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Abstract: We introduce a new method of model order selection: minimum description
complexity (MDC). The approach is motivated by the Kullback-Leibler information distance.
The method suggests to choose the model set for which the "model set relative entropy" is
minimum. The proposed method is comparable with the existing order estimation methods
such as AIC and MDL. We elaborate on the advantages of MDC over the available
information theoretic approaches.
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1. INTRODUCTION

Classical problem of model selection among paramet-
ric model sets is considered. The goal is to choose
a model set which best represents an observed data.
The critical task is the choice of a criterion for model
set comparison. Pioneer information theoretic based
approaches to this problem are Akaike information
criterion (AIC) and different forms of minimum de-
scription length (MDL) (Akaike, 1974), (Barronet
al., 1998). The prior assumption for calculation of
these in criteria is that the unknown true model is a
member of all the competing sets.

The new approach, minimum description complex-
ity(MDC), is based on a new distance measure defined
for the elements of the model sets. The distance of
the true model and each model set is the minimum
Kullback-Leibler distance of the true model and the
elements of the model set. We provide a probabilistic
method of MDC estimation for a class of paramet-
ric model sets. In this calculation the key factor is
our prior assumption: unlike the existing methods no
necessary assumption of the true parameter being a
member of the competing model sets is needed. The
main strength of the MDC calculation method is in its
method of information extraction from the observed
data.

Because of MDL’s consistency, it has been widely
used in practical problems. However, lack of a proper

prior assumption in calculation of the criterion causes
some defects such as high sensitivity to large signal to
noise ratio when the true model does not belong to any
of the model sets (A.P. Liavas and J.Delmas, 1999).
Here we compare MDC with MDL and AIC in appli-
cation. MDC is able to answer the challenging ques-
tion of quality evaluation in identification of stable
LTI systems under a fair prior assumption on the un-
modeled dynamics. It also provides a new solution to
a class of signal denoising problems (Beheshti and
Dahleh, 2002).

2. IMPORTANT INFORMATION THEORETIC
CRITERIA

Consider the following problem: Given a finite set of
observed datayN of lengthN, which is an element of
setYN, a family of models which are parameterized
by elements of a compact setSM with orderM, and
a family of probability density functionsf (YN;SM),
select the model that best fits the data (Wax and
Kailath, 1985).

In the following order estimation methods the estimate
of the true parameterθ ∗ is calculated inSm, a subset of
SM of orderm. The estimate,̂θSm(yN), is the maximum
likelihood (ML) estimate ofθ ∗ in Sm.

Akaike information criterion(AIC) is the estimate
of the Kullback-Leibler distance of the true density



f (YN;θ), and the estimated densityf (YN; θ̂Sm(yN)) in
Sm (Akaike, 1974).

The AIC estimate is given by

AICSm(yN) =− 1
N

log f (yN; θ̂Sm(yN))+
m
N

(1)

This estimate is calculated with the assumption that
N is large enough and that the parameter estimate,
θ̂Sm(yN), approaches the true parameterθ ∗ in subset
Sm. The method suggests to select the model setSm

which minimizes the AIC.

Any model defined by a parameter in setSM can be
used to encode the observed data by using the Shannon
coding method. The two-stage minimum description
length(MDL) method is defined based on this coding.
In the two-stage MDL approach the description length
of the data in each subset is defined as (Rissanen,
1984)

DLSm(yN) =− 1
N

log f (yN; θ̂Sm(yN))+m
logN
2N

. (2)

Similar to AIC the main assumption in calculation of
MDL is that the ML estimatêθSm(yN) approachesθ ∗
as the length of data grows.

Bayesian information criterion(BIC) is another order
estimation method which was proposed in (Schwarz,
1978). In this method a prior probability for the com-
peting model sets is assumed. It is suggested to select
the model that yields the maximum posterior probabil-
ity. Note that the criterion in this approach is similar
to MDL criterion in (2).

The two important prior assumptions for calculation
of AIC and MDL in (1) and (2), for subsetSm, are

1) θ ∗ ∈ Sm, 2) θ̂Sm(yN)→ θ ∗ (3)

The second condition in most cases implies thatM <<
N.

Note that in practical problems we do not know
whether or not the unknownθ ∗ is an element of a
given Sm. However, in application of MDL and AIC
the calculated criteria in (1) and (2) are used for all the
subsets regardless of validity of the two prior assump-
tions in (3).

