described.
As illustrated before, it consists of two steps—annihilation and
cross correlation with the input—which we present below.

Step 1) Annihilation
Consider the input–output equation which we

write elaborately for the sake of transparency as
follows:

...
...

. . .
. . .

...
...

...
. . .

. . .
. . .

. ..

...
...

In the annihilation step, this equation is premulti-
plied by the following annihilation matrix :

...
...

. . .
...

.. .
. . .

. . .
...
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Denoting the resulting output by the symbol, we
get

...
...

...
. . .

...
...

...
...

(41)

where, for the first term we have used the fact that
convolution is commutative. Therefore, the convo-
lution of with can be equivalently written as the
convolution of with . We are now ready for our
second step.

Step 2) Cross correlation
The second step consists of cross correlating the

output by the input as follows:

(42)

The above summation can be broken into three
terms: the first corresponding to the unmodeled
error, the second corresponding to the model output,
and the third corresponding to the noise contribu-
tion. We first focus on the unmodeled term ,
which can be simplified in a straightforward manner
to read

...
...

.. .
...

...

Again, since is a convo-
lution, we can interchange their order. This allows
us to rewrite the unmodeled contribution as

diag

...
...

...
...

...

This equation, upon algebraic manipulations, sim-
plifies to

(43)

The second term in the last expression can be easily
disposed of by appealing to the fact that the auto-
correlation coefficients for any lag not equal to zero
uniformly decay to zero, i.e.,

Therefore, the second term can be bounded as fol-
lows:

Now, as far as the first term in last expression of (43)
is concerned, we observe that

Therefore, the first term in last expression of (43)
can be rewritten as

The first term of the above expression approaches
and, since , it follows that this

term approaches zero at an exponential rate equal to
. The second term of the above expression is

handled as follows:
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Putting all of the above computations together, we
have

It now remains to analyze contributions from model
and noise terms in (42). The noise term can be han-
dled in a straightforward manner

...

Finally, we note that the model output
(except for a scaling

by the parameter ) satisfies

In this way, all the terms except the model output
vanish, and we are now ready to state our result.

Theorem 3: The least-squares estimator given by

with the chirp input of (29) satisfies

(44)

where , is a constant depending only on.
Remark 1: The second term in (44) arises on account of

noise, and is the same as when there is no unmodeled error. The
first term arises on account of unmodeled dynamics. We see that
the error uniformly approaches zero and scales linearly with the
size of the unmodeled error. Upon closer reflection, we see that
the error is completely independent of the norm of the system,
i.e., , which is a real improvement because the convergence
in the parameters only depends on how good the approximation
of the real system, with model set, was in the first place. We
also notice that the convergence of the parameters does not de-
pend on the convergence of the residual errors in any manner.
These answer some of the questions that we raised in Section
IV in the context of discussion of MPE.

Remark 2: A similar result as in Theorem 3 holds in the sto-
chastic setting too. This can be described for the LS estimator
as follows:

The proof presented here generalizes to any finitely parameter-
ized family of stable models. At this point, it is interesting to
compare the algorithm presented here with MPE and IV tech-
niques. Although we have separated the annihilation and corre-
lation into two distinct steps, the combined effect is essentially a

Fig. 4. Identification of model,G, in a closed loop situation by means of a
dither signal,u.

least-squares algorithm. The question arises as to whether there
is any advantage in executing the identification problem in two
different steps. The results obtained here address some of the
drawbacks pointed out in Section IV. We have shown that the
convergence rate does not depend on the convergence rate of
residual error. Also, the convergence result holds for a larger
class of unmodeled dynamics (here as opposed to exponen-
tially decaying type errors typically assumed in [15]).
However, these differences, although significant, does not point
to any advantage in a two-step algorithm. There are two prin-
ciple contexts in which such algorithms gain importance. The
first situation arises when the input is colored the second arises
when the topology on the system space is a general Hilbert–Ba-
nach space. We will present, in this section, an example of the
first situation. This situation arises commonly in the context
of closed loop identification and will be elaborated in a forth-
coming paper. The second situation is discussed in detail in sub-
sequent sections.

