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Abstract

The problem of signal denoising using an orthog-
onal basis is considered. The framework of previ-
ous solutions converts the denoising problem into
one of finding a threshold for estimates of ba-
sis coefficients. In this paper a new solution to
the denoising problem is proposed. The method
is based on calculation of the coefficient estima-
tion error in each subspace of the basis. For each
subspace, we estimate such criterion and suggest
to choose the subspace for which this quantity is
minimized. An information theoretic interpreta-
tion of the proposed approach introduces a new
minimum description length (MDL) method of
denoising. By comparison of the MDL of families
of bases we can find the basis which minimizes
this criterion. This offers a new method of best
basis search for representation of the noisy data.

1 Introduction

The problem of estimating an unknown signal
embedded in Gaussian noise has received a great
deal of attention in numerous studies. The de-
noising process is to separate an observed data se-
quence into a “meaningful” signal and a remain-
ing noise. The choice of the denoising criterion
depends on the properties of the additive noise,
smoothness of the class of the underlying signal
and the selected signal estimator.

The pioneer method of wavelet denoising was
first formalized by Donoho and Johnstone [3].

The wavelet thresholding method removes the
additive noise by eliminating the basis coeffi-
cients with small absolute value which tend to
be attributed to the noise. The method assumes
a prior knowledge of the variance of the addi-
tive white Gaussian noise. Hard or soft thresh-
olds are obtained by solving a minmax problem
in estimation of the expected value of the re-
construction error [2]. The suggested optimal
hard threshold for the basis coefficient is of or-
der

√
2 logN/(N). The method is well adapted to

approximate piecewise-smooth signals. The argu-
ment however fails for the family of signals which
are not smooth, i.e., the family of signals for
which the noiseless coefficients might be nonzero,
very small, and comparable with the noise effects,
for a large number of basis functions.

The approach to the denoising problem in [4] pro-
poses a thresholding method for any family of ba-
sis functions. Here the attempt is to calculate the
mean-square reconstruction error of the signal as
a function of any given threshold. It provides
heuristic estimates of such error for different fam-
ilies of basis functions such as wavelet and local
cosine bases. The choice of the optimum thresh-
old is given experimentally. For the best basis
search the suggestion is to compare the error es-
timates for different families of bases and choose
the one which minimizes such criterion.

A different denoising approach is recommended
by Rissanen in [5]. In each subspace of the ba-
sis functions the normalized maximum likelihood
(NML) of the noisy data is considered as the
description length of the data in that subspace.
The Minimum description length (MDL) denois-



ing method suggests to choose the subspace which
minimizes this description length. Here noise is
defined to be a part of the data that can not be
compressed with the considered basis functions,
while the meaningful information-bearing signal
need not to be smooth. The method provides a
threshold which is almost half of the suggested
wavelet threshold in [3].

The new method of denoising in this paper pro-
poses to estimate the coefficients error for each
subspace of the basis functions. Such error in
each subspace is the same as the reconstruction
error of the noiseless signal. We introduce a
method to use the noisy data error and proba-
bilistically validate the reconstruction error. Our
focus is not on setting a threshold for the coeffi-
cients beforehand, but to find the estimation er-
ror in each subspace separately and choose the
subspace for which the error is minimized. Sim-
ilar to MDL denoising no prior assumption on
the smoothness of the noiseless part of the data
is needed. We introduce a new minimum de-
scription length method of denoising and demon-
strate how calculation of such description length
is equivalent to finding the subspace estimation
error.

2 Problem Formulation

Consider noisy data y of length N ,

y(n) = ȳ(n) + w(n), (1)

where ȳ is the noiseless data and w(n) is the
additive white Gaussian noise with zero mean
and variance σ2

w. Data denoising is achieved by
choosing an orthogonal basis which approximates
the data with fewer nonzero coefficients than the
length of data. Consider the orthogonal basis of
order N , SN . The basis vectors s1, s2, · · · , sN are
such that ||si||22 = N . Any vector of length N can
be represented with such basis, therefore there ex-
ists his such that ȳ(n) =

∑N
i=1 si(n)hi. As a result

the noisy data is

y(n) =
N∑

i=1

si(n)hi + w(n). (2)

