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Abstract

The minimum description length(MDL) method is one
of the pioneer methods of parametric order estima-
tion with a wide range of applications. We investi-
gate the definition of two-stage MDL for parametric
linear model sets and exhibit some drawbacks of the
theory behind the existing MDL. We introduce a new
description length which is inspired by the Kolmogorov
complexity principle.

1 Introduction

“One should not increase, beyond what is
necessary, the number of entities required to

explain anything”

Occam’s razor is a logical principle attributed to the
medieval philosopher William of Occam. Applying the
principal to the statement above, the main message is

“The simplest explanation is the best”

The principle states that one should not make more as-
sumptions than the minimum needed. A computer sci-
entific approach to this principle is manifested in Kol-
mogorov complexity. Let y be a finite binary string
and let U be a universal computer. Let l(y) denote the
length of the string y. Let U(pg) denote the output
of the computer U when presented with program pg.
Then the Kolmogorov complexity KU (y) of a string y
with respect to a universal computer U is defined as

KU (y) = min
pg : U(pg)=y

l(pg) (1)

The complexity of string y is called the minimum de-
scription length of y. For any other computer A we
have

KU (y) ≤ KA(y) + cA (2)

where cA does not depend on y. This inequality is
known as universality of Kolmogorov complexity. Kol-
mogorov complexity is a modern notion of randomness

dealing with the quantity of information in individual
objects; that is “pointwise” randomness rather than
average randomness produced by a random source.

The two-stage MDL is one of the pioneer methods of
computation of description length which is suggested
based on this principle [9]. Here we address the draw-
backs of the method of calculation of MDL and define
a new MDL based on the same Kolmogorov principle.
We focus on the order estimation problem for when the
data is generated by a linear model with additive noise.
The new proposed order estimation method is compa-
rable to other well known order estimation methods
such as AIC [1], BIC [10] and other forms of existing
MDL methods [2].

2 Problem Statement:Linear Model

Consider the class of parametric model for which the
output, y(n), is generated by

y(n) = ȳ∗(n) + w(n) (3)

where w(n) is additive white Gaussian noise with zero
mean and variance σ2

w. Also, ȳ∗ is the noiseless data.
Length N of the data yN = [y(1), · · · y(N)]T , a member
of random variable set Y N , is given.

The noiseless data is described with the basis family si

ȳ∗(n) =
M∑

i=1

si(n)θ∗(i) = ASM
(N)θ∗SM

(4)

where si(n) are bounded numbers. Therefore, ASM
(N)

is a matrix of dimension N × M . The columns of
ASm(N), si’s, are independent and we have

1
N
||si||22 ≤ c (5)

where c is a bounded number and si(n) 6= 0 for all
1 ≤ i ≤ M and 1 ≤ n ≤ N . The value of M can
be a part of the prior knowledge of the model class.
If it is unknown, the proper assumption of M = N is
considered. The parameter θ∗Sm

= [θ∗(1), · · · , θ∗(M)] is
a bounded l1-norm vector in RM .



A subset Sm of Y N is of form

xN = [ASm(N)]θSm (6)

where the columns of ASm
, a matrix of dimension N ×

m, are si’s which are in Sm si ∈ Sm and θSm
is a vector

of length m for which

θSm
∈ Rm. (7)

Inspired by the Kolmogorov complexity and the notion
of minimal description length for the string y, we want
to search for the subspaces Sm’s which can provide the
minimum description length(DL) of the “data”. Lets
first follow principles of the existing two-stage MDL. In
each subspace Sm, of order m, the description length
of y is described as the minimum codelength which can
describe y by an element of Sm. For the codelength in
this probabilistic setting the Shannon coding method
is used, therefore

DLSm(y) = min
g∈Sm

− log f(y; g) (8)

where the log is based on 2 and f(Y ; g) is the proba-
bility distribution function(pdf) of random variable Y
when the mean is g and the additive noise is w has
the same characteristics which were defined for w[n] in
(3). Note that in this scenario the probability distri-
bution defined by each g in Sm ( and therefore by a
θSm , g = ASm(N)θ′Sm

) is a Gaussian distribution with
output of form

x = g + w. (9)

The least-square estimate of y in each subspace, which
provides the output DL in subspace Sm, is

ŷSm = arg min
g∈Sm

||g − y||2. (10)

The DL in each subspace is then defined as

DL(y; ŷSm) = log
(√

2πσ2
w

)N

+
||ŷSm − y||2

2σ2
w

log e. (11)

which is the description length of the noisy data with
an element of Sm, ŷSm . The comparison of this descrip-
tion length for different subspaces always leads to the
choice of the Sm with largest possible dimension, SN ,
for which the output error is zero. This is not a desired
outcome, especially if we know that the unknown true
number of parameters which can define ȳ∗ is less than
a given M . To avoid this unwanted outcome, two-stage
MDL introduces a codelength which describes elements
of Sm as well [9]. Here the assumption is that the length
of the code describing any element of subspace Sm is
the same and is of order

m

2
log(N) (12)

