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Abstract 

In this paper we propose a hierarchical control architecture 
for aggressive maneuvering applicable to autonomous heli- 
copters. In order to reduce the computational requirements 
of the control problem to be solved to achieve aggressive 
trajectories, a hybrid system framework is used, which al- 
lows for a substantial reduction in the complexity of the sys- 
tem, as well as for guarantees on the stability of the overall 
behavior. The hybrid controller is based on an automaton 
whose states represent feasible trajectory primitives. The 
selection of maneuvers, and hence the generation of the 
complete trajectory, can be cast as an optimal control prob- 
lem that can be solved efficiently in real time. 

1 Introduction 

Several envisioned mission scenarios for unmanned aerial 
vehicles (UAVs) require aggressive flying in an unknown, 
dynamic and potentially hostile environment. The adjective 
aggressive, when referred to flight control, stands for “more 
severe, intensive, or comprehensive than usual” and is often 
used when addressing maneuvers performed at the edge of 
the flight envelope, that is maneuvers that push the limits of 
the aircraft performance . The ability of the UAV to use its 
maneuvering capabilities to the fullest, as well as the ability 
to react in real time to changes in the operational environ- 
ment is obviously of paramount importance. On manned 
aircraft, maneuvers are initiated by a human pilot, and the 
flight control system is called upon to avoid departure from 
controlled flight, or violation of the flight envelope con- 
straints. However, when dealing with fully autonomous ve- 
hicles, the word aggressive acquires a broader meaning: not 
only we desire to perform such maneuvers, but we need to 
appropriately select and initiate them, in order to meet some 
higher level objective. With this we mean that in general we 
are not interested in executing an aggressive maneuver for 
its own sake (except, for example, for demonstration pur- 
poses), but because the maneuver will place the vehicle in a 
more favorable position to reach a predetermined and mean- 
ingful goal (such as moving to a certain location, evading a 
threat, and so on). The “aggressiveness” of such a maneuver 
planning can also be seen as having no (or little) concerns 
about the use of the vehicle resources, such as the control 
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effort. Finally, we note that aggressiveness in general will 
imply the temporary departure from what are usually con- 
sidered “stable” operating conditions, eventually allowing 
for a “recovery” phase at the end of the maneuvering flight. 
Having all of the above considerations in mind a natural 
description of aggressive maneuvering can be translated, in 
many cases of interest, into a minimum time optimal con- 
trol problem, within the constraints of the vehicle capabili- 
ties in the full flight envelope: this is the definition of “ag- 
gressive” that we will use in the following. 

In general, the solution to optimal control problems is pro- 
hibitive from the computational point of view, especially 
when it is desirable to fully exploit the performance char- 
acteristics of the vehicle (for a review of trajectory opti- 
mization techniques, see [ 11). In order to reduce the com- 
putational complexity of the problem, without sacrificing 
too much of the vehicle capabilities, we restrict the class of 
nominal trajectories to the family of trajectories that can be 
generated by the interconnection of appropriately defined 
primitives. These primitives will then constitute a “ma- 
neuver library” from which the nominal trajectory will be 
constructed. Instead of solving an optimal control prob- 
lem over a high-dimensional, continuous space, we will 
solve a mixed integer programming problem, over a much 
smaller space. The idea expressed above translates into an 
integrated hierarchical control architecture applicable to au- 
tonomous aerial vehicles (details will be given for applica- 
tion to small helicopters). At the core of the control archi- 
tecture lies a hybrid automaton, the states of which repre- 
sent feasible trajectory primitives for the vehicle. Each con- 
stituent subsystem of the hybrid controller will be the agent 
responsible for the maneuver execution. The task of the 
automaton will be the generation of complete, feasible and 
“optimal” trajectories, via the interconnection of the avail- 
able primitives. Apart from the reduction in computational 
complexity, one of the objectives of this approach is the 
ability to provide a mathematical foundation for generating 
a provably nominally stable hierarchical system, and even- 
tually develop the tools to analyze robustness in the pres- 
ence of uncertainty in the process as well as in the environ- 
ment. 