Example 2: Consider the following numerical example
where the system input is a filtered white noise signal

where the real system has been decomposed into the model,
and as before. We further postulate

that the filter, , is unknown except for the fact that .
However, the input into the system is known. This situation
arises in the context of closed-loop identification, as shown in
Fig. 4. The input can be thought of as a dither signal employed
for identification purposes. The second term in the above equa-
tion will then be replaced by , where , is the input to
the real system as shown in Fig. 4. The filteris generally un-
known in this situation, since it is an LFT of the controller with
the unknown system.

Returning to the example at hand, we can rewrite the above
equation in a manner suitable for formulating a prediction error
principle. To this end, let, ,

. Then, we have that
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Fig. 5. Comparison of least squares and annihilation-correlation approaches for correlated inputs.

Now, the least squares works only when .
However, when the input to the system, , is colored, this
is no longer true. In this case, the residual error is correlated
with the input. In point of fact, Fig. 5 shows the behavior of
least squares estimates with the length of data and it is seen that
the estimates do not converge to one (which is the right answer).
The typical means by which this situation is handled in the MPE
paradigm is to form a predictor, , for , where
the notation implies that the predictor should form the estimates
based on previous measurements of inputs and outputs and the
model parameter,. The parametersare then picked such that
the mean-squared prediction error is minimized, i.e.,

argmin

Without going into the details, it suffices to say that such a
procedure will amount to asking for identification of the entire
system, i.e., the model along with the unmodeled error. Apart
from the fact that this question will lead to an explosion in
sample-complexity the solution is generally difficult to obtain.
On the other hand, our objective is to identify only the model.
In this regard, the annihilation followed by correlation step is
extremely useful. We rewrite these steps for the sake of com-
pletion here. Let, , be given by filtering the output,,

, respectively, with the annihilating filter, as in(41). Then, the
estimate for based on length of data is given by

The result is shown in Fig. 4, where it is seen that the estimates
rapidly converge to the right solution. We will not ponder here
as to the implication of this result, but only note that the anni-
hilation-correlation principle has a scope outside the domain of
traditional algorithms encountered in classical identification.

B. MIMO Systems and Finite-Dimensional Stable Models

The MIMO case turns out to be very similar to the one-param-
eter case, except for minor complications arising out of the need
to be compatible with vectors as opposed to scalars. To simplify
the notation, we introduce the following decomposition of the
matrix :

(45)

and is a matrix with its th element equal to one,
and all other elements equal to zero. Following on the lines of
Section VI-A from Proposition 1, we have the following result.

Proposition 3: Every can be written as

argmin

The algorithm will be described next.

1) First, we filter the output through the adjoint system as
follows:

(46)

2) Next, the input is processed as follows, first through the
model subspace:

and the output is then processed through the adjoint
filter

(47)
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3) Determine where is the solution
to following set of equations:

The following theorem states that the estimateconverges to
the optimal.

Theorem 4: The estimator satisfies

where is some constant that depends only on the matrices
and .

Proof: The proof is a direct extension of the 1-D SISO
case, and is omitted.

VII. H ARDY–SOBOLOV SPACES

As we have seen, the metric lends to designing efficient
algorithms for identification. Tractable robustness analysis
problems are usually those that can be reduced to analyzing
the stability of a system, , that is perturbed by an element
belonging to an uncertain unit ball in the topology under
consideration. However, unit balls in allow unstable
systems and it is not clear how one can analyze problems of
this nature. To deal with this problem we introduce a class of
topologies that have the Hilbert–Space structure and yet satisfy
the requirements of robust control. The robustness analysis and
control for such topologies have been dealt with in [39], [32]
and we deal with the identification problem here.