Therefore, the total codelength describing y in sub-
space Sm is defined as the codelength describing ele-
ments of Sm in (12) plus the description length of the
output given this estimate from (11)

DL(y;Sm) , m

2
log(N) + DL(y; ŷSm

). (13)

However, choosing the description length for θSm
s

by codes of length m
2 log(N) seems to be an ad-hoc

method. Partitioning the subspace of possible θSm
s

can be done with any other descritization per dimen-
sion factor other than log(N). For this reason, it seems
that the codelength for all θSms can be of any form
m log(Aδ) when each dimension has log Aδ elements.

Another method of achieving the description length in
(13) is given in [9]. Given a subspace Sm, assume that
M = m, then

ȳ∗ ∈ Sm, (14)

also assume that the ML estimator in this subspace,
ŷSm

approaches the true noiseless data ȳ∗ as N grows
and

√
N(ŷSm − ȳ∗) converges to a zero mean normal

distribution. Then for any prefix code 1 on Y N , with
codelength L(Y N ), the following inequality holds for
all prefix codes except a set of prefix codes which will
describe later,

E
1
N

L(Y N ) ≥ 1
N

H(fȳ∗(Y N ))+(1− ε)m
log(N)

N
, (15)

where E(X) denotes the expected value of random vari-
able X and H(fȳ∗(Y N )) is the differential entropy of
Y N . The inequality holds for all prefix codes except
a set of prefix codes which are generated by the pdfs
which are generated by a subset of Sm. The Lebesgue
measure of this subset goes to zero as N grows 2 [9].

In [9] it is argued that the codelength in (13) is op-
timum since it can achieve the lower bound in the
inequality in (15). However, in [4] it is shown that
m log(N) in the inequality in (15) can be replaced by
a family of functions of N , log β(N) for which

lim
N→∞

β(N) = ∞ (16)

lim
N→∞

1
(1− ε/2)

(β(N))
1−ε

1−ε/2

Nm/2
= 0 (17)

Therefore, with the same approach in [9] the codelength
in (13) can be generalized to the form

DL(y; Sm) , m

2
β(N) + DL(y; ŷSm). (18)

1A code maps the quantized version of elements of Y N to a
set of binary codewords with length L(yN

d ). If no codeword is
the prefix of any other, then it is uniquely decidable and is called
a prefix code

2Associated with any pdf on Y N which is generated by ȳ and
is nonzero over Y N , a prefix codelength is available which is
proportional to − log f(y; ȳ)



Hence, not onlylog(N) but any β(N) can be used to
describe the codelength.

Another important issue is that in practical problems
M is an upper bound for m∗, the true number of pa-
rameters which generate ȳ∗, and the challenge is to
find the true m∗ using the observed data. However,
this codelength is provided with the assumption that
ȳ∗ is an element of a given Sm. In practice the same
codelength is used for all the subspaces. Even if ȳ∗

is not an element of Sm. For this subset is this a
valid codelength? the answer to this question is not
known. The only important fact known about this de-
scription length is that it is a consistent criterion. So
as the length of data grows if m∗ is smaller than M ,
the method points to the correct m∗. We will discuss
this property of MDL more in the following sections.

2.1 New Description Length
The comparison of the codelengths in (11) fails because
of the following argument: Minimizing the description
length in (8) is the same as

arg min
g∈Sm

− log f(y; g) = arg max
g∈Sm

f(y; g) (19)

which provides the ML estimate of ȳ∗ in each subspace.
As we discussed previously, the ML estimation always
points to a member of SN , which has the highest pos-
sible order, as a perfect candidate. Therefore, com-
parison of the codelengths describing y itself in each
subspace is not a proper tool for comparison of the es-
timates ŷSm . Here y is not the string of “data”, but
y is the data which is corrupted by an additive noise.
Therefore the codelength of the ML estimates has to
be compared with the pdf which is generated by the
“noiseless output”, ȳ∗. To follow the Kolmogorov com-
plexity is to compare the estimate of codelength based
on the true, and unknown, pdf. Therefore we consider
the following description length in each subspace:

Definition The new description length of “data” in
subset Sm is defined as

DL(y;Sm) , DL(ŷSm ; ȳ∗) (20)

= − log
1(√

2πσ2
w

)N
e
− ||ŷSm

−ȳ∗||2
2σ2

w .(21)

Therefore, the new minimum description length is ob-
tained for S∗m

S∗m = arg min
Sm

DL(y;Sm). (22)

Calculation of this DL is provided in the following sec-
tion.