3. MINIMUM DESCRIPTION COMPLEXITY

We introduce a new method of subset selection by us-
ing the observed data of lengthN. Unlike the existing
approaches none of the conditions in (3) are needed
as our prior assumption. The setYN need not to be
stationary. However, for each parametric probability
distribution function (pdf), the expected value ofYN

and its covariance are finite. Also the pdfsf (yN;θ)
are continuous functions ofYN.

Before providing a method of order estimation using
the observed data we define a notion of distance for the
pdfs. Note that in the following discussion the length
of data is assumed to be fixedN.

For a given compact setSM, use a positive cost func-
tionV(θ ,yN) for whichEθ1

1
NV(θ2,YN) is a finite non-

negative number and

Eθ1

1
N

V(θ2,Y
N)≥ Eθ1

1
N

V(θ1,Y
N) (4)

for any θ1 andθ2 in SM. The equality holds only for
θ1 = θ2. Choose the cost function such that it is a
continuous function of bothθ andyN.

Definition 1The description complexity ofYN using
pdf f (YN;θ1), when the data is generated byθ , is
defined by

DCN(θ ,θ1) , Eθ
1
N

V(θ1,Y
N) (5)

For any element ofSM, defineθ̄Sm in setSm as

θ̄Sm(N) = arg min
θ1∈Sm

Eθ
1
N

V(θ1,Y
N). (6)

The description complexity of the data set using subset
Sm, when the data is generated byθ , is then defined as

DCN(θ ,Sm) , min
θSm∈Sm

DCN(θ ,θSm) (7)

= DCN
(
θ , θ̄Sm(N)

)
(8)

Definition 2 The minimum description complexity
(MDC) of YN, when the data is generated byθ , is
provided by subsetS∗m

S∗m = argmin
Sm

DCN
(
θ , θ̄Sm(N)

)
. (9)

In general the set of all possible cost functions de-
pends on the structure of the parametric model set.
One example of such cost function for any parametric
pdf is

V(θ ,yN) =− log f (yN;θ) (10)

This function is well defined for allYN with prior
assumption thatf (yN;θ) 6= 0 for anyyN. For this cost
function

DCN(θ ,θ) = Eθ
1
N

V(θ ,YN) =
1
N

Hθ (YN) log2(11)

whereHθ (YN) is the differential entropy ofYN when
it is generated byθ

Hθ (YN) =−Eθ log2 f (yN;θ) (12)

If we want the description complexity function to be
more like a distance measure we add the extra condi-
tion DC(θ ,θ) = 0. For example the new description



complexity using the defined DC in (5) can be defined
as

IN( f (:;θ), f (:, θ̄Sm(N)) =

DCN(θ , θ̄Sm(N))−DCN(θ ,θ) (13)

where the cost function is defined in (10). In this
caseIN(·) is the Kullback-Leibler distance ofθ and
θ̄Sm(N).

3.1 MDC and Data Observation

Based on the defined description complexity, consider
a family of parameter estimators for which

Eθ (θ̂Sm(YN)) = θ̄Sm(N) (14)

whereθ̄Sm(N) is defined in (6). Note that for this set
of estimators we have

Eθ (θ̂SM (YN)) = θ (15)

and therefore the estimator is unbiased inSM. The ob-
served datayN is generated by the unknown parameter
θ ∗ and in each subset̂θSm(yN) and V(θ̂Sm(yN),yN)
are available. For order estimation the goal is to
first use this information to find an estimate for
DC(θ ∗, θ̂Sm(yN)) for each subset and then choose the
subset for which this error is minimum.

The first step is to validateθ ’s given the available es-
timateθSm(yN). The random variable DC(θ , θ̂Sm(YN))
for eachθ has a mean and a variance which are func-
tions of θ , Sm and N. If the data is generated with
θ then with probabilityp, the boundεp(θ ,Sm,N) is
available such that for a set ofxN ∈YN

Pr{|(DC(θ , θ̂Sm(xN))−Eθ DC(θ , θ̂Sm(YN))|
≤ εp(θ ,Sm,N)}= p(16)

and subsetTp(θ ,Sm,N) in YN is defined as

Tp(θ ,Sm,N) = {xN ∈YN :

|(DC(θ , θ̂Sm(xN))−Eθ DC(θ , θ̂Sm(YN))|
≤ εp(θ ,Sm,N)}.