Suppose is a normed linear vector space defined by

trace (48)

with the inner product defined by

trace (49)

where is a positive-weighting function that is monotoni-
cally increasing and satisfying the inequality

Then, the class of systems will all be in. This gives a Hilbert-
space structure with norm denoted by . This structure is
useful in the context of identification. As a point of digression,
observe that by setting , we obtain the fa-
miliar class of functions that are analytic on the disc of radius

. The salient feature of these class of topologies is that they
are stronger than both and as the following proposition
shows.

Proposition 4: Suppose . Then,

(50)

Proof: The proof follows by the usual Cauchy–Schwartz
inequality, and is omitted.

The norm may be motivated in the frequency domain for the
case when . We denote such spaces by the symbol,

, which is also known as the Hardy–Sobolov norm. The
notation will become clear shortly. Consider systemsand

. By Parseval’s theorem, we have

(51)

The reason for the notation should now be clear: the norm is
defined by summing the norm of the operator with the
norm of its derivative [see (51)]. We will mainly concern our-
selves with such spaces for simplicity in notation. Also, in [39]
and [32], we have shown that we can go even further by syn-
thesizing nonconservative robust controllers against type
uncertainties. This follows from the fact that the image of an

ball is an ellipse at each frequency. Based on this fact,
a novel IQC approach is developed for robustness analysis for
structured perturbations. Furthermore, the set of all robustly sta-
bilizing controllers is derived. These factors sufficiently justify
developing identification results.

With these prelimnaries we next discuss the identification
problem. As before, the class of systems belong to following
prior:

LTI for some

(52)

As in the previous section, the identification is carried out in
two steps. The first step is the annihilation step. In order to do
this, we need to characterize the separation between unmod-
eled dynamics and the model parameterization. In the familiar
one-parameter model parameterization , this
separation is particularly easy given by

In order to perform the annihilation step efficiently, we need to
define the adjoint system. As the reader may recall from the
situation, the annihilation of the unmodeled error is obtained
by running the input and the output of the system backward
through the adjoint system. We now construct the adjoint system

. Since, the model parameterization is finite the adjoint,will
also be finite and is the adjoint of the state-space realization of
the impulse response function given by

(53)
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Following along the lines of case, we are now ready to
describe the algorithm which involves annihilation and subse-
quent averaging with the input as shown schematically in Fig.
3. Specifically, we have

(54)

(55)

(56)

(57)

where . The estimate for is given by

We can now extend the algorithm for the MIMO case as well.
The following theorem characterizes the decomposition.

Proposition 5: Consider the model space in (11). Every
can be written uniquely as

where is as in (45).
Proof: The proof follows from the projection theorem on

Hilbert spaces, and is omitted.
We follow the steps for the identification problem and ob-

tain a similar estimator except for minor changes corresponding
to the processing. First, we determine a state-space characteri-
zation, , , , of the adjoint operator as we did in (53).
Next, replace the matrices, , , and by , , , and

in (46), (47). We have the following theorem for identifica-
tion on .

Theorem 5: Consider the setup given in (2), and the estimator
derived as described above. Then,

(58)

where is a constant depending on matricesand .
Proof: The proof is identical except for the fact that

an bound on the unmodeled dynamics is unnecessary for
by Proposition 4 suffices.

A. Analysis of the Weighted Least-Squares Algorithm

Recall that, in Section IV, we had pointed out that there are
several situations where the annihilation-correlation algorithm
gains significance. We showed one situation when the inputs
are correlated in Section V. We will present a second situation
here where we show that for the general hilbert space topology
presented in the previous section estimates based on generalized
least-squares algorithms do not converge to the right solution.