2 Related work 

The design of flight control systems for autonomous ve- 
hicles has been the object of a relevant body of research 
in the recent past: one of the reasons can be seen in the 
dramatic increase in the computational power available on 
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small autonomous vehicles. A hierarchical decomposition 
of the tasks required for an autonomous vehicle control is 
usually performed when dealing with intelligent flight con- 
trol for autonomous vehicles (see for example [2] and ref- 
erences therein). The usual decomposition includes a guid- 
ance layer for trajectory planning, and a control layer for 
command tracking. On top of both layers, we can define a 
mission planning level, that defines the current objective. 
The different levels are usually interacting only on a very 
limited basis, and most often a formal analysis of the com- 
plete system is very difficult, or based on time-scale sepa- 
ration arguments, that could be inapplicable to the control 
of vehicles in a dynamic environment. The guidance func- 
tion is usually composed by a flight planner that generates 
a trajectory according to a kinematic model of the vehicle, 
often disregarding, or severely limiting, its actual dynam- 
ics. The generated trajectory will be in general infeasible 
for the vehicle: this can be obviated if the trajectories do not 
require “aggressive” flying, but can lead to very conserva- 
tive behavior. Moreover, in many cases where the trajectory 
planner builds a sequence of flight modes, the selection is 
carried out by procedural or rule-based algorithms which, 
again, can be very difficult to analyze [3, 4, 5, 61. Several 
authors have concentrated on the maneuver tracking aspect 
in the general framework of nonlinear control: to name just 
a few of the papers published in the recent past, we can men- 
tion [7,8,9, 10, 111. In all these papers powerful techniques 
are developed to track a given reference command, but the 
question of generating an optimal trajectory remains open. 

3 Hierarchical decomposition 

The architecture that we will adopt in this work is based on 
the following decomposition. At the highest level, we have 
a strategic control layer, in which the current mission ob- 
jectives are defined. Mission planning and way-point gen- 
eration are typically included at this level. In a manned mis- 
sion, this can be identified with the kind of information that 
is provided to pilots during pre-flight briefing, and possi- 
bly by operational scenarios updates. An intermediate layer 
can be defined as the tactical level. This can be seen as the 
level at which guidance and trajectory planning are usually 
included at this level. We argue that a human pilot at this 
level of abstraction decides the best sequence of “maneu- 
vers”, or trajectory primitives, that ensures the fulfillment 
of the mission objectives. At the lowest level, we have the 
actual interaction with the physical plant: this is sometimes 
referred to as skill or reflexive level, and includes the tradi- 
tional control functions (stabilization, regulation, command 
tracking). Skilled human pilots are usually performing these 
functions without a conscious effort, at least if the vehicle 
performance provides good handling qualities: hence the 
name of reflexive level. 

The core of the architecture we propose is represented by 
a hybrid automaton, which roughly performs the functions 
associated with the tactical level described above, that is, 
it selects the optimal maneuver to be executed in order to 

minimize a suitable cost function, provided by the strate- 
gic layer, given the current state and within the constraints 
of the vehicle dynamics. Each constituent subsystem of the 
hybrid controller will be the agent responsible for the ma- 
neuver execution; as stated in the introduction, the task of 
the automaton will then be the generation of a complete, 
“optimal”, trajectory, via the concatenation of the available 
primitives. 

4 Trajectory Primitives 

We will restrict the nominal trajectories to the family of 
curves that can be generated by the interconnection of ap- 
propriately defined primitives. We want to characterize tra- 
jectory primitives in order to: (1) capture the relevant char- 
acteristics of the vehicle dynamics; (2) allow for the creation 
of complex behaviors from the interconnection of primitives 
(we want to obtain “good” approximations to optimal so- 
lutions) (3) identify the minimal set of key parameters to 
be exchanged between hierarchical levels; this is even more 
important for extension to multi-vehicle operations, or more 
complex systems. A brief exposition of the helicopter dy- 
namics will be given in the following, with the purpose of 
leading and motivating our choice of trajectory primitives. 

4.1 Helicopter Dynamics Model 
In this section, we will briefly introduce the helicopter dy- 
namics model that is the basis of the control architecture 
design. The discussion of some fundamental properties of 
the helicopter dynamics will clarify and motivate the spe- 
cialization of the hybrid control system structure that will be 
presented in the later sections. We need a model that is pow- 
erful enough to adequately represent the helicopter dynam- 
ics characteristics over the full flight envelope, but that at 
the same time can be used for real-time trajectory planning 
and execution: this means that we will have to sacrifice part 
of the accuracy obtainable only through very detailed and 
complicated models. Such a model can be derived by phys- 
ical intuition and first principles: at the basis of the model 
we have the rigid body dynamics, coupled with momentum 
theory and basic aerodynamics for the computation of the 
forces acting on the helicopter (see for example [ 121). Sim- 
ilar minimum complexity models have been recently used 
for helicopter flight control design [ 13, IO] and system iden- 
tification [ 141. We start by stating the equation of motion for 
the helicopter as a rigid body [ 151. The configuration of the 
helicopter will be described by an element g of the Special 
Euclidean group in the three-dimensional space, usually de- 
noted by SE(3). Using homogeneous coordinates, a matrix 
representation of g E Z(3) is the following: 