The validation with probabilityp, and based on the ob-
served data, provides the following set of parameters
in SM

Θ(yN,Sm, p) = {θ ∈Θ|yN ∈ Tp(θ ,Sm,N)}. (17)

Therefore, with validation probabilityp in each subset
Sm, the desired DC,DCN(θ ∗, θ̂Sm(yN)), is bounded by

min
θ∈Θ(yN,Sm,p)

DCN(θ , θ̂Sm(yN))≤ (18)

DCN(θ ∗, θ̂Sm(yN))≤ max
θ∈Θ(yN,Sm,p)

DCN(θ , θ̂Sm(yN))

Note that if the observedyN can be produced by all
elements ofSM, then forp = 1,

T1(θ ,N,Sm) = SM (19)

and we have

0≤ DCN(θ ∗, θ̂Sm(yN))≤ max
θ∈SM

DCN(θ , θ̂Sm(yN))(20)

However, ifp 6= 1 the value ofεp(θ ,Sm,N) and there-
fore the setTp(θ ,N,Sm) depends on thevarianceof
random variable DC(θ , θ̂Sm(YN)). In most cases the
variance of this error is a function of dimension (order)
of Sm. With a fixed data of lengthN as the dimensionm
grows, the variance of error also grows. However the
estimate bias is a decreasing function of order. There-
fore for a given finite length data there is a tradeoff
between the error variance and bias.

The MDC order estimation method suggests to choose
the following subset

S∗m = argmin
Sm

max
θ∈Θ(yN,Sm,p)

DC(θ , θ̂Sm(yN)) (21)

which provides the MDC with validation probability
p.

3.2 Impulse Response Identification of an LTI system

Finite length input and corrupted output of an LTI
system, which is at rest, is available. The system
output is corrupted by an additive white Gaussian
noise (AWGN) which is zero mean and has variance
σ2

w. The goal is to find the best estimate of the impulse
response of the system.

Note that for a system which is at rest the input and
output of lengthN are related to each other only byh∗,
the firstN elements of the impulse response. Therefore
the unknownh∗ is an element of a set of orderN,
SN (M = N). By implementing the MDC we want to
choose an estimate ofh∗ of proper lengthm∗ ≤ N
which minimizes the description complexity of the
true system.

SubsetSm of RN represents one of the spaces of im-
pulse responses of lengthm. The input-output relation-
ship of the system is

y= ȳ+w = h∗ ∗u+w (22)

= h∗Sm
∗u+∆Sm ∗u+w

= ASmh∗Sm
+BSm∆m+w

whereu is the input,ȳ is the noiseless output andy
is the noisy output. AlsoASm and BSm are functions
of input u. h∗Sm

is the projection ofh∗ in Sm. It is an
element ofSm which is a vector of lengthN with only
mnonzero elements. In each subsetSm, ĥSm(yN) is the
ML estimate ofh.



Here we use the cost function of form (10) where
the logarithm is a natural logarithm. The description
complexity of random variableYN in (5), when the
data is generated byh1,

DCN(h1,h2) = log
√

2πσ2
w +Eh1

( ||YN− ȳh2||2
2Nσ2

w

)

(23)

whereȳh2 = u∗h2. Note that in this scenario we have

DCN(h,h) = Hθ (YN) log2= log
√

2πσ2
w +

1
2

(24)

which is the same for all elements ofSM. There-
fore, the comparison of the DC and comparison of
Kullback-Leibler distance in (13) are the same.

In each subset̄hSm(N), defined in (6), is

h̄Sm(N) = hSm + (25)
(

1
N

AT
Sm

(N)ASm(N)
)−1 1

N
AT

Sm
(N)BSm(N)∆Sm.

where hSm is the projection ofh in subsetSm. The
minimum description complexity ofh in Sm is

DCN(h, h̄Sm(N)) = log
√

2πσ2
w + (26)

1
2
(1+

1
Nσ2

w
||GSm(N)BSm(N)∆Sm||2)

where

GSm(N) = I −
1
N

ASm(N)
(

1
N

AT
Sm

(N)ASm(N)
)−1

AT
Sm

(N) (27)

is a projection matrix.