To this end, consider the 1-D case, i.e., given , the
objective is to determine where,

argmin (59)

from inputs and . For simplicity we consider the noiseless
case here, i.e.,

The question arises whether there is a weighted least-squares
criterion such as

argmin (60)

where , so that uniformly over all
. The input, in this case, is assumed to be a Bernoulli

process. To simplify the notation, let ,
diag , diag

, . The weighted least
squares algorithm can be characterized using the projection
theorem. The optimal estimate at timesatisfies

This implies that

Therefore, the expected value of parametric error can
be characterized by

(61)

We concentrate on the LHS of the above equality. It follows that,
for the Bernoulli input, there is a constant such that

Therefore, the expression on the LHS of (61) can be simplified
as

Now, it follows in a straightforward manner that the RHS in (61)
can be simplified to

diag

where diag , .
Now, we also know that, for any, there is a length such that
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Therefore, letting , we have

In this way, it can be seen that no matter what weights are
chosen, the parametric error upon application of any weighted
least squares algorithm will always be bounded away from zero.
We have, therefore, established that the annihilation-correlation
algorithm is essential for robust convergence in general hilbert
spaces. In this way, we have shown two instances where the
annihilation-correlation methodology succeeds while the tradi-
tional MPE paradigm fails.

VIII. I DENTIFICATION IN

We now turn to the problem of identification in the norm.
As before, the process is an element of given by:

LTI for some (62)

and we want to find an estimator, based on a data record
of length that converges uniformly to the best-approximation
[as stated in (19)]. In the previous situation, the Hilbert-space
structure readily allows the construction of annihilators for the
residual dynamics. Unfortunately, this is not possible in the
situation. To see this, we characterize the decomposition in the
form of a proposition below:

Proposition 6: The following statements are equivalent:

1) argmin ;
2) for some and where

;
Close observation reveals that the residual error is aligned with
some element of . However, being infinite dimensional,
it is not possible to “narrow” down the “set” of all residual dy-
namics so that a finite set of annihilators for the “set” could be
constructed. More importantly, the decomposition is not convex.
A convex set in when decomposed into the tuple of model
and unmodeled dynamics is no longer convex as a tuple, as seen
from the following example.

Example 3:

and . We see from Proposition 6 and
the fact that is aligned with that . Similarly,
we deduce that . However, now

It can also be verified that these minimizers are unique. So,
the set of minimizers is given by

which is not a convex set.
Motivated by these issues, we solve the problem ofidentifi-

cation indirectly. However, we will see that there is a direct cor-
respondence with the Hilbert-space case and the two-step algo-
rithm. For the sake of simplicity, we only consider the one-pole
case in this paper, i.e., . The general case extends
in straightforward way and is omitted. The estimator is obtained
by solving the following convex optimization problem:

argmin

(63)

where . The optimization problem can be
readily converted to a linear programming problem by standard
manipulations (see [22]). The reader will recognize that the
formulation of the optimization problem is a consequence
of the de-noising procedure discussed in Section V, i.e., is

where is as defined in Section
VII-A and is given by (1). The second step is approx-
imately a “disguised” version of the annihilation step. To see
this notice that,

argmin

The fact that the Banach-space optimization above is equivalent
to the optimization problem of (63) will be proved next. The
main point to notice is that the second expression in the above
equation is exactly the “orthogonality” condition that was im-
posed between the residual error and the model subspace in the
Hilbert-space situation. We have the following theorem for the
behavior of the estimator.

Theorem 6: The estimate given by the solution to the opti-
mization problem in (63) satisfies (64), shown at the bottom of
the page, where and are constants resulting from unmod-
eled error and noise respectively.

Before proving the theorem, we wish to point out several
implications of the above result. The last inequality follows
by choosing , thus, the sample complexity is

implying that identification has polynomial sample
complexity. The sample complexity for derived here has no
bearing on the parallel result for in the context of set-mem-
bership identification (see [5] and [26]), where the sample
complexity was shown to be exponential. However, it is still
worth pondering the difference between the two approaches.
As the reader may recall, in set-membership identification, the
uncertainty due to unmodeled error has a redundancy with the

(64)
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parameterization. This accounts for the fact that the minimum
achievable diameter of uncertainty is and this results in
exponential sample complexity. These factors prove to be
critical in obtaining vastly different results.