R P 
g= 0 1 E 1 

where R E SO(3) is a rotation matrix and p E R3 is a transla- 
tion vectyr. The kinematics of the rigid body are determined 
by g = g5 where is, usually denoted as twist, is an element 
of the Lie algebra se(3) associated with SE(3). A matrix 
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representation of an element t E se( 3) is 

t=[; ;] (2) 

where o and v are respectively the angular and translational 
velocities in body axes, and the skew matrix Q is the unique 
matrix such that 8u = w x u, for all u E R3 The dynamics 
equations, in matrix notation, will be given by: 

J/,(i) = --w x J/m+b(g,5,u) (3) 
rnC = --w x mv + Fb(g, 5, u) (4) 

where Mb and Fb represent the torques and forces in body 
axes, which are in general a function of the vehicle state, and 
of the control inputs u. A simplified expression for the body 
wrench, commonly used in minimum-complexity models, 
can be given as: 

Fb = RTW+Fmain(u) +&ail(U) +Faero(S> (5) 
Mb = rmain X Lain(u) + Itail X Ftail(u) + 

+Mrotor(Fmain, V> +Marro(S) (6) 

Fmnin = T,[-al, bl, -llT (7) 

Ftail = F,[O7 l7 OIT (8) 

where w is the gravitational force (weight), F,,, and Ma,, 
represent the aerodynamic wrench, Mrotor is the reaction 
torque from the main rotor, r,,in and rtai[ are the relative 
positions of the main and tail rotor hubs with respect to the 
center of mass. Finally, we have the four (pseudo)-controls, 
namely the pitch and roll flapping angles al and bt, giving 
the orientation of the main rotor no-feathering plane in body 
axes, the main rotor thrust T,, and finally the side force gen- 
erated by the tail rotor and vertical stabilizer. 

4.2 Symmetry 
Under fairly reasonable assumptions, such as homogeneous 
and isotropic atmosphere, and constant gravity accelera- 
tion, the dynamics of a flying vehicle are invariant to trans- 
lation and rotation about a vertical axis. The subgroup 
H = R3 x SU( 1) c X(3), where the rotation is only per- 
formed about the vertical axis, is hence a symmetry group 
for the vehicle dynamics, that is if h E H then it follows 
that <(g,c,u) = c(gh,t,u). An element h E H is completely 
described by the translation vector p E R3 and the heading 
angle w E [O; 27~). A key consequence of the symmetry of 
the dynamics is that we can treat all trajectory primitives as 
equivalence classes, and choose a prototype for each primi- 
tive, starting at a reference position and heading (say at the 
origin, heading north). 

4.3 Trim trajectories 
As a first class of primitives, we will consider trim trajec- 
tories. These are defined as those trajectories along which 
the velocities in body axes (the twist) and the control input 
are constant. From the above discussion of the symmetry 
properties, all trim trajectories will be the composition of 

a constant rotation go and a screw motion h(z) E H, given 
by the exponential of an element rl of the Lie sub-algebra 
h c se(3). This screw motion can be visualized in the phys- 
ical space by a helix flown at a constant sideslip angle. Such 
helices are usually described by the following parameters: 
V, the magnitude of the velocity vector; ‘y, the flight path 
angle; +, the turning rate; and finally p, the sideslip an- 
gle. The trim trajectory will then be completely described 

- - 
by quantities g, u, and q (or equivalently, the parameter vec- 
tor T := { V,y, \ir, p}). It should be mentioned that for a given 
choice of q, several choices of g and U are possible, and 
the selection of desirable values for them is the outcome 
of some (off-line) design process. Note that for fixed wing 
aircraft, p is usually assumed to be zero, or very small (co- 
ordinated flight). This is not necessarily true for helicopters, 
especially for low velocity regimes (e.g. sidesteps and back- 
wards motion can be accomplished by helicopters). The first 
step in the design of our control architecture is the selection 
of a number of trim trajectories. The selection of trim tra- 
jectories can be carried out by gridding the set of possible 
values of i;; this set is bounded by the flight envelope con- 
straint of the vehicle. While we are still unable to provide 
formal criteria for the selection of the “optimal” set of trim 
trajectories, results of recent work in quantized linear sys- 
tems theory [ 161, as well as intuitive considerations suggest 
that a logarithmic spacing can be a better choice. The main 
idea behind logarithmic scaling is that a coarse control ac- 
tion is sufficient when the system is far from the equilibrium 
point; on the other hand a finer control action is needed to 
provide stability and performance near the equilibrium (see 
[171). 

