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Planning the path of an autonomous, agile vehicle ina dynamic environment is a very complex problem, especially
when the vehicle is required to use its full maneuvering capabilities. Recent efforts aimed at using randomized
algorithms for planning the path of kinematic and dynamic vehicles have demonstrated considerable potential for
implementation on future autonomous platforms. This paper builds upon these efforts by proposing a randomized
path planning architecture for dynamical systems in the presence of � xed and moving obstacles. This architecture
addresses the dynamic constraints on the vehicle’s motion, and it provides at the same time a consistent decoupling
between low-level control and motion planning. The path planning algorithm retains the convergence properties
of its kinematic counterparts. System safety is also addressed in the face of � nite computation times by analyzing
the behavior of the algorithm when the available onboard computation resources are limited, and the planning
must be performed in real time. The proposed algorithm can be applied to vehicles whose dynamics are described
either by ordinary differential equations or by higher-level, hybrid representations. Simulation examples involving
a ground robot and a small autonomous helicopter are presented and discussed.

I. Introduction

R ECENT advances in computational capabilities, both in terms
of hardware and algorithms, communication architectures, and

sensing and navigation devices have made it possible to develop
autonomous, single, or multiagent systems that exhibit a high degree
of reliability in their operation, in the face of dynamic and uncertain
environments, operating conditions, and goals. These systems must
be able to construct a proper representation of the environment and
of their own state from the available sensory data and/or knowledge
base and must be able to make timely decisions aiming at interacting
with the environment in an optimal way.

This paper is concerned with the problem of generating and ex-
ecuting a motion plan for an autonomous vehicle. In other terms
this paper considers developing an algorithm that enables the robot
to move from its original location to a new location (presumably
to accomplish an assigned task such as performing an observation
or delivering a payload), while avoiding collisions with � xed or
moving obstacles.

The problem of planning a trajectory in an environment clut-
tered by obstacles has been the object of considerable interest in
the robotics and arti� cial intelligence communities1¡4; most of the
activity has focused on holonomic or nonholonomic kinematic mo-
tion problems. Roughly speaking, it is possible to identify three
general approaches to the motion-planning problem, namely, cell
decomposition methods, roadmap methods, and arti� cial potential
� eld methods.1

Many motion-planning algorithms rely on the notions of con� gu-
ration and con� guration space. A con� guration of a robot identi� es
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the position of all of its points with respect to an inertial reference
frame. We will assume that such a con� guration can be described
by a � nite number of parameters. The con� guration space is the set
of all possible con� gurations of the robot.

Cell decomposition methods rely on the partition of the con-
� guration space into a � nite number of regions, in each of which
collision-free paths can be found easily. The motion-planning prob-
lem then is translated into the problem of � nding a sequence of
neighboring cells, including the initial and � nal conditions.5

In roadmap methods a network of collision-free connecting paths
is constructed, which spans the free con� guration space (i.e., the
subset of the con� guration space that does not result in collisions
with obstacles). The path-planning problem then reduces to � nding
paths connecting the initial and � nal con� guration to the roadmap
and then selecting a sequence of paths on the roadmap. There are
several methods for building such a roadmap, among which we can
mention visibility graphs6;7 and Voronoi diagrams.8

Finally, in arti� cial potential � eld methods a collision-free trajec-
tory is generated by the robot moving locally according to “forces”
de� ned as the negative gradient of a potential function.9¡11 This
function is designed to provide attractive forces toward the goal
and repulsive forces, which push the robot away from obstacles
(the potential function is bowl shaped with the goal at the bottom,
and obstacles are represented by peaks). This class of methods is
based on the de� nition of a feedback control policy (i.e., the con-
trol is computed at each instant in time as a function of the current
state), as opposed to the open-loop approach of the preceding two
classes. A shortcoming of this formulation is the possible existence
of local minima in which the robot might become trapped. An ar-
ti� cial potential function, which does not have local minima, is a
said navigation function, but computing such a function is in the
general case as dif� cult as solving the motion planning problem for
all initial conditions.12

The algorithms for motion planning must be evaluated in terms of
completeness and computational complexity. An algorithm is said
to be complete if it returns a valid solution to the motion-planning
problem if one exists and returns failure if and only if the problem
is not feasible: This is what we will call a correct termination for a
motion-planning algorithm. The computational complexity of some
basic formulations of the motion planning problem has been stud-
ied in detail. The so-called generalized mover’s problem, involving
motion planning for holonomic kinematic robots made of several
polyhedral parts among polyhedral obstacles, has been proven by
Reif13 to be PSPACE hard. (The complexity class PSPACE includes
decision problems for which answers can be found with resources,
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such as memory, which are polynomial in the size of the input.
The run time is not constrained. The complexity class NP is known
to be a subset of PSPACE; moreover, it is believed to be a proper
subset.14 ) An algorithm for path planning in a con� guration space
of dimension n, with obstacles de� ned by m polynomial constraints
of degree d, has been established by Schwartz and Sharir15; the time
complexity of the algorithm is (twice) exponential in n and polyno-
mial in m (geometrical complexity) and in d (algebraic complexity).
The most ef� cient algorithm currently available for solving the same
problem, from Canny,16 is singly exponential in n. The preceding
results strongly suggest that the complexity of the path-planning
problem grows exponentially in the dimension of the con� guration
space.

Moreover, kinematic, holonomic path planning is not enough for
many problems of interest, particularly problems involving “agile”
autonomous vehicles, for which we have to take into account the
additional constraints on the vehicle’s motion arising from its dy-
namics or from nonholonomic constraints (that is, nonintegrable
constraints on the state and its derivatives).

Even though in some cases it is possible to force a dynamical
system to follow trajectories generated by a kinematic model, this
is not true in general, especially when constraints on the available
control inputs are taken into account.

For example, differentially � at systems17 can follow any arbi-
trary trajectory for the so-called � at outputs.18 However, no general
method is available yet to ascertain differential � atness of a given
system. Moreover, even for differentially � at systems currently there
is no straightforward way of taking into account control saturation
or � ight envelope constraints (some advances in this direction ap-
peared recently19;20 ).

As another example, some nonholonomic systems are able to ap-
proximate arbitrary paths, but usually this requires the execution of
complex sequences of small-amplitude movements about the refer-
ence path, which could possibly result in a large loss in terms of
performance of the � nal trajectory.3;21¡23

If the output of a kinematic planner is used as a reference tra-
jectory for an inner loop consisting of a tracking control law, the
discrepancies between the planned trajectory and the trajectory ac-
tually executed by the system can be relevant and lead to collision
with obstacle even in the case in which the planned trajectory was
collision free. This is true, for example, in cases in which the charac-
teristic dimensions of the environment (e.g., the size of the obstacles
and of the gaps between them) and of the vehicle’s dynamics (e.g.,
the turning radius at some nominal velocity) are comparable.

As a consequence, it is desirable that motion-planning strategies
take fully into account the dynamics of the vehicle. In other words, it
is desirable that the output from the motion planning be executable
by the system dynamics: this is the object of a recent direction in
motion planning research, usually referred to as kinodynamic motion
planning.

Clearly, such a problem is at least as dif� cult as the path-planning
problem. Moreover, constraints deriving from the system’s dynam-
ics or from nonholonomic constraints cannot be represented as “for-
bidden zones” in the state space (i.e., the space encoding the con� g-
uration of the vehicle, as well as its velocities). As a consequence,
the direct application of kinematic motion-planning techniques to
the dynamic case is not possible in the general case.

Perhaps the best formulated general method for addressing
motion-planning problems is the use of optimal control.24;25 How-
ever, the solution of such a problem using the traditional optimal
control tools (such as variational calculus, the minimum princi-
ple of Pontryagin and other necessary conditions26 and dynamic
programming27 ) is computationally intractable for all but trivial
cases. In addition, some techniques from kinematic motion plan-
ning can be also extended to the dynamic case by planning motions
in the state space instead of the con� guration space.

However, there is strong evidence that any deterministic and com-
plete algorithm for the solution of kinodynamic motion-planning
problems will require at least exponential time in the dimension
of the state space of the dynamical system, which is usually at
least twice the dimension of the underlying con� guration space,
and polynomial in the number of obstacles. As a consequence, avail-

able algorithms are implementable in practice, at least at the current
technology levels, only for systems of very small dimension (e.g.,
less than � ve). Because the state space of aerospace vehicles is at
least 12 (when vehicles are modeled as rigid bodies), one has to
resort to heuristic techniques or seek alternative formulations of the
problem.

To circumvent the computational complexity of deterministic,
complete algorithms, a new class of motion-planning algorithms,
known as probabilistic roadmap (PRM) planners, was introduced
by Kavraki et al.28 and Overmars and Svestka29 and subsequently
re� ned.4;30¡33 The PRM path-planning architecture was � rst intro-
duced as a fast and ef� cient algorithm for geometric, multiple-query
path planning. The original PRM planner is based on an off-line
preprocessing phase and an on-line query phase. The preprocess-
ing phase is aimed at constructing a graph of feasible paths in the
entire con� guration space (the roadmap), which would make future
queries easy to solve. The on-line query phase selects an appropriate
path from the already computed roadmap, together with the com-
putation of two “short” paths to connect starting and ending points
to the closest nodes (or milestones) of the roadmap. The PRM algo-
rithm has been proven to be complete in a probabilistic sense, that is,
the probability of correct termination approaches unity as the num-
ber of milestones increases. Moreover, performance bounds have
been derived as a function of certain characteristics of the environ-
ment (i.e., its expansiveness, tied to the rate at which the set of points
that can be connected to the roadmap grows with the number of
milestones), which prove that the probability of correct termination
approaches one exponentially fast in the number of milestones.33

However, for many path-planning applications building a
roadmap a priori may not be required, or even feasible (e.g., for
planning in a dynamic, rapidly changing environment). In addition,
the basic roadmap algorithms neglect the vehicle dynamics: the ve-
hicle usually needs to navigate along a piecewise linear trajectory
with very sharp turning points. To address both points, a new ran-
domized motion-planning algorithm was developed by introducing
the concept of rapidly exploring random trees (RRTs).34¡36 The RRT
algorithm consists of building on-line a tree of feasible trajectories
by extending branches toward randomly generated target points.
Although in the PRM approach the idea was to explore the con� g-
uration space exhaustively in the preprocessing phase, RRTs tend
to achieve fast and ef� cient single-query planning by exploring the
environment as little as possible. A signi� cant feature of the RRTs
is that the resulting trajectories are by de� nition executable by the
underlying dynamical system. In addition, under appropriate techni-
cal conditions, the RRT algorithm has been proven probabilistically
complete,36 that is, the probability of � nding a path from origin to
destination converges to one if such a feasible path exists.