Proof: The theorem is proved in several steps.
Lemma 4: Let be the solution to the following optimiza-

tion problem:

argmin

Then,

Proof: The following set of inequalities follows by defi-
nition:

and

Together, these result in the following sequence of inequalities:

Therefore, we have that

Now, from the definition of (see (62), it follows that
and should satisfy and

respectively. Therefore, . The result now
follows.

Our next step will be to relate to of (63). To do this,
we rewrite in (63) as

With this notation, we have the following lemma.
Lemma 5:

where is some constant.
Proof: First, we observe that

The second inequality follows from the fact that the first term in
the middle expression is the optimal solution to the optimization
problem in (63). Next, notice that

Now, from Lemma 4, Theorem 2 and (6), it follows that

(where, , appears on account of the noise contribution). It now
follows from the above equation and Lemma 4 that

(65)

With these prelimnaries, we are now ready to prove the theorem.
Consider

where , are constants. The last inequality follows from (65).
Setting , the result now follows in a straightforward
manner.

The important fact to be noticed is that the sample-complexity
is independent of the size of the parameter. Thus even though
the prior is unbounded it does not affect the identification
process. As in the case, we wish to understand whether an
appropriate signal space optimization will lead to the optimal set
of parameters. Two types of error metrics are of interest—one
based on minimizing the sum of the absolute values

and the other based on minimizing the maximum of the absolute
value

These problems are hard to analyze and we resorted to simu-
lating the three different approaches (MUD and the above two).

Example 4: For simplicity, we chose the systemto have an
impulse response equal to . The model parameter-
ization used was . For this parameterization, the
optimal parameter in the sense ofis unique and turns out to
be . We applied two different inputs: the random input
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TABLE II

and the following input which is the real part of the higher order
chirp, i.e.,

The output was obtained by adding random noise of standard
deviation equal to 0.2, i.e.,

The input length was chosen to be 3000. MUD was imple-
mented by letting in (63). The estimate corresponding to
the random input is denoted and that from chirp input is de-
noted . The following table enumerates the results where es-
timated error corresponds to the computation of the error based
on (64).

We observed that minimizing the maximum of the absolute
value was not stable with random excitation in that the param-
eter values kept oscillating. The value in Table II corresponds to
the average value obtained.

Although the numerical example cannot be equated with a
proof, it should point to the fact that signal-space optimization
will not necessarily result in parameters that are close to optimal
ones in terms of minimizing the norm distance between the
model parameterization and the real system.

IX. I DENTIFICATION IN PRACTICE: ESTIMATION OF RESIDUAL

DYNAMICS

Real-world applications demand that there is a reasonable
way to validate and estimate the parameters used in the prior
information. In fact, it is usually quire hard to characterize a
mathematical linear space to which the real process belongs, as
a consequence, it is hard to verify the validity of the prior infor-
mation. In practice, however, such principles are adapted to the
application at hand with the hope of creating reasonable models
of the process. The effectiveness of these principles stem from
the ability to provide models with uncertainty descriptions. In
this section, we will describe how the error bounds derived in
the last section allow us to estimate both the parametric error
(error in the space ) and the nonparametric error (an estimate
of the prior ).