2.2 Calculation of the New Description Length
Calculation and comparison of the description length
defined in (21) for different subspaces leads to com-
parison of the reconstruction error ||ŷSm − ȳ∗||2. The

available error in each subspace is ||ŷSm − y||2. With
this available data we can validate bounds on the de-
scription length of ȳ∗Sm

DL(ȳ∗Sm
; ȳ∗) (23)

probabilistically, where

ȳ∗Sm
= E(ŷSm). (24)

Details of the validation step is in [5]. For each sub-
space Sm, the validated upper and lower bounds are
functions of order of Sm, m, Length of the data, N , the
noise variance, σ2

w, the data’s power and the validation
probability P1. Next step is to provide probabilistic
bounds on the desired DL, DL(ŷ∗Sm

; ȳ∗). Probabilistic
bounds are also provided in [5]. The bounds are func-
tions of the confidence probability P2, Length of data
N , noise variance and the validated upper and lower
bounds on DL(ȳ∗Sm

; ȳ∗) from step one .

For large N , with P1 and P2 approaching one, the up-
per and lower bounds on the desired description length
approach each other and provide a tight estimate for
subspaces of low order m << N [5]. Note that in [4]
the calculation of another method of order estimation
method, minimum description complexity (MDC), is
provided. the closed form criterion for MDC and the
new MDL have the same structure for the considered
linear model class for which the data is generated by
the structure given in (3).

3 Thresholding

The existing information theoretic methods attempt to
“determine” the true parametric model with m∗ pa-
rameters. In most practical problems, m∗ is not finite
and we require to detect the optimum estimate for m∗,
which represents the “significant part” of the noise less
data ȳ∗. Implementing the MDL method in this situa-
tion, provides an estimate for m∗ which is very sensitive
to the variation in signal to noise ratio(SNR) 3 and to
the length of the output [7]. When the length of the
true parameter is infinite, the consistent methods, such
as MDL and BIC, point to a higher and higher order as
N and/or SNR grows. Some related practical problems
of these information theoretic methods are addressed in
[11] and [6].

When the true m∗ is larger than the length of a very
long data, we propose implementing the new informa-
tion theoretic method of order estimation. With this
method we can avoid pointing to higher and higher or-
ders by using a threshold for the description length. If
a threshold ε is used for the minimum acceptable DL,

3SNR= 10 log10
||Y N ||22

Nσ2
w



then we choose the smallest m for which the upper-
bound on DL is greater or equal to ε. An example of
this approach is given in the simulation section.

3.1 MDL Thresholding
Can thresholding be used for the two-stage MDL? In
order to make the description length in (13) a valid
codelength, which corresponds to a prefix code and
satisfies the Kraft’s inequality, it is suggested to add
a normalizing constant C(N) to the suggested descrip-
tion length

DLSm(y) = m log(N) + log
1

fSm(ŷSm ; y)
+ C1(N). (25)

In [9] it is argued that as N grows C1(N)/N → 0.

However, note that as N grows the factor m log(N)
N also

goes to zero. For any fixed N , C1(N) might be com-
parable with m log(N)

N . Calculation of this normalizing
factor is not trivial and is not available. Because of the
structure of the DL, in general C1(N) is a function of
the noiseless output ȳ. Since C1(N) is a fixed number
in the comparison of different subspaces and in calcu-
lation of the MDL this term is ignored. However, since
C1(N) changes for different order estimation settings,
for example with the change of ȳ∗, implementation of
a threshold is meaningless for this criterion.

Here we prove that the use of threshold is meaningful
for the new proposed MDL. Assume that for any prob-
lem setting the descritization in output space Y is the
same. We prove that the new description length is a
codelength of a prefix code. A necessary and sufficient
condition for a code to be prefix is that it satisfies the
Kraft’s inequality. The new DL satisfies the Kraft’s
inequality by adding a normalized factor. The normal-
izing factor is not a function of y or ȳ, but a function
of the order of subset Sm and descritization factor of
Y . This proves the consistency of the codelengths with
universality of Kolmogorov complexity in (2).

Theorem The new description length, defined in (21),
satisfies the Kraft’s inequality, i.e., corresponds to a
prefix code, when a normalized factor C(N) is consid-
ered

DLSm(y) , DL(ŷSm ; ȳ∗) + C(N)

= log
1

fSm(ŷSm ; ȳ∗)
+ C(N). (26)

where

C(N) = − 1
Ln2

Ln(δm
√

2πσ2
w

(N−m)
). (27)

Note that although C(N) is a function of m, C(N)/N
goes to zero much faster that the terms in the estimate
of log 1

fSm (ŷSm ;ȳ∗) and it can be ignored for large enough
N .