In Hsu et al.37 a new incremental roadmap building algorithm is
introduced that provides not only probabilistic completeness, but
also recovers performance guarantees on the algorithm. That is, the
probability of the algorithm � nding a solution if one exists converges
to one exponentially fast with the number of random samples used to
build the tree. Interestingly, the rate of convergence does not depend
on the number of obstacles, but rather on geometric properties of the
environment (e.g., its expansiveness). One dif� culty pointed out by
the authors, however, lies with the fact that algorithm performance
relies upon uniform sampling of milestones in the reachable space of
the tree. Practical implementations (which have reportedly demon-
strated excellent performance37 ) rely upon uniform sampling of the
system’s control inputs instead, which in general does not guarantee
uniform sampling of the workspace.

Motivated by these recent developments, a new randomized, in-
cremental motion-planning algorithm is proposed in this paper. This
incremental roadmap building algorithm is able to effectively deal
with the system’s dynamics, in an environment characterized by
moving obstacles. Central to this algorithm is the assumption that
an obstacle-free guidance loop is available, which is able to steer the
system from any state (including con� guration and velocity) to any
desired con� guration at rest, assuming that there are no obstacles
in the environment. This guidance loop enables uniform sampling
of the workspace while generating trajectories that are executable
by the dynamical system. As a consequence, it is shown that this
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path-planning algorithm satis� es the technical conditions elicited
by Hsu et al.37 and therefore offers guaranteed performance in the
form of bounds on the convergence rate to unity of the probability
of correct termination. Considering real-time computation issues,
the path-planning algorithm provides safety guarantees in the sense
that it provides intermediate milestones with guaranteed buffer time
before a collision occurs. If possible and practical, the buffer time
can be extended to in� nity, thus resulting, in principle, in hard safety
guarantees on the generated motion plan. Moreover, in the case in
which the obstacle-free planner is optimal with respect to some
meaningful cost it is possible to implement branch-and-bound algo-
rithms to bias the search for a solution to maximize the performance
of the computed solution.

The paper is organized as follows: � rst, the planning framework is
introduced, including speci� cations on the system closed-loop dy-
namics, on the environment, and on the path-planning problem in the
presence of obstacles. The randomized, real-time motion-planning
algorithm for agile vehicles is then introduced and discussed, and
its performance is analyzed. Finally, the randomized algorithm is
demonstrated on a ground robot example � rst, and then on the model
of a small autonomous helicopter. Simulation results are presented
and discussed.

II. Motion-Planning Framework
This section introduces the elements used to formulate the path-

planning algorithm. The algorithm for path planning presupposes
the existence of a closed-loop architecture that enables the guidance
of the vehicle from any state to any con� guration at rest. Thus,
rather than working with anopen-loop system, as presented in earlier
publications,34;36;37 our basic dynamical system is a closed-loop one.

A. System Dynamics
In this section we introduce the dynamics of the systems for which

the motion-planning algorithm is applicable. Because this paper
concentrates mostly on guidance and planning tasks, we introduce
two guidance models, which we believe are relevant to the problem
under consideration.

1. System Representation via Ordinary Differential Equations
The usual representation of the dynamics of an autonomous ve-

hicle or robot is a set of ordinary differential equations (ODEs) of
the form

dx

dt
D f .x; u/ (1)

where x 2 X is the state, belonging to a n-dimensional manifold X
(the state space), and u is the control input, taking values in the set
U µ Rm . The preceding formulation can include both nonholonomic
and dynamic constraints.38 In some cases additional inequality con-
straints of the form

F .x/ · 0 (2)

must be added on the state variables to ensure safe operation of the
system (e.g., � ight envelope protection). In Eq. (2) F.x/ can repre-
sent a vector of constraints, and the inequality must be understood
component-wise.

Finally, assume that the state space X can be decomposed, at
least locally, into the product C £ Y and that the system dynamics,
as well as the � ight envelope constraints, are invariant with respect
to group actions (e.g., translations or rotations) on C.

The space C is a reduced con� guration space, in the sense that it
is de� ned by a subset of the con� guration variables of the system,
with respect to which the system has certain symmetry properties.
In a Lagrangian mechanics setting these variables correspond to
the so-called cyclic variables, which do not appear explicitly in the
Lagrangian of the system.39 In many cases of interest, one is effec-
tively interested in planning the motion on such a reduced con� gu-
ration space. For example, when planning the motion of a helicopter
one is interested in specifying a � nal hovering position and possibly
heading. Pitch and roll angle at this � nal condition are not speci� ed,
as long as they are such to allow hovering.

The space Y encodes the remaining con� guration variables, as
well as the vehicle’s velocity and higher-order derivatives of the
con� guration variables. These somewhat abstract notions are more
clearly illustrated on simple examples.

Example 1 (system with integrators): Consider the system de-
scribed by the following set of ODEs:

Pz D y; Py D f .y; u/

In this case the space C is spanned by the vector z, whereas the space
Y is spanned by y.

Example 2 (attitude dynamics): Consider the attitude dynamics
of a spacecraft in the absence of a gravitational � eld

PR D R O!; J P! D ¡! £ J! C M .u/

In the preceding equations J is the inertia tensor of the spacecraft,
M denotes the moments generated by the controls u, and the skew
matrix O! is de� ned as the unique matrix for which O!v D ! £ v for
all vectors v 2 R3. In this case the space C corresponds to the group
of rotations R in the three-dimensional space SO.3/, and the space
Y corresponds to the linear space of velocities in body axes ! 2 R3.

Example 3 (helicopter dynamics): Finally, consider the following
simpli� ed model of the motion of a helicopter40;41

Px D v; m Pv D mg C RFb.v; !; u/

PR D R O!; J P! D ¡! £ J! C Mb.v; !; u/

where x is the position of the center of mass of the vehicle, v is
its velocity in an inertial reference frame, R 2 SO.3/ represents the
attitude of the helicopter, and ! is the vector of angular velocities in
body axes. The mass and rotational inertia of the vehicle are indi-
cated by m and J , and g represents the gravity acceleration. Finally
Fb and Mb are respectively the forces and moments (expressed in
body axes) generated by the controls u. In this case, because the
dynamics of the vehicle do not depend on its position and on its
heading angle, the space C corresponds to the space of translations
in the position space and rotations about a vertical axis. The vari-
ables in Y encode the remaining degrees of freedom (namely, roll
and pitch rotations), as well as the translational and rotational rates.
This decomposition is only local.

2. Hybrid System Representation
Although the formulation in terms of ODEs is probably the most

commonly used representation of a vehicle’s dynamics, it might
not be the most appropriate choice for the purpose of vehicle guid-
ance. In particular, the state space of nontrivial systems is typically
very large, and the “curse of dimensionality” makes the solution of
motion-planning problems in such large-dimension spaces compu-
tationally intractable.

An alternative approach is represented by the formulation of the
system dynamics, and hence of the motion-planning problem, in
what can be regarded as the maneuver space of the vehicle.42¡44

This alternative formulation of the vehicle dynamics builds on a
formalization of the concept of maneuver, which in a more unstruc-
tured form, is commonly referred to in the aerospace literature.45¡49

The main feature of a maneuver model is the selection of ap-
propriate motion primitives. Closely related to the invariance of the
system dynamics with respect to group actions on C is the existence
of trim trajectories (or relative equilibria). Loosely speaking, a trim
trajectory can be de� ned as a trajectory where the vehicle is in a
state of equilibrium relative to a body-� xed reference frame. Dur-
ing a trim trajectory, the state variables in C evolve according to the
system dynamics, whereas the state variables in Y are � xed, as are
the controls u. The existence of trim trajectories is a fundamental
property of the system dynamics, and it is natural to consider trim
trajectories as a � rst class of motion primitives. A � nite number
of such trajectories can be selected, for example, by gridding the
compact subset of Y £ U de� ned by the � ight envelope and control
saturation constraints.
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Example 4 (autonomous vehicle dynamics): Most ground and air
vehicles exhibit invariance to translation in the horizontal plane and
to rotation about a vertical axis. If altitude changes are limited (and
hence air density variations are negligible), we can also assume
invariance to vertical translation. In this case trim trajectories are
helicoidal curves, with a vertical axis.

Such a selection of trajectory primitives is appropriate for systems
in which the dynamic behavior can be neglected (e.g., kinematic
systems, aircraft models for air traf� c control). If the dynamics of
the system cannot be neglected, the transients related to switches
between different trim trajectories must be accounted for. A sec-
ond class of primitives, called maneuvers, are de� ned as feasible,
� nite-time transitions between trim trajectories. Maneuvers can be
designed by solving a local optimal control problem or can be de-
rived from � ight data.