4.4 Maneuvers 
While a hybrid controller based only on trim trajectories 
is conceivable (this is a possible interpretation of the con- 
trol architecture proposed in [ 18]), this generally results in 
“slow” transitions, as the system is required to stay in some 
sense close to the trim surface. Moreover, the absence of 
any information on the transient behavior can lead to unde- 
sirable effects, such as limit cycles. For aggressive maneu- 
vering it is deemed necessary to better characterize trajec- 
tories that move “far” from the trim surface. In this paper, 
a maneuver is defined as a (finite time) transition between 
two trim trajectories. While this can be seen as a reduc- 
tive definition, it leads to significant simplifications in the 
design of the control architecture. Note that the transition 
can also be from and to the same trajectory (e.g. acrobatic 
maneuvers like loops and barrel rolls can be considered as 
transitions from and back to straight and level flight). The 
execution of the maneuver results in a total configuration 
change g,, . We are more interested in the evolution on the 
subgroup H, and from the properties of trim trajectories we 
have that h man = (go’ )d g,, (gO)stan. The reference tra- 
jectories can be generated using several kinds of methods, 
among which we can mention flight tests with human pilots, 
off-line solutions to optimal control problems, or real-time 
trajectory generation. A problem in the off-line generation 
of trajectories is the large amount of storage memory re- 
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Figure 1: Trajectory primitives 

quired; a possible solution is represented by some form of 
compression of the trajectory data. In this case, we have 
to identify some relevant parameters, on the basis of which 
the on-board processor can compute “easily”, in real-time, 
a reference trajectory to track. A very efficient representa- 
tion of trajectories can be achieved by exploiting the prop- 
erties of the differentially flat approximation described in 
[lo]. We recall that a system is differentially flat if we can 
find a set of outputs (the “flat” outputs) from the trajectory 
of which we can recover the full state and control trajecto- 
ries. One possible choice of the flat outputs is composed by 
the position and heading angle: notice that these are the co- 
ordinates of the elements of the symmetry group H, and are 
hence a very appropriate choice for the present application. 
Moreover, it is easy to see that the parameter vector T can 
be derived from algebraic manipulation of the flat output 
and its first derivative. 

5 Hybrid flight control system 

We are now ready to discuss the details of the hybrid archi- 
tecture. First we will introduce a general formalism, and 
then will specialize the formalism to our application. 

5.1 General hybrid control system 
For the formal definition of the controller structure, we will 
use (a simplified version of) the notation introduced in [ 191. 
First of all we define a controlled dynamical system as 
the system: C := [X, r,f, U] where the topological space 
X denotes the state space of C. The transition semi-group 
I- is a topological semi-group with identity (this is an ab- 
straction of time). Finally, f is the transition function, 
and is parameterized by the control set U,. A controlled 
general hybrid dynamical system is defined as the sys- 
tem: Hc := [Q,I;,A,G,V,C,F] where: Q is the (count- 
able) set of discrete states; C := {C,},,Q is the collec- 
tion of constituent controlled dynamical systems. We will 
call the set S := U,,e{q} x X, the hybrid state space of 
H,. A := {A } 4 4E~,Ay C X, for each q E Q, is the col- 
lection of autonomous jump sets; G := {Gq}qEQ, where 
G, : A, x V, + S is the autonomous jump transition map, 
parameterized by the transition control set V,, a subset of 
the collection V := {V,},,Q; C := {cq}qEQ,cq C X, for 
each q E Q, is the collection of controlled jump sets; finally 

FqyEQ, where F4 : C, -+ 2’, is the collection of controlled 
jump destination maps . 