We will only concern ourselves with the validation and es-
timation of parametric and nonparametric errors for the identi-
fication of systems defined on Hardy–Sobolov spaces. It is, in
this space, that the problem reduces to a quadratic optimization
problem. To this end, we define

with the subscript denoting the dependence on noise. Since
and are convolution operations in the time-domain it is nat-

ural to look at the frequency domain. In the frequency domain
the orthogonality between and will also have an appro-
priate transformation. As we will soon see that this condition
will be redundant for the problem we are about to solve. Taking
the corresponding DFT of the above equation, we get

where , , , are the -point DFTs of , ,
, , respectively. A point of concern is that the DFT oper-

ation will not diagonalize causal operations as above as written
above. For large enough data, the error is insignificant and the
above equation holds. We now need a good frequency domain
estimate for the Sobolov norm. Recall, that the Hardy–Sobolov
norm for is given by

It can be readily shown that, by using Cauchy–Schwartz in-
equality, the estimate given by

converges to the norm as . We organize the data in
to frequency bins by filtering them through ideal filter banks
of size . It can be shown that for white noise, the following
holds (see [23]):

where is the power spectrum of the signal . Each of
these constraints and the cost functionare quadratic expres-
sions of their variables. We now state the following optimization
problem:

subject to

It should be clear that the minimizing solution will satisfy the
orthogonal property. If not, let the solution beand respec-
tively. By hypothesis, the minimizer will have a component in
the direction , , . Consider now
and as a candidate solution. These satisfy the con-
straints of the optimization problem and moreover has
a norm smaller than .

The proposed optimization problem can be readily converted
to an LMI (see [1] for details). An alternative option is to extend
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Fig. 6. Frequency response ofT andT used in the example and randomly
generated sample-ball of systems that are at a unit magnitude from1=1�0:8�.

the algorithm in [12] for the current situation. In order to illus-
trate the ideas involved in identification of the model and esti-
mation of unmodeled dynamics we consider a simple example.

Example 5: Consider the system, , whose magnitude re-
sponse in the frequency domain is shown in Fig. 6. This system
has been chosen as follows:

where,

where and , a vector of length 200, was
selected using a random number generator. Notice that, in so
doing, we have normalized to be of norm 1. The specific
example of a randomly generated unmodeled dynamics is of no
significance. We have done so here for the sake of simplicity.
The results hold for any of norm smaller than 1. We have also
chosen the optimal value of to be 1 for ease of exposition.
The class of all such systems has been shown in Fig. 6.

We apply a random Gaussian input of mean 0 and standard
deviation 1. Noise is simulated as a white Gaussian process of
mean 0 and standard deviation of 0.3. The input–output data is
of length 1000, i.e., we have,

From the input–output data we wish to pick a model in
the class , that minimizes the unmod-
eled-error, i.e.,

argmin

Of course we do not have knowledge of the process,, in order
to compute and only have access to finite data. Moreover,
we want the procedure to work uniformly over all systems
that are within a bounded distance from the model-class,. To
illustrate this fact, we solve the problem for two cases: when the
real process is and when the real process is in which have
magnitude response as shown in Fig. 6.

a) Identification of model-parameters:To simplify the
notation we denote the annihilator in state-space as follows:

(66)

With this notation we apply the following algorithm of Section
VII:

(67)

(68)

(69)

(70)

where . The estimate for is given by

These results were compared with the least squares and the
weighted least-squares approach. The actual error is the differ-
ence , and the estimated error is that based on data and
a priori assumptions. To apply the least-squares algorithm we
first prefiltered the input with . We then estimated
the best that minimized the least-squares error between the
filtered input and the measured output. We experimented with
several different weights for the weighted least-squares problem
and found them to be worse than uniform weighting. Recall
that we made observations to this effect in Section VII-B. As
a sample, we have used the weight in the Table
III. The procedure applied in this paper is denoted MUD, for
minimizing-unmodeled-dynamics, the least squares by LS and
the weighted least squares by WLS.

We see two issues at stake: the parametric error estimates and
the unmodeled error. LS and WLS provide poor parametric-
error-estimates in addition to increasing the level of unmod-
eled dynamics. In other words, it is extremely unlikely that the
real-process can be realistically accounted for within the error
bounds.

b) Estimating unmodeled error:In order to estimate the
unmodeled error for when the process iswe solve the op-
timization problem presented in this section. For simplicity of
exposition we only use a single-filter bank for our constraints.
In such a situation the upper-bound scales as the noise-energy.