Although maneuvers have a de� nite time duration, trim trajecto-
ries can in principle be followed inde� nitely. As a consequence, the
decision variables, or control inputs, consist of the amount of time
the vehicle must remain in the trim trajectory (coasting time) and in
which maneuver it has to execute next (jump destination).

The result of the process of extracting trajectory primitives is the
creation of a guidance-level system representation as a maneuver
automaton, whose states are the trim states of the vehicle and whose
transitions correspond to maneuvers. The maneuver automaton can
be seen as a new model of the vehicle, in which the continuous dy-
namics ODEs (1) are replaced by the transition rules on the directed
graph representing the automaton and by the associated hybrid sys-
tem evolution. The full state of the system will then be described by
the maneuver primitive being executed and the time and position on
C of its inception. Using this representation, the assumption of in-
variance to group actions in C is enough to ensure that the maneuver
automaton encodes all of the relevant information about dynam-
ics and the � ight envelope constraints of any vehicle in a space of
smaller dimension, that is, M D C £ QT , where QT is the set of
indices of the selected trim trajectories.

Example 5: Many planar nonholonomic robot models assume
that the robot, cruising at constant speed, can only move straight
forward, or turn left with a given radius, or turn right with the same
turning radius. In this case, assuming the robot to be a kinematic,
rigid body, C would be the set of all positions and orientations of
the robot, and QT D fmove straight, turn left, turn rightg.

A full discussion of themaneuverautomaton framework is outside
of the scope of this paper, but is available on other publications by
the authors,44 to which we refer the interested reader.

In the rest of the paper, to simplify the notation we simply use the
letter X to indicate the state space, with the understanding that this
can be regarded as either the continuous state space or the hybrid
maneuver space M.

B. Obstacle-Free Guidance System
The second major element that is assumed to be available is a

guidance algorithm in environments with no obstacles. In this paper
we consider problems in which the desired destination is a relative
equilibrium or trim trajectory. More speci� cally, we assume knowl-
edge of a guidance law that can steer the system, in the absence of
obstacles, from any state to a particular target set T .xeq/, centered at
a relative equilibrium xeq. Because the system dynamics are invari-
ant with respect to group actions on C, a family of relative equilibria
can be expressed by a point in C £ f Nyg, where Ny 2 Y is a constant.

For simplicity, in the examples we will only consider equilibrium
points (i.e., terminal conditions with zero velocity) and will con-
sider only autonomous vehicles, which are indeed able to “stop.”
These include autonomous helicopters, vertical takeoff and landing
aircraft, spacecraft, ground vehicles, and surface/underwater ves-
sels. However, the algorithm that will be presented is applicable to
other vehicles such as � xed-wing aircraft and paragliders, as long
as the terminal equilibrium condition for the guidance law, such as
“hover at point p,” is replaced by a relative equilibrium condition,
such as “enter a steady turn starting at point p.”

Although, admittedly, � nding such a guidance law is per se a very
dif� cult problem, it also has been the object of an enormous amount
of work over the past century: in many cases ef� cient, obstacle-

free guidance laws can be computed analytically.24;25 This is the
case of system with linear dynamics with a quadratic cost. It also
includes numerous cases of aerospace interest such as double or
triple integrators with control amplitude and rate limits. In addition,
many of these problems, although they might not admit closed-form
solutions, can be solved numerically via the approximate or exact
solution to an appropriate optimal control problem by minimizing
a cost functional of the form

J [x.¢/; u.¢/] D
Z t f

t0

° [x.t/; u.t/] dt (3)

for some initial conditions x0, under the boundary condition
x.t f / 2 T .xeq/, and the dynamics and � ight envelope constraints
(1) and (2). We make the additional assumption that the incremental
cost ° .x; u/ is invariant with respect to group actions on C. Such
a formulation includes for example minimum time, minimum path
length, and minimum energy control problems.

Advances in computer power, combined with appropriate plant
simpli� cations (such as the introduction of the maneuver model out-
lined earlier), make it possible in many cases of practical interest
to compute and store an approximate expression for the optimal
cost-to-go function (or return function) J ¤.x; xeq/, for all x 2 X ,
and all equilibrium points xeq 2 C £ f Nyg, using for example iterative
methods.42;50 Considering the case of a small autonomous helicopter
represented by a maneuver model such as introduced earlier in this
paper, storage of such a cost function required about 1 MB of mem-
ory, easily implementable on a computer (the cost function was
approximated using a simple look-up table, with semilogarithmic
spacing).42 Other approaches for kinematic motion planning of non-
holonomic vehicles involve the construction of optimal solutions via
the interconnection of canonical paths.51¡53

If the optimal cost function J ¤.x; xeq/ is known for all x 2 X
and all equilibrium points xeq 2 C £ f Nyg, then it is relatively easy
to recover the optimal control policy ¼ : X £ C ! U , as a (feed-
back) policy that returns at each time instant the control input that
minimizes the total (future) cost-to-go to the target.54 The feedback
policy ¼ can be thought of as a function of the state x , parameterized
by the destination equilibrium point xeq.

The solution to an optimal control problem in the free space thus
provides us with a control policy ¼ that ensures that the system is
driven toward a target set with a � nite cost. Moreover, the optimal
cost-to-go function provides a meaningful measure of the distance
between the initial conditions and the target.

Along with the optimal control law in an obstacle-free environ-
ment, we assume the availability of a simulator of the system, that
is a function which is able to predict the evolution of the closed-
loop system, and generate the corresponding (state, time) trajectory.
Such a simulator can be easily developed from the knowledge of the
system’s dynamics and of the optimal control law.

C. Environment Characterization
We consider an environment in which both � xed and moving

obstacles are present, and we assume that the motion of the obstacles
(or conservative estimates thereof) is known in advance. In this case
obstacle avoidance constraints can be written a priori as

G.x; t/ · 0 (4)

where G.x; t/ can be a vector of constraints and the inequality
must be understood component-wise. Because the environment
is time-varying, collisions must be checked on (state, time) pairs
.x; t/ 2 X £ R. For this purpose a collision-checking algorithm is
assumed to be available, via trajectory sampling or other appropriate
method.

The assumption that information on the obstacle motion is avail-
able a priori is admittedly very limiting, because in most practical
applications this kind of information is not available, especially
if the obstacles are actually other vehicles, moving according to
their own control laws and goals. Nevertheless for the time being
we will concentrate on this problem, which is already extremely
challenging.
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It is important to explicitly remark that the simple fact that the
obstacle avoidance constraints (4) are time varying (i.e., the ob-
stacles are moving) translates into hard real-time requirements for
the motion-planning algorithm, even under a perfect information
assumption on the motion of the obstacles. This is a consequence
of the fact that the feasibility of the computed solution with respect
to the obstacle avoidance constraints has to be checked on (state,
time) couples: the solution must be a time-parameterized trajectory,
where the time “tags” are of fundamental importance. Because of the
� nite computation times in physical systems, the motion planning
has to be carried out starting from initial conditions at some time in
the future (i.e., a � nite lead time is needed). If the motion-planning
algorithm is too late in delivering the solution to the vehicle, that
is, if the computation time exceeds the allowed lead time, the late
solution is in general not guaranteed to be feasible.

Before proceeding to the problem formulation, we need to intro-
duce some notation. The feasible set F ½ X £ R is de� ned to be the
set of all pairs .x; t/ for which no collisions occur, and the � ight
envelope constraints are satis� ed. Given an initial condition .x0; t0/,
a pair .x f ; t f / is said reachable if it is possible to � nd a control func-
tion Ou : [t0; t f ] ! U , such that the ensuing trajectory of the system,
from the preceding initial conditions is feasible, and terminates in-
side the set T .x f /. In other words, we say that .x f ; t f / is reachable
from .x0; t0/ if the time-parameterized curve Â : [t0; t f ] ! X is an
integral curve of the ODE (1) (or can be executed as a sequence of
maneuvers encoded in the maneuver model), given the control input
Ou.t/, and is such that Â.t0/ D x0, Â.t f / 2 T .x f /, and [Â.t/; t] 2 F ,
for all t 2 [t0; t f ]. We can de� ne the reachable set R.x0; t0/ ½ F as
the set of all points that are reachable from .x0; t0/. Accordingly,
given a set S ½ F we de� ne

R.S/ D
[

.x ;t/ 2 S

R.x; t/

D. Problem Formulation
The motion-planning problem can now be stated as follows: given

an initial state x0 2 X , at time t0, and a goal equilibrium con� guration
x f 2 C £ f Nyg, � nd a control input v : [t0; t f ] ! U that can steer the
system the system from x0 to T .x f /. A motion-planning algorithm
is said complete if it returns a feasible solution whenever there
exists a time t f such that .x f ; t f / 2 R.x0; t0/ and returns failure
otherwise. Although the usual formulation of the motion-planning
problem is concerned only with � nding a feasible trajectory, in many
engineering applications we are also interested in � nding a trajectory
minimizing some cost. In this paper we will assume a cost of the
form (3).

The motion-planning problem, even in its simplest formula-
tion, has been proven computationally hard. It is possible to
circumvent this dif� culty through the de� nition of a randomized
motion-planning algorithm, which, by replacing completeness with
probabilistic completeness (in the sense that the probability of the
algorithm terminating correctly approaches one as the number of it-
erations grows), achieves computational tractability while retaining
formal guarantees on the behavior of the algorithm.

To implement our randomized motion-planning algorithm, we
need to limit the feasible trajectories of the system to a compact
subset of the state space X and hence a compact subset of the re-
duced con� guration space C. This can be done easily through the
introduction of a con� nement constraint of the form (4). The motiva-
tion for such a requirement derives from the necessity of generating
uniform distributions of target equilibria.