5.2 Specialization to the proposed architecture 
In our flight control application, we will consider: Q = 
Qr U QM where the subscript T refers to trim trajectories, 
and M refers to maneuvers, as defined above; X, = R”+’ , 
where n is the dimension of the state space in the heli- 
copter model, augmented by an additional “time” state z 
(i.e. t = 1); r = R+ (time) ; fq : X, x I/ + TX, is a Lip- 
schitz function describing the continuous dynamics of each 
constituent subsystem, in the usual ODE form; U C_ Rm, 
where m is the number of available (pseudo)-inputs; A, = 
0 for q E QT: no automatic jumps from trim trajectories; 
A, = {,Y E X,]z 2 (Af,,,)q} for q E QM: automatic jumps at 
end of maneuvers; the corresponding jump map G, takes the 
discrete states to a new q E Qr, and resets the time counter 
state 7 to zero, while leaving the remaining components of 
x unchanged; C, = X, for q E Qr: controlled jumps are 
always possible from trim trajectories; the corresponding 
jump map, parameterized by the control set V, C Q,+,, takes 
q into a new q E QM, and resets the time counter z to zero, 
again leaving the rest of x unchanged; C, = 0 for q E QM: 
no controlled jumps from maneuvers. 

5.3 Maneuver execution 
Several researchers have worked extensively on the problem 
of trajectory tracking for nonlinear, possibly non-minimum 
phase systems with very interesting results (we can mention 
the recent papers [7, 8, 9, 10, 111). Since the main focus of 
this paper is on trajectory planning and maneuver sequence 
generation, and the generated trajectories are by construc- 
tion feasible trajectories for the nominal system, we will 
initially assume that perfect trajectory tracking is achieved 
by some lower level feedback controller, acting on the con- 
tinuous control inputs. In any case, once we assign a feed- 
back controller to each maneuver, the continuous evolution 
is then completely characterized. 

5.4 Maneuver selection 
At this point the design of the hybrid controller consists of 
the definition of a policy /J for selecting optimal jump times 
and destination (maneuver) from trim trajectories. We recall 
that all the relevant information while in a trim trajectory is 
defined by the hybrid automaton state and the “position” 
h E H at the current trajectory inception time (T = 0). On 
each trim trajectory q E QT, the discrete control set can be 
identified with the subset V, C QM containing the indices of 
all the maneuvers that start at q. Moreover, the timing of the 
jump must be decided by the hybrid controller. The policy 
p will then be a mapping ~1: Qr x H -+ QM x R+. Assume 
we want to control the system to the state (4, il), and define 
a running cost function y: Q x H + R+, with y(4,h) = 0. 
Given a policy ~1 we can define a total cost function: 

- J,(qo, ho) := 
s TV Y(q(tLW)))dt (9) 

2474 



where h(t) = &[g(t)], PH indicates a projection operator 
that maps elements of X(3) onto H, preserving position 
and heading angle, and the evolution of g(t) is governed 
by the systems dynamics g(t) = g(t)[(q,t). A policy p is 
said to be proper if the above integral is finite for all ini- 
tial conditions. Also, in the above we assumed that both 
autonomous and controlled jumps occur instantaneously, 
and have no cost penalty. The assumption that maneu- 
vers are strictly finite time transitions between trim points 
(i.e. inf{(&mon)y}yEQM > 0) ensures that there are finite 
switches in finite time, and that the resulting system trajec- 
tories are well defined. We assume that a proper policy ex- 
ists, that is the system is controllable. It can be shown that 
this condition is satisfied if the set of design trim trajecto- 
ries is rich enough to independently control the components 
of h (e.g. hover, straight and level flight, turn, climb, dive), 
and the maneuver set is such that it is possible to switch be- 
tween any two trim trajectories in finite time (we can check 
this latter condition by solving for an appropriate shortest 
path problem). We are interested in computing the optimal 
policy p*, that is the policy that minimizes the total cost for 
all initial conditions. The ensuing optimal cost will be indi- 
cated by J*. Following dynamic programming theory [20], 
it can be shown that the optimal cost satisfies the Bellman’s 
equation: 

J*(q,h) = (9~) [rT(q,h,~‘)+rM(q’,h’)+J*(q”,h”)] 

(10) 
where 2’ is the delay before the commanded transition to 
q’ E QM, h’ represents the position and heading at the start 
of the maneuver, and q” and h” represent the new state 
at the inception of the new trim trajectory. In the above 
equation, FT and FM indicate the cost associated with the 
trim and maneuver portions of the commanded transition. 
Moreover, the optimal control (<,q’)* is the minimizer of 
Eq.( 10). Nominal stability of the control algorithm is a con- 
sequence of the optimality condition. We notice that the op- 
timization requires the solution of a mixed-integer program, 
with one continuous variable (z’), and one discrete variable 
(4’). In general, the optimal cost function is not known. 
However, if an initial proper policy can be devised, approx- 
imate dynamic programming algorithms, such as value or 
policy iteration, can be used to improve on the initial pol- 
icy, and possibly get to the optimal control strategy. More- 
over, since the dimension of the state space has been re- 
duced to one discrete variable and four continuous ones, 
neuro-dynamic programming approximation techniques for 
a compact representation of the cost function can be effec- 
tively used, making the control algorithms suitable for real- 
time applications [21]. 