The least square estimate of each basis coefficient
is

ĥi =
1

N
sT

i y
N = hi +

1

N
sT

i w (3)

where yN = [y(1), y(2), · · · , y(N)], the observed
noisy data, is a sample of random variable Y N .
The benefit of using a proper basis is that 1

N
sT

i w
is almost zero as N is assumed to be large enough
and we hope that there exist large number of
basis vectors for which hi = 0. Therefore the
estimation of the noisy signal on this basis has
the advantage of noise elimination. For such rea-
son conventional basis denoising methods suggest
choosing a threshold, τ , for the coefficient esti-
mates ĥi’s. The denoising process is to ignore the
coefficient estimates smaller than the threshold

ĥi =
1

N
sT

i y
N , if | 1

N
sT

i y
N | ≥ τ

ĥi = 0, if | 1
N
sT

i y
N | < τ (4)

and the estimate of the noiseless signal is

ŷN(n) =
N∑

i=1

si(n)ĥi. (5)

A very important factor in solving the denoising
problem is the behavior of the mean square re-
construction error

1

N
E(||ȳN − Ŷ N ||22). (6)

Donoho and Johnstone provide an upperbound
for the mean square error, solving a minmax
problem, in wavelet denoising. They show that
the optimum threshold for wavelet denoising, of
a piecewise smooth signal, asymptomatically is

σw

√
2 log N

N
[3]. In [4] an estimate of the mean

square error as a function of a given threshold
is provided heuristically. The estimate is for any
class of bases. It demonstrates that, for a class

of signals, σw

√
2 log N

N
may not necessarily provide

the optimal threshold.

Instead of focusing on finding a threshold one can
compare the signal estimate in different subspaces
of the basis. Choosing a subspace to estimate the



data is equivalent to setting the coefficients of the
basis vectors out of that subspace to zero without
thresholding. MDL denoising is the first method
which approaches the denoising problem with this
idea. In each subspace it calculates the defined
description length of the data and suggests to pick
the subspace which minimizes such criterion.

Here, similar to MDL denoising approach, we in-
vestigate on estimation of a criterion which is de-
fined for the subspaces of the basis. For each
subspace Sm, ĥSm denotes the estimate of the co-
efficients in that subspace. Our goal is to find
an estimate of the coefficient estimation error in
each subspace, ||h− ĥSm ||22. Note that, as a result
of the Parseval’s theorem, this error is the same
as the reconstruction error for each subspace

||h− ĥSm||22 =
1

N
||ȳN − ŷN

Sm
||22. (7)

Because of the additive noise the coefficients er-
ror is also a random variable. The objection is
to compare the worst case behavior of this error
in different subspaces probabilistically. The best
representative of the signal is then the signal es-
timate of the subspace which minimizes such cri-
terion. In the following section we describe the
method in detail. The first step is to probabilisti-
cally validate the error caused by the elimination
of the basis vectors out of the subspace. Next we
estimate both the mean-square and the variance
of the coefficients error. The approach is simi-
lar to the quality evaluation method for impulse
response estimate of an LTI system in [1].

3 New Denoising Method

Consider a subspace of order m of the orthogonal
basis, Sm. We want to estimate the error of co-
efficient estimation in this subspace, ||h− ĥSm||22.
Given the noisy data in (1), we suggest the fol-
lowing procedure to estimate the error: For the
subspace Sm, matrix ASm separates the basis vec-
tors as follows


y(1)
y(2)
...

y(N)


 =

[
ASm BSm

] 

hSm

∆Sm


 + w (8)

where columns of ASm are si ∈ Sm, columns
of BSm are basis vectors which are not in Sm,
si ∈ S̄m, and hSm is the coefficients of the noise-
less data ȳN = [ȳ(1), · · · ȳ(N)]T in Sm. The least
square estimate of coefficients in each subspace
using the noisy data is

ĥSm =
1

N
AT

Sm
yN = hSm +

1

N
AT

Sm
w. (9)

Therefore for the subspace error we have

||ĥSm − hSm||22 =
1

N
||AT

Sm
w||2 (10)

||ĥSm − h||22 = ||ĥSm − hSm||22 + ||∆Sm||22. (11)