III. Motion Planning in the Presence of Obstacles
The motion-planning algorithm in the presence of obstacles is

based on the determination of a sequence of random attraction points
xr and the corresponding control laws ¼.¢; xr /, which effectively
steer the system to the desired con� guration while avoiding obsta-
cles. In this way the obstacle-free solution to an optimal control
problem forms the basis for the problem of motion planning in the
presence of obstacles. Such an approach casts the location of the
equilibrium con� guration as a function of time as a pseudo-control
input for the system. Because the actual control inputs can be com-

puted from the knowledge of the optimal control policy ¼.¢; xr /, this
means that the low-level control layer (the layer actually interacting
with the vehicle) and the high-level, guidance layer are effectively
decoupled, while at the same time ensuring full consistency between
the two levels. In other words, the output of the guidance layer is
control policies, not reference states or inputs. As a consequence,
unlike earlier randomized motion-planning approaches, the motion-
planning algorithm can be run at a rate that is much slower than the
rate required for the low-level control layer.

An additional advantage of the proposed approach is that the
scheduling of feedback control policies provides robustness to exter-
nal disturbances, uncertainties and modeling errors, which is miss-
ing in other, open-loop, motion-planning approaches.

The ideas just outlined in a probabilistic roadmap setting can be
seen as a motion-planning technique through scheduling of control
policies and corresponding Lyapunov functions [i.e., the optimal
cost-to-go functions J ¤.¢; xr /]. Although the concept is not entirely
new in control theory,55¡57 to the author’s knowledge this is the
� rst application to motion planning in a workspace with moving
obstacles. A fundamental difference can also be seen in the fact that
in our algorithm the ordering of Lyapunov functions is performed
on-line, whereas in the references the ordering was determined a pri-
ori. In other words, in the references just mentioned there exists a
preestablished partial ordering of the Lyapunov functions: the sys-
tem is driven through the attraction domains of a prede� ned se-
quence of Lyapunov functions (and corresponding control policies)
that draws the state closer and closer to the origin. In our algorithm
such a sequence is computed on-line.

Imposing that the motion plan be constructed as a sequence of
local optimal control policies steering the system toward a sequence
of attraction points limits the class of possible motion plans, which
are output by the algorithm. Hence, the motion-planning algorithm
we are going to present will not be complete in the sense that it
is not capable of generating all possible feasible trajectories. On
the other hand, we can analyze the completeness of the motion-
planning algorithm with respect to the class of trajectories it is able
to generate.

Given the control policy ¼ , we say that a point .x f ; t f / is ¼ reach-
able from .xi ; ti / if the closed-loop evolution of the system under
the control policy ¼.¢; x f / with initial conditions .xi ; ti / is such that
a feasible, collision-free trajectory is generated through .x f ; t f / (or
a neighborhood thereof). The ¼ reachable set R¼ .xi ; ti / is thus de-
� ned as the set of all (state, time) couples, which are ¼ reachable
from .xi ; ti /; this set is bounded from below (in the sense of time)
by a manifold with the same dimension as the symmetry group H ,
embedded in the larger space X £ R. Accordingly, we can de� ne
the ¼ reachable set of a set S as:

R¼ .S/ :D
[

.x ;t/ 2 S

R¼ .x; t/

In the following, we will consider a weaker notion of completeness,
limited to trajectories that can be generated by the application of a
sequence of given control policies from the initial conditions.

A. Overview of the Algorithm
The basic idea of the algorithm is the following: starting from the

initial conditions .xi ; ti /, we incrementally build a tree of feasible
trajectories, trying to explore ef� ciently the reachable set R.xi ; ti /.
(A tree is a directed graph, with no cycles, in which all nodes have
several outgoing edges, to each of which corresponds another node,
called a child. A child node can in turn have several other children.
All nodes, excluding the root, have one and only one incoming
edge, which comes from the parent. The root has no parent. A
common example of a tree is the directory structure in a computer � le
system).

At each step we will add a new branch (edge) and a new milestone
(node) to the tree. For this purpose at each tree expansion step we
have to address two points: 1) which node do we want to expand?
and 2) in which direction shall we explore?

The � rst incremental randomized motion-planning algorithm was
recently introduced by LaValle and Kuffner,35 based on previous
work by Kavraki et al.,30 with the name of RRT. In the original RRT
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the answers to the preceding questions were provided (roughly)
in the following way: 1) pick a con� guration xr at random, and
choose the node to expand as the closest (in the sense of a Euclidean
distance) node currently in the tree; and 2) apply a constant input
for a time ±t in such a way that the � nal point is moved as close as
possible to xr . If the resulting trajectory is feasible, then it is added
to the tree. The preceding procedure is iterated until one of the nodes
of the tree is close enough to the target point x f .

Although the RRT algorithm proved to be extremely ef� cient in
many dif� cult problems, as reported in the literature,34¡36 it could
not be appropriate in the general case of a dynamical system. Select-
ing the control inputs according to a greedy policy on the Euclidean
distance could result into instability for the dynamical system (it
essentially amounts to pure proportional feedback). Also, only a
probabilistic completeness proof is available. Even though it is guar-
anteed that the probability of correct termination of the algorithm
converges to one as the number of iterations increases there are no
indications on how fast this convergence will occur. Moreover, in
a dynamic environment case this approach is not probabilistically
complete and might fail altogether, aswill be shown in the examples.

In Hsu et al.37 a different approach was introduced, based on the
following main steps: 1) choose the node to be expanded at random,
and 2) apply a random control input for an interval ±t.

The algorithm has been proven to be probabilistically complete,
even in the presence of moving obstacles. Moreover, its proponents
were able to prove performance bounds on the algorithm, provided
that at each iteration the reachable set of the set of current milestones
(nodes in the tree) is explored uniformly. This is not accomplished
in the general case by the two steps just outlined: a random selection
of the inputs from a uniform distribution does not necessarily result
into a uniform distribution on the outputs (the location of the new
candidate milestone). Moreover, a uniform random choice of the
node to be expanded does not result in a uniform exploration of the
reachable set of the tree because the reachable sets from each of the
nodes overlap and can have different volumes. As a consequence,
the exploration mechanism considered in the proof was not the one
outlined in the preceding two steps, but was instead assumed to be
the output of an idealized procedure, denoted as IDEAL-SAMPLE.
The random selection of nodes and control inputs was used as an ap-
proximation of IDEAL-SAMPLE in the practical implementation.
Moreover, the complete randomness of both the main steps in the
tree construction results in the generations of trees, which appear to
lack in sense of purpose and do not appear to explore very ef� ciently
the free con� guration space (ef� cient exploration was, on the other
hand, the main advantage of the RRT algorithm).

To address these problems, we advocate the fact that the optimal
cost function in the obstacle-free environment provides the most
appropriate information to address both the issues of node selection
and trajectory generation. Using the optimal control function and
the corresponding optimal control policy, we will indeed be able to
implement an IDEAL-SAMPLE procedure and achieve the corre-
sponding performance bounds.37 The key ideas are the following:
the correct measure of distance is the optimal cost-to-go, and the
optimal input can be derived from the associated optimal control
policy. Moreover, the optimal (feedback) control policy can be seen
as the inversion mechanism, which translates the uniform distribu-
tion in the output space (i.e., the location of the newly generated
candidate milestone xr ) into the corresponding distribution in the
input.

In our algorithm we proceed as follows: 1) pick a con� guration xr

at random, and try to expand all of the nodes in the tree in sequence
in order of increasing cost J ¤.xi ; xr / [i.e., starting from the closest
node, using the measure of distance provided by J ¤.¢; xr /]; and 2)
apply the optimal control policy ¼.¢; xr / until the system gets to xr

(or a neighborhood of xr ).
As it can be easily recognized, the preceding steps correspond to

the steps in the RRT algorithm with two fundamental differences:
at each iteration we try to connect the new candidate milestone in
turn to each one of the nodes currently in the tree before discarding
it as unreachable from the current tree (in the original RRT only
the closest node was tested for reachability). The RRT criterion of
testing the closest node translates into the heuristics of testing the

nodes in ascending distance order. The second main difference is
that the optimal cost function in the obstacle-free case is used as a
measure of distance, both in the selection of nodes to expand and in
the computation of the optimal control.

In the next subsections we will discuss more in detail the compo-
nents of the motion-planning algorithm and how they � t together.

B. Data Structure
First of all, we will discuss brie� y the elements that characterize

each node (also referred to as milestone) and each edge (or branch)
in the tree.

1. Data Stored at Nodes
The main piece of information stored for each milestone consists

of the predicted (state, time)couple that will be attained if the chosen
motion plan includes the node at hand; this can be computed by
integrating over time the equations describing the dynamics of the
system.

Moreover, at each node in the tree we can store data used to com-
pute estimates (lower and upper bounds) on the total cost of motion
plans including the node. The total cost of a trajectory [assuming
the cost functional is additive, of the form (3)] can be split into an
accumulated cost and a cost-to-go. The accumulated cost will in
general be available through bookkeeping: it is a consequence of
decisions made in the past. The cost-to-go is, in general, much more
dif� cult to compute.

On the other hand, we can easily compute a lower bound on
the cost-to-go: this is given by the value of the optimal cost in the
absence of obstacles. The cost in the presence of obstacles cannot be
lower than the obstacle-free cost because the presence of obstacles
translates into additional constraints on the problem.