5.5 Application example 
As an application example, we consider the minimum time 
optimal control problem, in an obstacle-free environment. 
We want to take the helicopter to hover in a neighborhood 
of the origin in minimum time, under the constraint of the 
allowable maneuvers. In this case the running cost function 

Figure 2: Value iteration results and optimal cost 

is: 

y(O) = 0 for (q,h) = (q~over,[~,.]T),II~II < E 
1 otherwise 

(11) 

The radius of the target zone E can be made arbitrarily small, 
but must be strictly positive, at least in the current imple- 
mentation of this architecture, because of truncation (finite 
number of trajectory primitives), and computational issues 
(continuity at the optimum). As simplifying assumptions, 
we will consider an obstacle-free environment, and will 
consider only trajectories in the horizontal plane. In this 
case the problem has an axial symmetry, and the relevant 
information in the outer state vector can be reduced to the 
scalar quantities p and h, that is the distance and the line- 
of-sight angle to the target. In the example, the design trim 
trajectories collection is defined by: 

(V,\ir,y,P) E {0,1.25,2.5,5,10m/s} x 

x(-1,0.5,0,0.5,1 rad/s} x 

x { 0 rad} x { 0 rad} 

Reference maneuvers are computed for transition between 
all trim trajectories. An initial proper control policy, based 
on heuristics, can easily be derived (i.e. stop the helicopter, 
turn facing the target, move slowly towards the target). Ap- 
plication of a value iteration algorithm provides conver- 
gence in the evaluation of the optimal cost-to-go to within 
one hundredth of a second in 15 iterations. In this simple 
application example, the evaluation of the optimal cost can 
be carried out off-line (see fig. 2). This is a consequence 
of the fact that the environment is unchanging and perfectly 
known. On the other hand, the evaluation of the optimal 
control, that is minimization of J defined in eq. (lo), has 
to be done in real-time. The computation of the optimal 
control in this example requires only a few hundredths of 
a second on a Pentium-class CPU, and is therefore imple- 
mentable on current on-board computer systems for small 
aerial vehicles. Examples of trajectories obtained by simu- 
lation are shown in fig. 3. In these figures, the height of the 
stems represents the velocity of the vehicle; moreover, solid 
lines and circle symbols indicate transitions. 

6 Conclusions and future work 

In this paper we have presented an outline of a new archi- 
tectural concept for aggressive maneuvering of autonomous 
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Figure 3: Simulated trajectory and velocity profile, starting from 
a high speed turn away from the target (left), and from 
high speed flight over the target 

vehicles. The architecture seems promising, however sev- 
eral issues must be explored. In the first place we have to 
mention the stability and performance robustness of the hy- 
brid control algorithm in the face of uncertainty in the envi- 
ronment and in the model. In this paper we have assumed 
perfect tracking of the nominal trajectory: this will not be 
achieved in reality, and the stability of the trajectory gener- 
ated by the hybrid automaton has to be analyzed. The selec- 
tion of the trajectory primitives is currently done manually: 
it would be desirable to obtain formal criteria defining the 
“optimal” choice of primitives, trading off the complexity of 
the resulting automaton with the achievable performance. 
A dynamic resizing of the automaton is also conceivable: 
in critical situations, when a decision has to be taken in a 
very short time, the automaton could be reduced to a few 
maneuvers, whereas in a more secure situation the set of 
possible maneuvers could be expanded. Extensions of the 
control algorithm could be made to allow multi-vehicle op- 
erations, as well as flight in an unknown environment (i.e. 
obstacle avoidance). Moreover, different kinds of objective 
functions can be considered, such as threat evasion, or target 
acquisition and payload delivery. Finally, a similar structure 
can be thought for the mission planning level, for executing 
functions as objective prioritization, scheduling and alloca- 
tion to multiple agents. All these questions are the object of 
current research efforts. 
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