The additive noise has a normal distribution of
N(0, σ2

w). Therefore yN is an element of a Gaus-
sian random variable Y N and ĥSm is also an ele-
ment of a Gaussian random variable ĤSm . Both
errors in (10) and (11) are Chi-square random
variables. Expected values and variance of coef-
ficient error ZSm = ||ĤSm − h||22 is

E(ZSm) = E||ĤSm − h||22 =
m

N
σ2

w + ||∆Sm||2 (12)

var(ZSm) = var||ĤSm − h||22 =
2m

N2
(σ2

w)
2. (13)

If the norm of the discarded vector coefficients
in each subspace, ||∆Sm||2, was known, how do
we choose the subspace which best represent the
data? The suggestion is to compare ||ĥSm − h||22
of different subspaces. If we compare subspaces
with same order, m, the error random variable in
each subspace has the same variance of 2m2

N2 (σ
2
w)

2.
Therefore we can only compare the expected val-
ues of the error and pick the subspace which has
the minimum ||∆Sm||22. The expected value of
the error has two components, one caused by the
noise and other by the ignored vector coefficients.
The tradeoff between the noise related and the
ignored coefficients related parts minimizes the
expected value of the error for some m. This is
called the bias-variance tradeoff method. Here we
argue that ignoring the variance of the random
variable can be problematic. For example, what
if we are comparing two subspaces with different
orders? Instead of comparing only the expected
values, lets compare an event happening in each



subspace with same probability. In this case both
expected value and variance of the random vari-
able might be involve in our decision. Assume
that for a particular m̄ the expected value of er-
ror is minimized. Therefore the expected value
for the subspace of order m̄− 1, ESm̄−1 , is larger
than ESm̄ . However the variance of the error in
Sm̄−1 is smaller than the variance in Sm̄. There-
fore when we are comparing two events in these
two spaces, which occur with same probability,
the worst case error might be smaller in space
Sm̄−1 than in Sm̄.

The event, we consider in each subspace, is that
the random variable zSm = ||ĥSm − h||22 is around
its mean with a given probability P1

Pr{|ZSm − E(ZSm)| ≤ DSm} = P1. (14)

Therefore DSm is a function of ||∆Sm||, σw, m and
P1, and for each subspace Sm with probability P1
the error is between the following bounds

m

N
σ2

w + ||∆Sm||2 ±DSm(P1, σw,m, ||∆Sm ||). (15)

To find the optimal subspace we suggest to choose
the subspace which minimizes the worst case error
with the same probability P1,

S∗
m = argmin

Sm

{E(ZSm) +DSm} (16)

= argmin
Sm

{m
N
σ2

w + ||∆Sm||22 +DSm}.(17)

In the example we discussed previously, because
the variance of error in Sm̄−1 is lower than the
variance in Sm̄. Therefore DSm̄−1 , which depends
on the variance, might be less than DSm̄ and the
worst case error in Sm̄−1 might be less than that
of Sm̄. It is important to mention that since the
variance of error is of order 1

N2 , for large enough
N we are able to pick P1 close to one and still
have a bounded number for DSm . We will discuss
this issue later in detail.

So far the argument was with the assumption that
||∆Sm || is known. In our problem setting however
||∆Sm || is unknown. To use a similar approach,
we next suggest a method to probabilistically val-
idate ||∆Sm|| using the observed noisy data.

3.0.1 Estimation of ||∆Sm||
In each subspace the data representation error is

1

N
||yN − ŷN

Sm
||22 =

1

N
||BSm∆Sm +GSmw||2

= ||(∆Sm + v)||2 (18)

where ŷN
Sm

= ASmĥSm and GSm = (I −
1
N
ASmA

T
Sm

) = 1
N
BSmB

T
Sm

is a projection matrix.
Therefore, GSmw = v where vi’s are independent
Gaussian random variables. Note that using the
Parseval’s theorem we already know that

1

N
||yN − ŷN

Sm
||22 = || 1

N
BT

Sm
yN ||22 =

∑ ||ĥS̄m
||2.(19)

The data error XSm = 1
N
||Y − ŶSm||22 is also a

Chi-square random variable for which

E(XSm) = (1− m

N
)σ2

w + ||∆Sm||2 (20)

var(XSm) =
2σ2

w

N
((1− m

N
)σ2

w + 2||∆Sm ||2).