3.3 MDC and order estimation

The ML estimate in this example is an efficient esti-
mator which satisfies the necessary condition in (14)

ĥSm(yN) = arg min
g∈Sm

||yN−yg||2 (28)

whereyg = u∗ g. The observed data is generated by
h∗, the unknown elements ofSM.

The goal is to find probabilistic bounds on
DCN(h∗, ĥSm(yN)) based on the observed data in each
subsetSm. The first step is the validation step in
which DCN(h∗, h̄Sm(N)) is validated. This calculation
is based on the observed error

V(ĥSm(yN),yN) = log
√

2πσ2
w +

1
2

(
1+

||y− ŷSm||2
Nσ2

w

)

(29)

whereŷSm = u∗ ĥSm(yN). This is a sample of a Chi-
square random variable with the following expected
value and variance

Eh(V(ĥSm(YN),YN)) = DCN
(
h, h̄Sm(N)

)
+

1
2

M−m
N
(30)

var
(
V(ĥSm(YN),YN)

)
=

1
2N

M−m
N

+
1

Nσ2
w

(
DCN

(
h, h̄Sm(N)

)−DCN(h,h)
)

(31)

Therefore, for a chosenp1, the set DCN(h∗, h̄Sm(N))
is validated by using the Chi-square distribution table.
This set is then used to find bounds on the DC crite-
rion DCN(h∗, ĥSm(yN)) in (21) for each subset. MDC
chooses the subset which minimizes the obtained up-
per bound on the description complexity.

3.4 Estimation of MDC

Here we use the properties of the second order statis-
tics of the random variableV(ĥSm(YN),YN)). The
expected value and variance of this random vari-
able is such that the validation step in calculation of
Θ(yN,Sm, p) can provide bounds onDCN

(
h∗, h̄∗Sm

(N)
)

LSm(yN, p1)≤ DCN
(
h∗, h̄∗Sm

(N)
)≤USm(yN, p1).(32)

On the other hand DCN(h, ĥSm(yN)) itself is a random
variable

DCN(h, ĥSm(yN)) = log
√

2πσ2
w +

Eh

( ||YN− ŷSm||2
2Nσ2

w

)
(33)

which is a Chi-square random variable with the fol-
lowing expected value and variance

EhDCN(h, ĥSm(YN)) = DCN
(
h, h̄Sm(N)

)
+

m
2N

(34)

varhDCN(h, ĥSm(YN)) =
m

2N2

+
1

Nσ2
w

(
DCN(h, h̄Sm(N))−DCN(h,h)

)
(35)

The second order statistics of this random vari-
able depends only on DCN(h, h̄Sm(N)), m, N, and
DCN(h,h), which is fixed for allh. Therefore, by using
DCN(h, h̄Sm(N)) we can provide probabilistic bounds
onDCN(h, ĥSm(yN))

|DCN(h, ĥSm(yN))−EhDCN(h, ĥSm(YN))| ≤
εp(h,Sm,N) (36)

The probabilityp is the probability that this DC is at
most inεp(h,Sm,N) distance of its expected value.



Hence, with probabilityp1 bounds on
DCN(h∗, h̄∗Sm

(N)) can bevalidated and without cal-
culation of the setΘ(yN,Sm, p) probabilisticbounds,
with probability p, on DCN(h∗, ĥSm(YN)) can be cal-
culated. The provided bounds are

dL(yN,Sm, p, p1)≤ DCN(h∗, ĥSm(yN))

≤ dU (yN,Sm, p, p1)(37)

The optimum subset, using this estimate of MDC, is

S∗m(yN) = argmin
Sm

dU (yN,Sm, p, p1). (38)

Whenm andN−m are large enough, the Chi-square
distributions ofV(ĥSm(yN),yN) andDCN

(
h∗, ĥSm(yN)

)
can be well estimated with Gaussian distributions. In
this case the validation probabilityp1 and the confi-
dence probabilityp can be defined in term ofQ(·)
function 1 . The following theorem provides bounds
on the desired DC,DCN

(
h∗, ĥSm(yN)

)
, for this sce-

nario. The calculation of the bounds is similar to
the quality evaluation of LTI system estimates in
(Beheshti and Dahleh, 2000)

Theorem When m, the order ofSm, and M −m
are large enough the Chi-square distributions in of
V(ĥSm(yN),yN) and DCN

(
h∗, ĥSm(yN)