254 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 2, FEBRUARY 2001

TABLE III

Fig. 7. Noisy estimate of unmodeled dynamics and frequency response of
actual and estimated unmodeled error.

We also fix the parametric estimateto be obtained using
the MUD algorithm. This simplifies our problem greatly and the
solution can be obtained by applying the technique presented in
[12]. We first write the cost function using Lagrange multipliers

(71)

We make the following notations for ease of exposition:

diag

diag

diag

and

...
...

...
...

...

The reader may recognize the expression foras encoding
the computation of the norm with the first term representing the
derivative component. We are led to the following first order
conditions:

diag (72)

For each fixed we can solve for using Cholesky fac-
torization noting that the matrices are sparse. This computation
turns out to be . We now need to determine that
value of such that

(73)

This turns out to be particularly simple as it can be shown that
is a monotonically decreasing function of. The solution

to the problem is shown in the bottom of in Fig. 7. The first
subplot shows the noisy estimate obtained by setting

and predictably has a norm of 200, while the second plot shows
the denoised by the optimization problem above. The estimated
unmodeled error is 0.95 which differs from the true value by
5%. This is surprisingly close to the true value of 1 especially
because we only have one filter-bank.

c) Obtaining the model-parameterization:This is a hard
problem and is outside the scope of this paper. However, since
we can estimate the unmodeled error, it can form as a basis for
updating the model-structure so that it minimizes the estimated
unmodeled error. Thus for the examples under consideration it
turns out that if we change the model structure to say,
the “optimal” estimate using MUD results in a value of 1.64
and the unmodeled-error is 2.02. As a reality check, we also
compute with this model-structure and find it to be close
to parametric estimate of 1.64. In this way iterating over such
model-structures it is possible to show that the optimal model
structure is indeed . Although, computationally
cumbersome, such a procedure can be fundamentally used to
find a good candidate model-structure in the sense of minimal
unmodeled dynamics.

This shows how the proposed formulation provides a tradeoff
between parametric and nonparametric error estimates using
measured data and the noise model. The computations are based
on convex analysis.

X. CONCLUSION

In this paper, a new principle for system identification was
introduced. In contrast to MPE and set-membership techniques,
which prescribe picking a model from a model set that best
fits or is consistent with the data respectively, the principle pre-
sented recommends picking a model that minimizes the unmod-
eled error. The principle formulated is meaningful when one has
a clear idea about the original system as an element belonging
to a complex prior, while the chosen model-set has relatively
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limited complexity. Such problems arise naturally in many in-
stances such as identification of time-varying systems where the
time variation prohibits estimation of high order dynamics and
in identification of lumped parameter models for systems gov-
erned by PDEs.

The formulation leads to a crisp definition for parametric
and nonparametric components, and, in general, helps stream-
line identification methodology with robust control. The identi-
fication problem reduces to robust convergence of the param-
eters in the parametric space in the presence of residual dy-
namics and noise. We overcome the difficulties arising from
residual dynamics and noise by developing novel two-step algo-
rithms, with the first step annihilating the residual dynamics and
the second step amounting to denoising the data. This method-
ology is successfully applied in a number of settings and for
different topologies. The algorithm developed computationally
bears similarities with recursive estimation techniques. How-
ever, the techniques developed here are distinct in a number of
instances such as identification of limited complexity models in
closed-loop setting and identification of low order models when
systems are described in general hilbert spaces. We also show
that the algorithms have polynomial sample complexity in the
number of parameters that describe the model-set for a large
number of instances. Unlike the analysis results in MPE where
the convergence is pointwise and asymptotic, the results devel-
oped here are based on finite-time sample path analysis and hold
equally well in set-valued as well as stochastic settings.