Given the noisy data, one sample of this random
variable is available. We call this observed error
xSm . Note that the variance of the data error is
of order 1

N
of its expected value. Therefore one

method of estimating ||∆Sm|| is to assume that
this one sample is a good estimate of its expected
value,

||∆̂Sm||22 ≈ xSm − (1− m

N
)σ2

w. (21)

This can be a convenient method of estimation of
||∆Sm|| when N is large enough. However, since
we want to use the estimate to compare the dif-
ferent subspaces, we have to be more precise in
the estimation process: Each XSm has a different
variance and the confidence of the estimate is dif-
ferent for each of the subspaces even as N grows.
So how “relatively” close we are to the estimate
in each subspace is very important. As a result
we suggest the following validation method for es-
timation and comparison of ||∆Sm||22 in different
subspaces.

The Chi-square probability distribution of the
data error is a function of ||∆Sm|| and the noise



variance, fXSm
(xSm ;m,σw, ||∆Sm ||). We suggest

validating ||∆Sm || such that Xm is in the neigh-
borhood of its mean with probability P2, i.e.,
validate fXSm

(xSm ;m,σw, ||∆Sm ||), and therefore
||∆Sm ||, such that

Pr(|XSm − E(XSm)| ≤ JSm) = P2. (22)

The bound JSm is a function of ||∆Sm||, σ2
w, m,

and P2, JSm(P2, σ
2
w,m, ||∆Sm ||). Therefore for

each subspace Sm, with validation probability P2,
we find USm and LSm , the upper bound and lower
bound on ||∆Sm||, LSm ≤ ||∆Sm||22 ≤ USm .

3.0.2 Subspace Comparison

Using the estimate of ||∆Sm || from the previous
section, we can estimate the worst case error cri-
terion in (16). The validation part finds bounds
on ||∆Sm||22. Therefore we suggest to pickm∗ such
that

S∗
m = arg min

Sm

max
||∆Sm ||∈(LSm ,USm)

{E(ZSm)

+ DSm(P1, σw,m, ||∆Sm ||)}. (23)

The worst case estimate in each subspace is given
with confidence probability P1 and validation
probability P2. The confidence region of error
here is between

max
||∆Sm ||∈(LSm ,USm)

{E(ZSm) +DSm}, (24)

and

min{0, min
||∆Sm ||∈(LSm ,USm )

{E(ZSm)−DSm}}. (25)

Note that one choice for JSm in (22) is JSm =
βvarXSm . In this case using the Chebychev in-
equality we have

P2 ≥ 1− 1

β2
or β ≤

√
1

1− P2
(26)

which shows how β and P2 are related. How close

β is to
√

1
1−P2

depends on the distribution of the
error in each subspace.

3.1 Gaussian Estimation

In both the probabilistic and validation part we
use the table of Chi-square distribution. How-
ever, in this setting we can use the central limit
theorem(CLT) to approximate the Chi-square
distributions with Gaussian distributions. This
gives us the advantage of finding a mathematical
expression for the error bounds and worst case er-
ror (23),(24), (25) as a function of P1, σw,m, P2
and the observed noisy signal.

3.1.1 Data Error and Estimation of ||∆Sm||
The data error (18) is of form

1

N
||yN − ŷN

Sm
||22 = ||∆Sm + v||2

=
N−m∑
i=1

(δi + vi)
2 (27)

where vi’s are zero mean white Gaussian random
variables with variance σ2

w

N
. If N − m is large

enough we can estimate the Chi-square distribu-
tion of the data error with a Gaussian distribu-
tion. For a Gaussian random variable X with
mean mX and variance σ2

X we have

Pr(mX − ασX < X < mX + ασX) = Q(α), (28)

where Q(α) =
∫ α
−α

1√
2π
e−x2/2dx. For the data er-

ror, XSm = 1
N
||Y − ŶSm||22,

E(XSm) = mw +mδ, (29)

var(XSm) =
2σ2

w

N
(mw + 2mδ), (30)

where mw = (1− m
N
)σ2

w and mδ = ||∆Sm||22. Using
the one observed data error given the noisy data,
xSm , with probability Q(α) we have

|xSm − (mw +mδ)| ≤ α

√
4σ2

w

N
mδ + vm, (31)

where vm = 2
N
(1− m

N
)σ4

w.