The upper bound on the cost-to-go is a priori unknown; as a
matter of fact, we do not even know before starting the computa-
tions if the problem is feasible or not. As a consequence, we must
initialize the upper bound on the cost-to-go to the symbolic value of
in� nity. However, if the optimal trajectory from a node to the target
is collision free, then the corresponding cost clearly gives an upper
bound on the cost-to-go. For a node that can be connected to the
target by an optimal trajectory, the lower bound and upper bound
coincide. Methods for updating the upper bound on the cost will be
discussed in Sec. III.G.

As a � nal piece of information, for each node we store the total
number of other nodes that are part of its offspring.

2. Data Stored at Edges
Whereas nodes in the tree represent states of the system along

trajectories, edges can be thought of as representing decisions taken
in the construction of the motion plan.

As a consequence, the main pieces of information to be stored at
edges are the parameters identifying the control law implemented
in the transition, namely, the next (randomly generated) equilibrium
point xr .

As a convenience for bookkeeping purposes, we can store the
incremental cost incurred along the edge. In other words, this cor-
responds to the difference in the accumulated costs at the edge des-
tination node and at the edge source node.

C. Initialization
The � rst step in the algorithm is the initialization of the tree. The

� rst node, which will become the root of the tree, contains the initial
conditions, projected at some point in the future, which depends on
the amount of time that will be allocated to the computation of the
motion plan. As an example, if the vehicle at the initial time t0 is
at position x0 , moving at constant velocity v0 , and we devote µ s
to the computation of a motion plan, the root node must be set at
.x0 C v0µ; t0 C µ /.

The accumulated cost at the root node can be set to zero (all
decision variables will have effect later in time, so there is no point
with starting with a nonzero value). The lower bound on the cost-
to-go can be computed as the value of the optimal cost function
from the root state. To set the upper bound, we attempt to reach
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the target state x f using the optimal control law ¼.¢; x f /. If the
resulting trajectory is collision free, the optimal motion planning
problem is evidently solved, and the algorithm can return with the
optimal solution. Otherwise, the upper bound is set to the symbol
1 (i.e., it is not yet known whether the motion planning problem
admits a feasible solution or not), and the tree-building iteration is
entered.

D. Tree Expansion Step
The main function to be performed at each step in the iteration

is the expansion of the tree. The expansion is aimed at adding new
nodes, or milestones, to the tree in such a way that the volume of
the ¼ -reachable space of the tree is increased rapidly.

At each iteration a new random target con� guration xr is gen-
erated from a uniform distribution. This requires that the motion-
planning algorithm concentrates on a compact subset of the con� g-
uration space. This limitation can be the result of an obstacle avoid-
ance constraint (such as in the cases in which the vehicle moves
within an enclosed environment) or can be arti� cially imposed by
limiting the distance the vehicle can stray from the initial and � nal
points.

Given the new random candidate milestone xr , we must check
whether or not it is in the ¼ -reachable set of the current tree. To do
this, we apply the control policy ¼.¢; xr / starting from the (state,
time) initial condition of each node in the tree, until a feasible,
collision-free trajectory, which reaches xr (or a neighborhood) at
time tr , is generated. If no such a trajectory is found, then xr is not
in the ¼ -reachable set of the current tree and is discarded. Otherwise
(and pending the safety check discussed in the next section), the new
trajectory segment is added to the tree, as well as the new milestone
.xr ; tr /.

It is easy to see that the function just outlined does indeed result
in uniform sampling of the ¼ -reachable set of the current tree (i.e.,
it is an implementation of an IDEAL-SAMPLE procedure on the
symmetry group H ). The new candidate milestone xr is generated
from a uniform distribution on H , and a thorough test is carried out
to check whether or not it is in the ¼ -reachable set of the current tree.
The feedback control law ¼.¢; xr / is used as the inversion mechanism
that provides the appropriate inputs at each instant in time.

The order in which the milestones currently in the tree are checked
is as yet left unspeci� ed. A random ordering is acceptable. How-
ever, some performance improvements are obtained in simulations
(see Sec. V) if ¼ reachability of the random candidate milestone
xr is tested from tree nodes in a more ef� cient way. As a matter of
fact, in randomized motion-planning algorithms most of the time is
typically spent in checking trajectories for collisions with obstacles,
and methods are sought to reduce the number of collision checks.58

1. Exploration Heuristics
Before a feasible trajectory is found, the emphasis of the algo-

rithm is on exploration, that is, on the addition on new milestones
to the tree that enlarge its reachable set. To enhance exploration
while keeping the number of collision checks to a minimum, it can
be convenient to sort the nodes in ascending order of distance from
xr , where as a measure of distance we use the value of the optimal
cost function in the obstacle-free case J ¤.¢; xr /. At the cost of the
additional computation time required by the sorting of the nodes
(and by the evaluation of distances), reachability is tested � rst from
the nodes that are closer to the candidate milestone and hopefully
more likely to provide a collision-free trajectory. This will result
in a lower number of calls to the collision-checking routine (e.g., a
routine that evaluates G.x; t/ along newly generated trajectories).
This exploration heuristics is very closely related to the RRT algo-
rithm, with the only difference that potentially every node in the tree
is tested during the expansion step, whereas in the RRT algorithm
only the closest node is tested.

2. Optimization Heuristics
Once a feasible trajectory has been found, the focus of the search

shifts from exploration to the optimization of the computed trajec-
tory. To enhance the quality of the new additions to the tree, we
can sort the nodes in ascending order of total cost to reach xr . This

total cost consists of the accumulated cost up to the generic node
.xi ; ti / plus the cost to go from xi to xr , that is, J ¤.xi ; xr /. At the
cost of the computation time required to sort the nodes, reachability
is tested � rst from the nodes, which will provide the best trajectory
to the new milestone. This will likely result in a better quality of the
computed solution. This optimization heuristic is most appropriate
when a feasible solution is already available.

As a last detail, every time a new node is added to the tree, the
children counter of all the nodes on the path from the new node to
the root of the tree must be increased by one. A pseudocode version
of the tree expansion function is given as Algorithm 1.

Algorithm 1: Pseudocode for the function EXPAND-TREE (Tree)
1) Generate a random con� guration xr

2) sort the nodes in the tree according to the desired heuristics
[random j exploration j optimization].

3) for all nodes in the tree (in the order established at the previous
step) do

4) Generate a trajectory to xr , using the control policy ¼.¢; xr /
5) Check the generated trajectory for obstacle avoidance
6) if the trajectory is collision-free then
7) return generated trajectory
8) return failure

E. Safety Check
Because obstacles are moving, checking for the absence of colli-

sion point-wise in time could not be enough. If we assume bounded
accelerations, the reachable set of any collision-free point can be
made arbitrarily small (e.g., a point a distance d in front of an ob-
stacle moving with velocity v is collision free, but will not be such
d=v seconds in the future). To ensure that the tree being built does
not include such dead ends (i.e., milestones with a very small reach-
able set), before adding a new milestone to the tree we check for its
safety over a time buffer ¿ . We will call ¿ safety the property of a
milestone to be collision free over a time ¿ . Accordingly, we will
say that a point .x f ; t f / is .¼; ¿ / reachable from .xi ; ti / and belongs
to the set R¿

¼ .xi ; ti / if it is ¼ reachable and ¿ safe.
The ¿ -safety check can be carried out on the predicted evolu-

tion of the system at the relative equilibrium corresponding to the
new milestone. If possible, and practical, the time buffer ¿ can be
extended to in� nity. This is the case, for example, for static environ-
ments. Otherwise, ¿ should be chosen long enough that the success-
ful computation of another motion plan is very likely. Assuming that
the initial conditions are ¿ safe, the ¿ -safety check ensures that the
same safety properties are maintained along the computed motion
plan. In the case in which ¿ D 1, the ¿ safety check translates into
hard safety guarantees for the whole motion plan. In cases for which
safety cannot be ensured over an in� nite time horizon, ¿ safety only
ensures that the algorithm will always have at least ¿ seconds to
compute a new solution.

F. Improving Performance
The tree expansion step outlined in Sec. III.D. generates trajec-

tories consisting of jumps from equilibrium point to equilibrium
point—or, in the general case, from a relative equilibrium to the
same relative equilibrium in a different location on the reduced con-
� guration space C—and as such is unlikely to provide satisfactory
performance, in terms of the cost (3).

However, and building upon previous ideas,55¡57 performance
may be restored by realizing that the available guidance policy may
not only steer the vehicle from equilibrium state to equilibrium state,
but from any state to an equilibrium state. This suggests introducing
the following step: Consider the tree at some point in time and a
newly added milestone to the tree (which we will denote as a pri-
mary milestone). A secondary milestone is de� ned to be any state
of the system along the path leading from the parent node in the tree
to the newly added milestone. We can split any newly generated
edge into n > 1 segments at random; the breakpoints will be the
secondary milestones, and the endpoint is the primary milestone.
Because the vehicle is in motion along the path, the secondary mile-
stones are likely to be at points in the state space that are far from the
equilibrium manifold. Secondary milestones are made available for
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future tree expansion steps. All secondary milestones, by construc-
tion, have a ¿ -safe primary milestone in a child subtree and hence
are themselves ¿ safe.

G. Update on the Cost-to-Go Estimates
Each time a new milestone is added to the tree, a check is made

to see if the � nal target point is in its ¼ -reachable set. In other
words, we try applying the control policy ¼.¢; x f / to each newly
generated milestone. In the case in which this results in a feasible,
collision-free trajectory,we have found a sequence ofmilestones and
control policies, which steers the system from the initial conditions
to the � nal target point along a feasible, collision-free trajectory,
and hence the feasibility problem is solved. However, we might be
interested in looking for the best possible trajectory satisfying the
feasibility problem and eventually try to approximate the solution
of the optimal motion planning problem involving the minimization
of the cost functional (3).