Proof The descritized version of y is yd and descritized
version of ŷSm

is ŷd
Sm

. The index j is used for the
descritized elements in Y N . Therefore, we have

DL(ŷd
Sm

(j); ȳ∗) (28)

= − log
1(√

2πσ2
w

)N
e
− ||ȳ

∗−ŷd
Sm

(j)||2

2σ2
w

= − 1
Ln(2)

Ln
1(√

2πσ2
w

)N
e
− ||ȳ

∗−ŷd
Sm

(j)||2

2σ2
w .

To check the Kraft’s inequality for each code word of
length DL(ŷd

Sm
(j); ȳ∗) we have to show that

∑

j

D−DL(ŷd
Sm

(j);ȳ∗) ≤ 1 (29)

where D is the size of alphabet resulted from descritiz-
ing the output space Y . Equivalently we can check for
is added such that

∑

j

(
e−DL(ŷd

Sm
(j);ȳ∗)

)LnD

≤ 1 (30)

we know that
∑

j

(
e−DL(ŷd

Sm
(j);ȳ∗)

)LnD

(31)

≤
(∑

i

e−DL(ŷd
Sm

(j);ȳ∗)

)LnD

≤




∑

j

1(√
2πσ2

w

)N
e
− ||ȳ

∗−ŷd
Sm

(j)||2

2σ2
w




LnD
Ln2

Note that

δm
∑

j

1(√
2πσ2

w

)m e
− ||ȳ

∗−ŷd
Sm

(j)||2

2σ2
w ≈ (32)

∫
1(√

2πσ2
w

)m e
− ||ȳ

∗−ŷSm
||2

2σ2
w dy

where δ is the precision per dimension in the space Y ,
or equivalently in the space of the additive noise W .
On the other hand, the error ȳ∗Sm

− ŷSm has a Gaussian
distribution and we have

∫
1(√

2πσ2
w

)m e
− ||ȳ

∗
Sm

−ŷSm
||2

2σ2
w dy = 1. (33)

Therefore the error ȳ∗− ŷSm also has a Gaussian distri-
bution with same variance and a different mean. Hence,
we have

∫
1(√

2πσ2
w

)m e
− ||ȳ

∗−ŷSm
||2

2σ2
w dy = 1. (34)



Therefore
∫

1(√
2πσ2

w

)N
e
− ||ȳ−ŷSm

||2
2σ2

w dy =
1(√

2πσ2
w

)N−m
(35)

Therefore

∑

i

(
e
−
�
DL(ŷd

Sm
(j);ȳ∗)− 1

Ln2Ln(δm
√

2πσ2
w

(N−m)
)
�)LnD

≤ 1 (36)

Hence, the normalizing factor is
1

Ln2Ln(δm
√

2πσ2
w

(N−m)
). ♦

4 Linear Models and Simulation Results

Lets consider a linear time invariant(LTI) system for
which the matrix ASm

(N) in (3) is a Toeplitz matrix
of input. The input of the system is a binary sequence
of ±1. The input is a sample of independent identically
distributed Bernoulli random process. Note that in this
case the basis si in (3) are asymptotically orthogonal.
The input-output relationship is of form

y(i) =
i∑

k=1

θ∗(k)xi−k+1 + w(i), (37)

We use the microwave radio channel, chan10.mat,
which is available at

http://spib.rice.edu/spib/microwave.html.
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Figure 1: Real part of the first 60 taps of a microwave
radio channel impulse response.

Figure (1) shows the real part of the first 60 taps
of the system impulse response. The simulation re-
sult for data of length N = 300 and SNR=10db is
shown in figure(2). Here the optimum impulse re-
sponse length for different methods are m̂(AIC)=34
and m̂(MDL)=32. The new proposed criterion selects
m̂ = 33. Figure(3) shows the upper and lower bound
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Figure 2: Solid line is the description length for
SNR=10db, and N=300. ’-.’: Probabilistic up-
perbound and lowerbound of the new descrip-
tion length.
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Figure 3: Solid line is the description length for
SNR=90db, and N=800. ’-.’: probabilistic up-
perbound and lowerbound of the new descrip-
tion length.

on the new DL for N=800, SNR=90db. The bounds on
the DL are valid with probability 0.84 and validation
probability of 0.84.

In this case all the methods select an impulse response
length which is larger than 130. With higher SNR
and/or longer data sample, all the methods choose a
larger and larger length for the impulse response esti-
mate. However, if we choose a threshold for the DL to
be 10, the new criterion selects m∗ = 37. With this
threshold m∗ ≤ 37 when SNR grows and/or the length
of data gets larger. Counting for the delay of the sys-
tem, with the same threshold, the proposed method
chooses the 10 taps of the impulse response estimate
from 27 to 36 for optimum modelling of the system. .

5 Conclusion

In this paper a new information theoretic method of
parametric estimation is introduced. By using the



available data, we are able to probabilistically estimate
tight bounds on the new criterion which is in form of
a data description length. It is shown that the new
description length corresponds to a prefix code and is
consistent with the universality of Kolmogorov com-
plexity.
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