Lemma 1 Validation of (31) for feasible ||∆Sm||s
provides the following upper and lower bound for
||∆Sm||22

LSm ≤ ||∆Sm||22 ≤ USm , (32)

where



• If xSm ≤ (mw − α
√
vm), there is no valid

||∆Sm|| given the data.

• If (mw − α
√
vm) ≤ xSm ≤ (mw + α

√
vm),

LSm = 0 (33)

USm = xSm −mw +
2α2σ2

w

N
+KSm(α). (34)

where

KSm(α) = 2 α
σw√
N

× (35)

√
α2σ2

w

N
+ xSm − 1

2
mw.

• If (mw + α
√
vm) ≤ xSm ,

LSm = xSm −mw +
2α2σ2

w

N
−KSm(α) (36)

USm = xSm −mw +
2α2σ2

w

N
+KSm(α). (37)

Proof In Appendix A. ♦
Note that to avoid the first case we have to in-
crease α such that

α ≥ N√
2(N −m)

(
1− m

N
− xSm

σ2
w

)
. (38)

3.1.2 Comparison of Subspaces

For the error in each subspace Sm, ZSm = ||ĤSm−
h||2, in (11), we have

||ĥSm − h||2 = ||∆Sm||22 +
m∑

i=1

u2
i , (39)

where uis are zero mean white Gaussian noises
with variance σ2

w

N
. If m is large enough we can

estimate the Chi-square distribution of the error
with a Gaussian distribution. Then the proba-
bilistic bounds on this error are provided as fol-
lowing. With probability Q(β) we have

|ZSm − E(ZSm)| ≤ β
√
varZSm . (40)

The bounds on expected value and variance of
ZSm , in (12) and (13), can be calculated by using

the bounds from lemma one. Therefore, the worst
case error bound in subspace Sm with probability
Q(β) and validation probability of Q(α) is

E(ZSm) +DSm =
m

N
σ2

w + USm + β

√
2m

N
σ2

w. (41)

For the choice of optimum subspace we suggest
to choose m∗ for which, from (23),

S∗
m = argmin

Sm

{m
N
σ2

w + USm + β

√
2m

N
σ2

w}, (42)

which is the bound valid with probability Q(β)
and validation probability of Q(α).

3.1.3 Proper Choice of α and β

In order to have the probability of validation close
to one, α and β should be as large as possible.
Simultaneously, to have limited tight bounds, at
both stages of finding bounds on ||∆Sm || in lemma
1 and finding bounds for the subspace error in
(40), we have to choose α/

√
N and β/N2 small

enough. Also as a result of the validation stage
in lemma one, another necessary condition is that
α satisfies the inequality in (38). Note that with
this proper choice of α and β, the upper and lower
bounds provided in (24) and (25) can be used to
evaluate the quality of estimate of each subspace.

4 New MDL Denoising and Best
Basis Search

In two-stage MDL the assumption is that the
length of the code describing any element of sub-
space Sm is the same and is of order m log(N)

N
. The

probability distribution of the noisy data, in sub-
space Sm, is defined as fSm(ySm ; ĥSm). This is the
probability distribution of ySm given it is gener-
ated by ĥSm ∈ Sm, where ĥSm is the maximum
likelihood(ML) estimate of h in Sm. The descrip-
tion length of the data in each subspace is the
code which describes the noisy data using the co-
efficient estimates in that subspace. The famous
Shannon coding method is to choose a code such
that the length of the code length is proportional
to the logarithm of the inverse of the probabil-
ity distribution. Then the data code is of order



log 1
fSm(y;ĥSm )

. Therefore the complete two-stage

description length of the noisy data, y, in each
subspace is

DL(Sm) = m
log(N)

N
+ log

1

fSm(y; ĥSm)
. (43)

The two-stage MDL method is to pick the sub-
space which minimizes this criterion. In [5],
the MDL denoising method is derived with same
basic idea. Here the criterion is the normal-
ized maximum-likelihood (NML) density func-
tion. Calculation of fSm(y; ĥSm) is a part of the
calculation of this criterion as well.