With this purpose in mind, every time a new feasible solution is
found the estimates of the upper bound on the cost-to-go of the af-
fected node in the tree are updated. The affected nodes are those in
the path from the newly added node to the root. As a consequence,
in order to update the upper bound on the costs we climb the tree
backward toward the root: at each step we compare the old upper
bound at the parent node with the upper bound on the cost following
the newly found trajectory. If the latter is smaller that the old upper
bound, we update the bound and reiterate from the parent. Otherwise
the procedure stops (there is another subtree of the parent, which
presents a lower upper bound on the cost). A pseudocode version of
the cost estimate update function is given in Algorithm 2.

Algorithm 2: Pseudocode for the function UPDATE-COST-
ESTIMATES (Tree, node, target)

1) node.LowerBound Ã J ¤ (node.x ,target.x ).
2) Generate the obstacle-free optimal trajectory to x f , using the

control policy ¼.¢,target.x/.
3) Check the generated trajectory for satisfaction of the obstacle

avoidance constraints
4) if the trajectory is collision-free then
5) node.UpperBound Ã node.LowerBound.
6) while node 6D Tree.root and node.Parent.UpperBound >

node. UpperBound C node.incomingEdge.cost do
7) node.Parent.UpperBound Ã node.UpperBound C node.

incomingEdge.cost
8) node Ã node.Parent
9) return success
10) else
11) node.UpperBound Ã C1.
12) return failure

H. Tree Pruning
The upper and lower bounds on the cost-to-go stored for each tree

milestone can be pro� tably used for pruning the tree and speeding
up computations. Recall that the lower bound coincides with the
optimal cost-to-go in the obstacle-free case, and the upper bound
is equal to the cost of the best trajectory from the milestone to the
destination x f if this trajectory has been found or C1 otherwise.

Every time a new feasible solution is found, the upper bounds
on the cost-to-go can be updated by climbing the tree backward
along that feasible solution toward the tree root. While performing
this operation, it is also possible to look at all of the children of the
node being updated. If the lower bound on the total cost-to-go for
such children (plus the cost of the corresponding edge) is higher
than the upper bound on the cost-to-go for the current node, the
corresponding subtree can be safely removed, as it cannot possibly
provide a better solution than the one that has just been found.

The end result of such a process is the removal from the trajec-
tory tree of all of the provably bad candidates for the optimal solu-
tion. The trajectory tree, following this pruning process, contains a
smaller number of nodes, thus improving the overall computational
ef� ciency. However, it must be kept in mind that tree pruning can
only be carried out once a feasible solution has been found and is
of no help before that happens.

I. Real-Time Considerations
A signi� cant issue arising from the usage of randomized algo-

rithms for path planning is the distinct possibility of driving the
system toward a dead end as a result of � nite computation times.
The notion of ¿ safety was introduced in Sec. III.E. to prevent such
situations to develop.

The ¿ safety of the generated plan derives from the fact that all
of the primary milestones are by construction ¿ safe and all sec-
ondary milestones have at least one primary milestones in their sub-
tree. Maintaining safety guarantees in the face of � nite computation
times is particularly important because the algorithm itself has no
deterministic guarantees of success. In the sense just outlined the
algorithm will always produce safe motion plans, even in the case
in which a feasible trajectory to the target set has not been found.

The time available for computation is bounded by either µ or by
the duration of the current trajectory segment. When the time is up,
a new tree must be selected from the children of the current root. If
there are none, because every primary milestone is ¿ safe, the system
has at least ¿ seconds of guaranteed safety available for computing
a new tree (secondary milestones always have at least one child). If
the current root has children, then two cases arise:

1) At least one of the children leads to the destination through
an already computed feasible solution. If there are more than one
such feasible solutions, the solution with the least upper bound on
the cost-to-go is chosen.

2) No feasible solutions have been computed yet. In this case there
is no clear indication of the best child to explore. Maintaining the
same approach at the basis of the algorithm, the child to descend can
be selected randomly, according either to a uniform distribution or
to a distribution weighted on the total number of primary milestones
in the subchildren of each tree. In the latter case the selected tree is
likely to cover a bigger portion of the reachable set.

J. Complete Algorithm
The � ow of the algorithm then proceeds as follows. After the

initialization of the tree, a loop is entered until the target has been
reached. As the very � rst step in each iteration of the loop, an at-
tempt is made to join the current root (the initial conditions) to the
target con� guration using the optimal control law computed for the
obstacle-free case. If the attempt is successful, an optimal solution
has been found, and the algorithm terminates successfully.

Otherwise, an inner loop is entered, which tries to expand the
trajectory tree. At each iteration of the inner loop, a random con� g-
uration is sampled, and an attempt is made through the EXPAND-
TREE function to join a node in the current tree to the new candidate
milestone. If this is possible and results in a ¿ -safe trajectory (i.e.,
the candidate milestone is in the .¼; ¿ /-reachable set of the cur-
rent tree), then the generated trajectory is split up into a number of
segments, which are added to the tree as new edges, and the corre-
sponding endpoints, which are added to the tree as new (primary or
secondary) milestones.

From the newly generated milestones an attempt is made to reach
the � nal target. If successful, this attempt enables the update of the
upper bound estimates on the cost-to-go on the tree nodes. In this
case the tree can be pruned to eliminate nodes in the tree, which are
guaranteed tobe bad candidates for further exploration (because they
cannot improve on the quality of the solution already computed).

This procedure is perhaps better understood through an example,
given in Fig. 1. The current tree is depicted as a set of thick lines,
the squares represent the primary milestones, and the circles rep-
resent secondary milestones. The target point x f is not reachable
from any of the milestones currently in the tree by using the policy
¼.¢; x f / (i.e., the optimal policy to x f assuming there are no obsta-
cles). Thus, a new candidate milestone xr is randomly generated,
and then attempts are made to join the nodes of the tree to xr . The
closest milestone, in the sense induced by the cost-to-go function
J ¤.¢; xr /, is indicated by the number one. Application of the policy
¼.¢; xr / with initial condition corresponding to this milestone re-
sults in a collision with one of the obstacles. The same can be said
from the second closest milestone, indicated by the number two.
With the third-closest milestone we have better luck, and we can
generate a new collision-free trajectory. A new primary milestone
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Fig. 1 Example of tree expansion procedure.

is created at xr , a new secondary milestone is created at a random
point on the newly generated trajectory, and the two new milestones
are connected to the tree through edges encoding the new trajectory.
Finally, we check whether or not the target point is reachable from
the new milestones. In this case the answer is indeed positive, and
the feasibility problem is solved. If this is not the case (or a better
solution is sought), the iteration would be started again with a new
random point xr .

This iteration is carried out until the time allowed for computation
has elapsed. This time is given by the time duration of the edge of
the tree that is currently being executed, and is therefore not a priori
� xed. The iteration can be preempted with no adverse consequence
on the algorithm.

At this point if at least one feasible solution had been found, the
subtree of the root corresponding to the least upper bound on the cost
is chosen. If no feasible solution has been found yet, a subtree to
descend is chosen randomly from a distribution weighted with the
total number of milestones in each subtree. If the current root has no
children, a new root is created, which corresponds to the predicted
root state at some time in the future (this time interval being the
computation time allotted for the next main loop iteration).

The rest of the tree is deleted and removed from memory be-
cause it contains only trajectories that can no longer be reached (it
is not possible to go back in time). The main loop iteration is then
repeated. A pseudocode version of the main algorithm is given in
Algorithm 3.

Algorithm 3: Pseudocode for the motion-planning algorithm
1) Initialize Tree with the initial conditions at time t0 C µ .
2) loop
3) if UPDATE-COST-ESTIMATES (Tree, root, target)D suc-

cess then
4) Terminate with success
5) repeat
6) newTrajectory D EXPAND-TREE (Tree)
7) if newTrajectory 6D failure and newTrajectory is ¿ safe

then
8) Split newTrajectory and generate primary and secon-

dary milestones
9) for all new milestones do
10) UPDATE-COST-ESTIMATES (Tree, node, target)
11) Prune tree
12) until Time is up
13) if Tree.root.UpperBound < 1 fFeasible solution foundg

then
14) � nd the child of root which gives the least upper bound

on the cost-to-go
15) Tree.root Ã best child

16) else if Root has children then
17) Choose a child according to a random distribution,

weighted with the number of children in each subtree
18) else
19) propagate root for a time µ in the future

IV. Analysis
This section aims at analyzing the behavior of the algorithm, prov-

ing probabilistic completeness and obtaining performance bounds.
This requires additional de� nitions and assumptions about the en-
vironment characteristics. The remainder of the section presents
the concepts supporting most of the available results about algo-
rithms based on probabilistic roadmaps. New de� nitions are needed
to adapt earlier results to the motion algorithm presented in this
chapter, in particular to account for the closed-loop dynamics and to
better characterize the assumptions about the dynamic environment.

A. Assumptions on the Environment
First of all, we require that for all ¿ -safe equilibrium points the

.¼; ¿ /-reachable set be not too small, taking into account also com-
putational delays. This property corresponds to the ² goodness of a
static workspace.59 The planning environment (as de� ned by both
the workspace and the control policy) is said to be .²; ¿ / good if, for
all sets S¿ ¡µ ½ F of .¿ ¡ µ/ safe equilibrium points, the following
holds:

¹
£
R¿

¼ .S¿ ¡ µ /
¤

¸ ²

In the preceding ¹.S/ indicates the volume of the projection of
the set S ½ X D C £ Y on C. The volume measure is normalized in
such a way that the volume of the compact subset of X de� ning
the workspace is equal to one. The proof of algorithm performance
relies upon the following properties, which will be assumed to be
true for the system under consideration.