We forsee a rich set of extensions of these results and a signif-
icant set of open problems that need to be resolved. We point to
a few of them here. First of all, it is unclear how the techniques
can be generalized to rational model structures. One possible ap-
proach is to formulate the problem in a behavioral framework,
however, this is currently laden with many technical difficulties.
Another direction is in exploring the application of these ideas
in estimation problems. Traditionally, Kalman filtering and esti-
mation literature has assumed that the model has no uncertainty,
and one could fruitfully employ some of the techniques devel-
oped in the paper to address estimation problems in the situ-
ations where there is uncertainty in the dynamics. Finally, we
perceive that these techniques can be immediately generalized
to slowly time-varying systems with little difficulty.

APPENDIX

Proof of Theorem 1:We discuss the case of Bernoulli
process below.

Step 1) For a fixed , let

(74)

Next, notice that we can realize the above expression
as a limit of an analytic function inside the unit disc.
In fact, it is a polynomial of order :

(75)

Following on the lines of Lemma 3 and [5], we can
show that, for any finite subset of

Card

(76)

where is as in Lemma 3.
Step 2) By Bernstein’s inequality, we know that

(77)

Suppose achieves its maximum at on the
boundary of the unit disc. By the mean-value the-
orem, we have

(78)

This immediately implies that

(79)

Thus a uniform grid of on the unit-disc will
guaranty that for some .
Therefore as a result we will have that:

(80)

Since, the result is easily verified.
Step 3) Observe that can be ex-

pressed as a multivariate polynomial invariables
of order , i.e.,

(81)

Now, pretending that all variables except for are
fixed we obtain a result similar to (80). Extension to
the multivariate case is straightforward and will lead
us to (7).

Proof of Lemma 2:We first simplify the expression for
.

(82)

Now, if we let and , we obtain

RHS (83)
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Suppose is a rational multiple of . The expression above will
be equal to one for a large enough . For s that are
irrational multiples of , the argument is a little more involved.
We define the type of an irrational number as follows. Let the
distance between a real numberand the nearest integer be
denoted by , i.e.,

mod mod

(84)

then, the type of an irrational number is defined as

It is well known (see [6]) that the type of almost all irrational
numbers, except on a set of Lebesgue-measure zero, is equal to
one. Therefore, there is a sequence such that

Now, for such a sequence, we immediately see that the RHS is
close to 1/2 (using the property that grows as
for close to zero).

Proof of Theorem 2:

Step 1) We first simplify the autocorrelation coefficient
. Pick any irrational and we have

the following lemma.
Lemma 6:

(85)

It now follows that:

cot (86)

where cot . It is, therefore, sufficient to prove
that the second term goes to zero uniformly w.r.t., i.e.,

cot

(87)

The maximization in the above problem can be gotten rid of in
the following straightforward way:

cot cot (88)

Step 2) The sine function can be bounded from below by its
argument, i.e.,

and

(89)

Now, for , we know that

mod mod (90)

Now, from (89), it follows that:

cot (91)

where the notation is as in (84). Therefore, we need
to only prove that

(92)

Step 3) We now employ the Hardy–Littlewood theorem for
this purpose, which is restated here in our words for
the sake of completion (see [13] and [6]).

Proposition 7: For almost all irrational numbers,
except on a set of Lebesgue-measure zero:

(93)

We now state Kroneckers lemma, which we employ to con-
clude the proof.

Lemma 7: Let , be sequences such that is positive
and decreasing to zero. Then, implies

(94)

(see [4] for a proof of Kronecker’s lemma). By applying the
above lemma, we are done. In our case, is precisely the
positive decreasing sequence. The hypothesis of the lemma is
satisfied by the Hardy–Littlewood theorem. Hence, we get

(95)

In conclusion, we have, for almost any irrational number
except on a set of Lebesgue-measure zero

(96)

and, therefore, the higher-order chirp is a robust input. The proof
of the rate is outside the scope of the paper, and is proved in [32]
and [37].
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