One important fact is that the calculation of
fSm(y; ĥSm) is meaningful only if y has been gen-
erated with an element of Sm. The conditional
probability distribution function in Sm is defined
for elements which can be represented in form of

ySm =
∑

si∈Sm

sihi + w. (44)

In MDL methods the ignored basis vectors effects,∑
si∈S̄m

sihi, is considered as a part of the addi-
tive zero mean noise. If such effects are indeed
nonzero, the new defined noise is not anymore
zero mean and it contradicts the prior assumption
on the noise to be zero mean. As a result of such
approach the estimate of the noise variance in
different subspaces are different, even though the
ignored coefficient part only effects the mean and
not the variance of estimates. This causes prob-
lem in the evaluation of the description length
even if the true number of the basis vectors, which
generated the noiseless data ȳ, is finite. Consider
an example for which only h1 and h3 are nonzero
and the prior knowledge is that only two basis
vectors are enough to represent noiseless data.
With the prior assumption that the additive noise
is zero mean, the description length in (43) can be
calculated. However, except for one subspace of
order two, {s1, s3}, such assumption is not valid
and the mean of the noise is the effects of h1s1
and/or h3s3.

Here we define a new subspace description length
for which this prior assumption inconsistency is

avoided. We use the true model h, which is un-
known, to code not the noisy data but the es-
timate of the noisy data in each subspace. The
prior assumption is that the noisy data is gener-
ated with h

y =
N∑

i=1

hisi + w =
∑

si∈Sm

sihi +
∑

si∈S̄m

sihi + w.(45)

The code length of any signal of length N , con-
sidering the distribution of y is of form

L(x) = log
1

fh(x;h)
(46)

= log
1(√

2πσ2
w

)N e
− ||x−ȳ||2

2σ2
w (47)

where ȳ =
∑N

i=1 sihi is the expected value of ran-
dom variable Y . We define the description length
of Sm as the code length of the estimate of data
using the estimate of h in Sm,

DLh(Sm) = L(ŷSm) = log
1

fh(ŷSm ;h)
(48)

= log
1(√

2πσ2
w

)N e
− ||ŷSm

−ȳ||2
2σ2

w (49)

Comparison of such description length for differ-
ent subspaces leads to comparison of the recon-
struction error

1

N
||ŷSm − ȳ||2 = ||ĥSm − h||2 (50)

which was the main goal in this paper and has
been discussed in the previous sections.

For a given noisy data one might proceed to
search for the basis which would best represent
the data. We suggest to compare the new pro-
posed MDL of different families of basis functions.
The method leads to the choice of the basis which
minimizes such criterion.

4.1 Thresholding Denoising Methods

In threshold methods, a threshold τ , is provided
before finding the estimates of coefficients. It is
not known that for this choice of threshold how



many coefficient estimates, which are less than
τ , are due to the additive noise only. In cases
where we know a priori that there are few nonzero
coefficients to represent the noiseless part of the
data, it might be intuitive to pick the threshold
only as a function of the variance of the noise and
the length of the data, as it is suggested in [3].
But as [4] shows without such prior assumption it
is not trivial to decide on the optimum threshold
beforehand.

What we showed in our method is that the crit-
ical possible thresholds are the absolute values
of the coefficient estimates. Lets sort the basis
vectors based on the absolute value of the coef-
ficient estimates. Our method is computing the
estimation error for any of those absolute values
as the threshold. We find the optimal of those
thresholds comparing the error estimation of such
thresholding. Depending on the tradeoff between
the eliminated coefficients and the noise effects
there is a subspace for which the estimation error
is minimized.

Similar to our approach, MDL denoising sug-
gests a criterion to be calculated for different sub-
spaces. However, as we discussed previously, in
this method the effect of the eliminated coeffi-
cients in each subspace is considered as a part
of the additive noise. The comparison of the
NML criterion for different subspaces asymptoti-
cally provides a threshold which is only a function
of the variance and the length of the data [5]. As
we argued previously, in the proposed method in
this paper, there is a distinction between the noise
effects and the eliminated coefficients effects in
different subspaces. Therefore even the asymp-
totic results can not provide a threshold which
is only a function of the noise variance and the
length of the data. The optimal threshold is sen-
sitive to the coefficient estimates of all the basis
vectors.