)
can be esti-

mated with Gaussian distributions. Considerp1 =
Q(α) and p = Q(β ). Then for the LTI system in
(22), the upper and lower boundsdL(yN,Sm, p, p1) and
dU (yN,Sm, p, p1) are

dU (yN,Sm,Q(α),Q(β )) =
m
2N

+
1
2

+ log
√

2πσ2
w

+2σ2
wUSm +

β√
N

√
m
2N

+2USm(39)

and

dL(yN,Sm,Q(α),Q(β )) = max{0,
m
2N

+
1
2

(40)

+ log
√

2πσ2
w +2σ2

wLSm−
β√
N

√
m
2N

+2USm}

whereLSm andUSm are defined as follows

USm = xSm−mw +
2α2σ2

w

N
+KSm(α). (41)

wheremw = (1− m
N )σ2

w, and

xSm =
1
N
||yN− ŷN

Sm
||2 (42)

and

KSm(α) = 2α
σw√

N

√
α2σ2

w

N
+xSm−

1
2

mw. (43)

1 Q(x) = 1√
2π

∫ x
−x e−t2/2dt

If (mw−α√vm) ≤ xSm ≤ (mw + α√vm),wherevm =
2
N (1− m

N )σ4
w, the lower boundLSm is zero and if(mw+

α√vm)≤ xSm then

LSm = xSm−mw +
2α2σ2

w

N
−KSm(α) (44)

Consider the following conditions onα andβ

αN ≥
√

N
2

( 1− xm

(1− m
N )σ2

w
), (45)

lim
N→∞

αN = ∞ , lim
N→∞

βN = ∞, (46)

lim
αN√

N
= 0 , lim

N→∞

βN√
N

= 0. (47)

These are the sufficient conditions for the bounds on
the DCs to approach each other for whenm << N.
Also the conditions guarantee that the validation and
confidence probabilitiesp1 = Q(α) and p = Q(β )
approach one as length of data,N, grows.

3.5 Comparison of Order Estimation Methods

AIC in (1) and description length in two-stage MDL
(2) for the LTI system in (22) are

AICSm(yN) =− log(
1√

2πσw
e
− ||y−ŷSm||2

2Nσ2
w )+

m
N
(48)

DLSm(yN) =− log(
1√

2πσw
e
− ||y−ŷSm||2

2Nσ2
w )+m

logN
2N

.(49)

Similar to the MDC criterion, these criteria are func-
tions of the output error (42), the variance of the addi-
tive noise, length of the data and order of the subset.
However, unlike MDC calculation, to calculate these
criteria, it is assumed that the true impulse response is
an element of the subsetSm!.

In practical applications one important method of or-
der estimation evaluation is to check if the method
is consistent. A consistent method is able to point to
the subset with smallest order which includes the true
model set as the length of the data grows. It is known
that MDL is a consistent order estimation method and
AIC is not a consistent method. For MDC, the consis-
tency of the method is guaranteed by the proper choice
of α, and β . As the length of the data grows these
parameters have to be chosen such that the validation
and estimation probabilities approach one. Therefore,
an improper choice ofα = β = 0 leads to a criterion
which is not consistent. It is important to note that for
subsetSm which includes the true model set, the MDC
criterion in (39) withα = β = 0 is the AIC in (48).
Also, it should be mentioned that the calculated MDC
for LTI systems in this paper is the same as the new
MDL criterion for linear models which is introduced
in (Beheshti and Dahleh, 2003) and is comparable
with the two-stage MDL.



When the signal to noise ratio is considerably large
and the true system has an infinite length impulse re-
sponse, the behavior of a consistent method might not
be desirable. In this case a practical method should be
able to suggest a threshold on the criterion, otherwise
the consistent method chooses the model set with the
highest order. For this scenario while MDC is able to
provide a thresholding method, MDL thresholding is
not possible. More detailed discussion on these prac-
tical issues is in (Beheshti, 2002) and (Beheshti and
Dahleh, 2002).

4. CONCLUSION

In this paper we presented MDC, a new method of
order estimation. We elaborated on the advantages of
this consistent method over the available information
theoretic solutions. It was shown that AIC is a spe-
cial case of MDC criterion. In this paper the pro-
posed method calculated the description complexity
of noisy data for a family of Gaussian distributions.
The approach can be extended for calculation of the
description complexity for more general classes of
linear models with additive noises and also for when
the variance of the additive noise is unknown.
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