Let ¯ be a constant in .0; 1]; de� ne the ¯-lookout of S ½ F as

¯-lookout.S/ :D
©

p 2 S
¹

¡
R¿

¼ .p/
°

S
¢

¸ ¯¹[R.S/nS]
ª

We require that the dimensions of the ¯ lookout of any set should not
be too small; this property is called .®; ¯/ expansiveness33: Given
two constants ®, ¯ in .0; 1], the environment is said .®; ¯/ expansive
if for all sets S 2 F the following holds:

¹[¯-lookout.S/] ¸ ®¹.S/

B. Algorithm Performance
Consider the initial condition .x0; t0/, and assume it is an equilib-

rium point (if not, generate a primary milestone using the algorithm
presented in the preceding section). De� ne the end-game region
E ½ H as a region such that all equilibrium points contained in it
can be connected without collisions to the desired destination x f

using the policy ¼.¢; x f / for all times t . Then, if the environment
is .®; ¯/ expansive and the desired destination x f is contained in
the reachable set R.x0; t0/ it can be shown that the probability of
the algorithm returning a feasible trajectory connecting x0 to x f ap-
proaches unity exponentially fast. The results that will be presented
in the following are based on Hsu et al.,37 with a few minor modi� ca-
tions to address the usage of the policy ¼ in the exploration process,
as opposed to random, piecewise constant inputs. The proofs of the
lemmas are available in the reference and are omitted here for lack
of space.

First of all, we need to characterize the expected number of look-
out points in a tree. We have the following:

Lemma 1 (number of look-out points37): In a tree with r mile-
stones, the probability of having k look-out points is at least
1 ¡ k exp.¡®br=kc/.

The following step is to quantify the size of the .¼; ¿ / reachable
set given the presence of at least k lookout points in the tree.

Lemma 2 (size of reachable set37 ): If a sequence of milestones
contains k lookout points, the volume of its .¼; ¿ / reachable set is
at least 1 ¡ exp.¡¯k/.

Finally, we can state the main theorem.
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Theorem 1 (performance of the randomized algorithm37 ): A se-
quence of r (primary) milestones contains a milestone in the end-
game region E with probability at least 1 ¡ ° , if

r ¸ .k=®/ log.2k=° / C [2=¹.E/] log.2=° /

where k :D .1=¯/ log[2=¹.E/].
Proof: Split the sequence of milestones into two subsequences of

r1 and r2 milestones, respectively. If the number of milestones in the
� rst sequence is greater than k D 1=¯ log[2=¹.E/], then the .¼; ¿ /
reachable set of the � rst sequence has an intersection of volume at
least ¹.E/=2 with the end-game region E . Let us call event A the
event that the number of lookout points is greater than k. This event
occurs with a probability

Pr.A/ ¸ 1 ¡ exp.¡®br1=kc/

If we want to make this probability at least 1 ¡ ° =2, we need

r1 ¸ .k=®/ log.2=° /

Assume that the intersection of the .¼; ¿ /-reachable set of the � rst
sequence of milestones with the end-game region is ¹.E/=2. Then
the probability that at least one of the milestones in the second
sequence will be in the end-game region (event B) is

Pr.B/ ¸ 1 ¡ exp[¡r2¹.E /=2]

To make this probability at least 1 ¡ ° =2, we need

r2 ¸ [2=¹.E/] log.2=° /

If events A and B occur, then one of the milestones in the complete
sequence is in the end-game region. We have that if r ¸ r1 C r2

Pr.A ^ B/ D Pr.A/Pr.B/ ¸ .1 ¡ ° =2/2 ¸ 1 ¡ °

which proves the result.
To our knowledge, the algorithm presented in this paper is the � rst

one to which Theorem 1 fully applies, with the de� nitions and un-
der the assumptions given earlier in this section, because the .¼; ¿/-
reachable set is indeed uniformly sampled. In some sense the most
signi� cant contribution of this paper is to propose to shift the search
for reachable milestones from an open-loop process, whereby ex-
ploration is done by randomly sampling the controls available to
the system, to a closed-loop process, whereby the exploration is
done by randomly (and uniformly) sampling the milestones, and
the obstacle-free guidance system then chooses the controls leading
the vehicle from its current state to that milestone. In this sense the
guidance law can in fact be interpreted as a practical implementation
of the ideal inversion mechanism considered in the literature.37

Moreover, we are able to recover, by sorting nodes according to
distance, the levels of performance shown in practice by RRT al-
gorithms. As a consequence, we are able to achieve probabilistic
completeness and formal performance bounds in a dynamic envi-
ronment, and at the same time we can exploit the rapid exploration
capabilites of RRTs: in this sense the algorithm presented in Sec. III
recovers all of the best properties of its predecessors.

The performance bounds that can be obtained for this algorithm
establish only its theoretical soundness, but cannot be used for ob-
taining an explicit estimate of the probability of successful termi-
nation because ®, ¯, and ² cannot be computed easily for nontrivial
environments. An interesting fact is that the computational com-
plexity (in terms of convergence rate of the probability of correct
termination) does not depend on the dimension of the state space
or on the number of obstacle directly. Instead, it depends on param-
eters that in some sense quantify the geometric complexity of the
environment.

Using secondary milestones does not adversely impact the main
results on probabilistic completeness (when evaluated on the num-
ber of primary milestones)because they can only increase the .¼; ¿/-
reachable set of the whole tree. In addition, secondary milestones
have been found to help the convergence of the algorithm, when
close to the end-game region, and enhance the overall quality of the
resulting trajectory (i.e., the trajectory is faster or, in general, less
expensive with respect to the assigned cost).

V. Application Examples
In the next sections we present three examples that show the

power and the � exibility of the proposed algorithm. We consider
� rst a linear system subject to saturation constraints, and then a sys-
tem endowed with a control architecture patterned after the hybrid
control structure described in Sec. II.A.2. All algorithms have been
implemented in (soft) real time on a CCC on a Pentium II 300
MHz machine running Linux, using the LEDA library.60 Compar-
isons will be presented on the computation times required by the
following variations of incremental randomized planners:

Algorithm A: Only one node, chosen randomly from the current
tree, is tested for expansion at each EXPAND-TREE step. This
corresponds roughly to the algorithm proposed by Hsu et al.37

Algorithm B: Only one node, chosen as the closest one to the can-
didate milestone, is tested for expansion at each EXPAND-TREE
step. This corresponds to the RRT algorithm,35 with the differ-
ence that the obstacle-free optimal cost-to-go is used to compute
distances.

Algorithm C: All nodes are tested in random order.
Algorithm D: All nodes are tested, in increasing order of distance.

This corresponds to the full-� edged implementation of the algorithm
in Sec. III.

The inputs are always chosen according to the optimal control
policy in the obstacle-free case. Random control inputs are not ap-
propriate for most of the dynamical systems we are considering
because they could lead easily to instability (for example, a heli-
copter is an open-loop unstable system). If distances are measured
according to the optimal cost function in the obstacle-free case, a
greedy search for the control generation (as in the RRT algorithm)
does provide a stabilizing control law. Moreover, in all cases any
additional computation time available after the � rst feasible solution
is found is used to optimize the solution.

The statistical data are referred to a data set of 1000 simulation
runs for each example.

A. Ground Robot
In this section we are interested in minimum time motion planning

for a planar system with (scaled) equations of motion

Rx1 C Px1 D u1; Rx2 C Px2 D u2 (5)

The magnitude of each control u1 and u2 is assumed to be bounded
by umax. Although this system model is quite simple, it is a good
representation of the ground robots used by the Cornell University
team to win the RoboCup-2000 contest.61;62 The following control
law is adapted from the same references.

1. Minimum-Time, Minimum-Energy Control Law
For any one axis let the initial position and velocity be x0 and v0;

the � nal (equilibrium)conditions are characterized by a desired � nal
position x f and zero velocity. The minimum time maneuver from
origin to destination for each of the degrees of freedom (assuming
a general maximum control intensity umax) is a bang-bang control
law24 given by

u.t/ D U for 0 < t < t1

u.t/ D ¡U for t1 < t < t1 C t2 (6)

The sign of the initial control value U can be determined through
the switching function:

10 :D
»

x0 ¡ x f C v0 ¡ umax log.1 C v0=umax/ for v0 ¸ 0

x0 ¡ x f C v0 C umax log.1 ¡ v0=umax/ for v0 < 0
(7)

If the initial conditions are such that 10 ¸ 0, then U D ¡umax , and
U D umax otherwise.

The time length of the two bang-bang segments can be determined
as follows:

t1 D t2 ¡ C=U

t2 D log
£
1 C

p
1 ¡ exp.C=U /.1 ¡ v0=U /

¤
(8)

with C D x0 C v0 ¡ x f .
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The policy ¼ used to control the vehicle described by Eqs. (5)
is then de� ned as follows: Considering the two degrees of freedom
x1 and x2 , the slowest axis is determined � rst, and the correspond-
ing time optimal control is applied. Let t¤

min be the minimum time
corresponding to that axis.

The other, fastest axis is then controlled using a minimum effort
solution, by solving the minimum time problem using Eqs. (6),
with U D §° umax , and by iterating over the parameter ° 2 .0; 1/
until tmin D t¤

min.

2. Fixed and Moving Spheres
The randomized path planning has been tested in several exam-

ples, including cases with both � xed and moving obstacles, and in
general proved to be very fast and reliable.