5 Simulation

The unit-power signal shown in Figure (1) used
to illustrate the performance of the proposed
method. Figure (2) shows the absolute value of

the discrete Fourier transform of the signal. Fig-
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Figure 1: Noiseless unit-power signal of length
188.
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Figure 2: 188 points discrete Fourier transform of
the signal.

ure (3) shows the subspace error of the noiseless
data. The subspace of order m is the one among
the subspaces of same order which minimizes the
error. As we expect such error decreases as the
subspace order increases. Figure (4) shows the
subspace error in presence of additive noise with
variance 0.25. It shows that the subspace error in
this scenario is minimum for S7 and our method
also picks S7.

6 Conclusion

A new approach to the denoising problem based
on best basis solution was proposed. We showed
how to use the one sample of the data error in
each subspace of the basis and probabilistically
validate the data estimate in each subspace. The
criterion for comparison of the different subspaces
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Figure 3: Subspace error for the noiseless signal
for subspaces with order m. The subspace with
order m is the one among all the subspaces with
same order which minimizes the error.

is defined as the reconstruction error in each sub-
space. To extract the most information from the
noisy data we were not able to provide a threshold
before estimating all the basis vector coefficients.
We calculated the proposed criterion asymptot-
ically when the length of data is large enough.
However, the important advantage of this method
is that the criterion can be calculated for any fi-
nite length data and without any asymptotic ap-
proximations.

The proposed approach can be viewed from
the information theoretical perspective as a new
MDL method. We compared the new MDL ap-
proach with the existing MDL denoising method.
We showed how the definition of noise in existing
MDL denoising causes some inconsistency in the
process of MDL calculation and demonstrated the
advantages of the new proposed MDL.

Although here the additive noise is assumed to
be Gaussian with known variance, the method
can be generalized for any independent identi-
cally distributed additive noise, with even an un-
known variance. The proposed denoising method
is comparable with the current order estimation
methods in blind channel identification.
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Figure 4: Subspace error for the noisy signal for
subspaces with order m. The subspace with or-
der m is the one among all the subspaces with
same order which minimizes the error. Noise vari-
ance is σ2

w = .25. The solid line is the subspace
error. The line with “*” is the estimate of the
expected value of subspace error using the pro-
posed method. The dashed line is the error up-
per bound, USm in (41), with α = log(N)/2 and
β = log(N).

A Proof of Lemma 1

Define x̄Sm = xSm−(1−m
N
)σ2

w, we want to validate
mδ = ||∆Sm||2 for which

mδ − α

√
4σ2

w

N
mδ + vm ≤ (51)

x̄Sm ≤ mδ + α

√
4σ2

w

N
mδ + vm

where mw = (1− m
N
)σ2

w, and vm = 2
N
(1− m

N
)σ4

w.

Lower Bound on mδ

x̄Sm −mδ < α

√
4σ2

w

N
mδ + vm (52)

If x̄Sm ≤ α
√
vm, then the inequality holds for

mδ > 0.

If x̄Sm ≥ α
√
vm, then the lower bound for mδ is

the smallest root of the following equation

(x̄Sm −mδ)
2 = α2(

4σ2
w

N
mδ + vm) (53)



which is

Lmδ
= x̄Sm +

2σ2
wα

2

N
− (54)

2ασw√
N

√
α2σ2

w

N
+ xSm − 1

2
mw

Note that LSm ≤ x̄Sm .

Upper Bound on mδ

mδ − x̄Sm > α

√
4σ2

w

N
mδ + vm (55)

If x̄Sm ≤ −α√vm, then the inequality does not
hold for any mδ.

If x̄Sm ≥ −α√vm, then the upper bound is the
largest root of equation

(x̄Sm −mδ)
2 = α2(

4σ2
w

N
mδ + vm) (56)

which is

Umδ
= x̄Sm +

2α2σ2
w

N
+ (57)

2ασw√
N

√
α2σ2

w

N
+ xSm − 1

2
mw.
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