The � rst example involves navigating the ground robot through a
set of obstacles represented as spheres in the con� guration space. In
the tests both � xed spheres and spheres moving at a constant random
speed were considered, with no signi� cant statistical difference in
the data sets. This example was very easily handled by the random-
ized algorithms. A feasible solution was found by all algorithms in
less than 20 ms in 50% of the cases, with no signi� cant differences
in performance. A feasible solution was found by all algorithms in
all test cases. A summary of the average time required to � nd the
� rst feasible solution tfeas and its standard deviation is reported in
Table 1.

The cost of the trajectory that is eventually executed has been
analyzed. In the examples, the lower bound on the cost is 11.39 s
(this is the cost of an optimal trajectory in the obstacle-free case;
there does not exist a unique optimal trajectory, but many trajectories
minimize the cost). In all cases but for Algorithm 2, an optimal
trajectory was found in at least 50% of the test cases. On average,
the cost of the solution was less than 5% higher than the lower
bound, showing that the algorithms do indeed provide a solution
that is almost optimal. In this scenario, Algorithms A and C, relying
completely on randomization (as opposed to RRT-like heuristics),
seemed to fare slightly better than the others. A summary of the
average cost of the solution t f provided by the algorithms and its
standard deviation is also reported in Table 1.

In this case the environment is open, and all of the randomized
algorithms can achieve extremely high levels of performance, even
in the presence of moving obstacles.

Table 1 Ground robot moving amidst � xed spheres:
simulation results

Average, St. dev. Average St. dev.
Algorithm (tfeas ), ms .tfeas/, ms (t f ), s (t f ), s

A 17.68 10.10 11.52 0.29
B 16.34 7.93 12.03 0.68
C 18.12 10.01 11.55 0.31
D 17.3 8.57 11.86 0.55

Fig. 2 Ground robot moving through sliding doors: trajectory tree traces. Algorithm A (left) and algorithm D (right).

3. Sliding Doors
In the second example the robotmustgo through moving openings

in two walls. The walls are 40 m apart and have “doors” 10 m wide
(Fig. 2). Both the walls slide along their longitudinal axis according
to a harmonic law. The frequencies of the two oscillations are 0.5
rad/s for the wall at the bottom and 0.25 rad/s for the wall at the top
of the picture. The amplitude of the harmonic motion in both the
cases is 40 m, yielding a maximum door velocity of 20 m/s, twice
as much as the maximum velocity of the robot.

This scenario was expected to be a dif� cult challenge for the ran-
domized planners; however, most of the algorithms were able to
deal with it quite effectively (see Table 2). Algorithm A was slow
in � nding a feasible solution (it took an average time of over 40 s),
but the quality of the resulting plans was consistently good. Algo-
rithms C and D were again the best performers, � nding a feasible
trajectory within a few seconds. Moreover, the average cost of the
plans generated by Algorithm C is within 22% of the lower bound
on the optimal cost.

The reason for the poor performance of Algorithm A in this case
is easily seen from Fig. 2: this algorithm suffers from the lack of
ef� cient exploration and � nding the narrow passage between the
moving doors requires on average much more samples than using
the other algorithms. In the � gures the heavy line represents the tra-
jectory that is eventually executed (i.e., the best computed solution),
whereas the lighter lines represent the other trajectories (edges) in
the trajectory tree. The squares represent primary milestones, and
the circles represent secondary milestones. Milestones that can be
connected to the target by the obstacle-free optimal control law are
� lled in a darker shade.

B. Small Autonomous Helicopter
One of the prime motivations for the development of the algo-

rithm presented in this chapter is the path-planning task for a small
autonomous helicopter.

This section presents simulation results for a test case involving
a small autonomous helicopter. The simulations rely upon a fully
nonlinear helicopter simulation, based on the model presented in
Refs. 40 and 41 and in the references therein. The motion-planning
algorithms operating on the nominal maneuver automaton structure
discussed in Sec. II.A.2 are complemented by a nonlinear tracking
control law41 to ensure tracking of the computed trajectory.

Table 2 Ground robot moving through sliding doors:
simulation results

Average St. dev. Average St. dev.
Algorithm (tfeas ), s .tfeas/, s (t f ), s (t f ), s

A 42.67 27.25 14.95 6.47
B 14.53 25.68 18.78 5.96
C 3.12 13.16 13.87 5.54
D 1.29 8.43 17.35 5.88
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Fig. 3 Helicopter � ying through sliding doors: trajectory tree traces. Algorithm B (left) and algorithm D (right). The RRT-like algorithm on the left
can get “locked” by the � rst computed trajectories.

Table 3 Helicopter moving amidst � xed spheres:
simulation results

Average St. dev. Average St. dev.
Algorithm (tfeas ), s .tfeas/, s (t f ), s (t f ), s

A 0.365 0.390 16.44 2.30
B 0.117 0.060 18.36 3.59
C 0.181 0.124 17.05 2.58
D 0.183 0.132 17.26 2.42

The trajectory primitive library was built by choosing trim tra-
jectories in level � ight, with no sideslip, and � ying at the following
velocities: f0; 1:25; 2:5; 5; 10g m/s with the following heading turn-
ing rates: f¡1; ¡0:5; 0; 0:5; 1g rad/s. This gives a total of 25 trim
trajectories. Time-optimal maneuvers were generated, connecting
each of the trim trajectories to all of the others, giving a total of 600
maneuvers.

The planner was tested using the same scenarios as for the ground
robot examples. The output of the simulations was scaled in such a
way as to provide a meaningful comparison of the two cases. The
cost function used in all of the examples is the total time needed to
go to the destination. The initial conditions are at hover heading due
East (i.e., to the right in the pictures).

1. Fixed and Moving Spheres
The � rst example involves navigating the helicopter through a set

of � xed spheres. As in the case of the ground robot, this example
was very easily handled by the proposed planners: the average time
required for computation of a feasible solution is of the order of a
few tenths of a second (see Table 3).

2. Sliding Doors
In the last example the helicopter must go through moving open-

ings in two walls (see Fig. 3). This scenario proved to be very chal-
lenging for the randomized planners. Algorithm A failed to � nd a
feasible solution within two minutes in the totality of the simula-
tions runs (1000). Algorithm B did better, � nding a feasible solution
within two minutes in 10% of the cases (in which the feasible trajec-
tory was found extremely quickly, in about 2.5 s). Algorithms C and
D on the other hand always succeeded in � nding a solution, even
though it took about 50 s on average. The total cost of the solutions
found was slightly above one minute on average (see Table 4).

C. Discussion of the Results
From the analysis of the simulation results, both in the ground

robot example and in the helicopter example, we can conclude that
all of the tested algorithms perform equally well in simple cases
with very open environments. As the dif� culty of the test scenarios
increases, it is apparent that Algorithms C and D (two versions
of the algorithm proposed in this chapter) performed better than

Table 4 Helicopter � ying through sliding doors:
simulation results (If the computation times exceeded
the allotted time of 120 s, the value of 120 s was taken

into account in the statistics.)

Average St. dev. Average St. dev.
Algorithm (tfeas ), s .tfeas/, s (t f ), s (t f ), s

A —— —— —— ——
B 108.26 35.58 118.04 28.78
C 48.89 42.33 64.83 25.79
D 52.44 38.51 68.18 32.59

Algorithms A and B, both in terms of computation time required
to solve the feasibility problem and in terms of the quality of the
computed solution.

Although Algorithm A does have probabilistic completeness
guarantees in the case of dynamic environments (as opposed to
Algorithm B, which does not), it suffers from inef� cient exploration,
as it can easily be recognized from Fig. 2.

Algorithm B, although performing well in static environments,
shows its limits in the case of dynamic environments (in fact, it is
not probabilistically complete in this case). This algorithm is char-
acterized by a very ef� cient exploration of the workspace: however,
it tends to get locked in the � rst computed trajectories, which, even
though close to the objective, could not result in feasible trajecto-
ries to the target (Fig. 3). It is believed that this is the reason of the
behavior noted in the case of the helicopter � ying through sliding
doors.

Algorithms C and D provided the best results among the algo-
rithms tested. Even though the performance characteristics are very
similar, Algorithm D seems to � nd the � rst feasible solution in a
shorter time than C. The reason for this can be found in the fact that
by sorting the nodes in order of increasing distance from the can-
didate milestone the ef� cient exploration characteristics of RRTs
are recovered, while ensuring probabilistic completeness and expo-
nential convergence to one of the probability of correct execution
even in a dynamic environment. On the other hand, Algorithm C
generally resulted in solutions with a lower cost: this can be seen as
another effect of the fact that RRT-like algorithms tend to get locked
in the � rst solutions they compute and do not explore other options.

VI. Conclusions
In this paper a randomized motion-planning algorithm was pre-

sented, based on using obstacle-free guidance systems as local plan-
ners in a probabilistic roadmap framework. The main advantage of
the algorithm is the capability to address in an ef� cient and natural
fashion the dynamics of the system, while at the same time provid-
ing a consistent decoupling between the motion planning and the
low-level control tasks. The resulting algorithm has been shown to
be � exible enough to handle a broad variety of dynamical systems,
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including systems described by ordinary differential equations, as
well as hybrid systems. In a related work by the authors, the same
algorithm has been applied to dynamical systems evolving on man-
ifolds, as in the case of attitude motion planning for spacecraft.63

From a theoretical point of view, it was shown how to perform
uniform sampling in the reachable space of the vehicle, as opposed
to sampling in the input space. Real-time issues were directly ad-
dressed: In the case in which � nite computation time and available
resources do not allow the computation of a feasible solution be-
fore a decision has to be made, it was shown how to ensure safety
and how to choose likely candidates for further exploration. Future
work will address motion planning in uncertain environments, with
limited sensor range, and multivehicle operations.
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