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Abstract

The motivation for this paper stems from the need to develop a uniform framework for addressing problems in identi-
!cation and robust control. System identi!cation for in!nite-dimensional Hilbert spaces has been addressed earlier by the
authors. System identi!cation set in an Hilbert space results in uncertain models where the description of non-parametric
error is typically a ball belonging to the Hilbert space. The scope of this paper is to complement these results — develop
robust control-synthesis and analysis results — for some special, yet, important cases. In this paper we derive a convex
parameterization of robustly stabilizing controllers for LTI discrete-time systems de!ned on Hilbert spaces. The pertur-
bations are of rank-one type having both real-parametric and non-parametric components. The parameterization allows
for imposing other constraints to obtain meaningful performance from the controller. Analysis tools are also developed
for robust stability under SISO block-diagonally structured perturbations. The robustness analysis problem reduces to a
!nite-dimensional LMI veri!cation which makes the procedure extremely e"cient. c© 2000 Published by Elsevier Science
B.V. All rights reserved.

1. Notation

Let l be the space of real-valued in!nite sequences supported on Z+. Let l1 and l2 denote the subspaces
of l of absolutely summable sequences and square summable sequences, respectively. The ! transform of any
sequence H = (h(k)) ∈ l1 is given by

H (!) :=
∞
∑

k=0

h(k)!k ; ! ∈ C:

The space l1 can also be identi!ed with the disc algebra of bounded analytic functions on the closed unit
disc. For the sake of notational simplicity we do not make any distinction between a sequence in l1 and its
! transform.
We will be concerned with subspaces of l that have a Hilbert space structure. We denote such spaces as

H(r) where r = (r(k)) is an element of the set, S⊂ l. The set, S, is given as follows:

S
:= {r = (r(k)) ∈ l: r(k)¿k log(k) + 1}:
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The norm of any sequence, H ∈ H(r), is de!ned by

‖H‖2H(r)
:=

∞
∑

k=0

r(k)h2(k):

The inner product between any two sequences, H1 = (h1(k)) ∈ H(r) and H2 = (h2(k)) ∈ H(r), is de!ned by

〈H1; H2〉H(r)
:=

∞
∑

k=0

r(k)h1(k)h2(k); (r(k)) ∈ S:

The motivation for the class arises from the fact that H(r)⊂ l1, i.e., if an in!nite sequence (h(k)) ∈ H(r),
then (h(k)) ∈ l1. Thus, any bounded sequence (h(k)) de!ned by the H(r) norm is a kernel of some BIBO
stable convolution operator. As a point of digression, when r(k)=k2+1, the space is referred to as the Hardy–
Sobolov space usually denoted by the symbol H2;1. The Hardy–Sobolov norm in the frequency domain is
obtained by summing the energy of the spectrum with the energy of the derivative of the spectrum.
Finally, for any norm | · | on Rm, we de!ne the dual norm | · |d by

|x|d := max{xTy: |y|61}:

2. Introduction

It is widely perceived that system-identi!cation and robust control present a fundamental dichotomy. Robust
control provides a framework for addressing control design and analysis issues when faced with uncertainty
in the plant dynamics. However, it is often the case that the description of uncertainty is not consistent with
models obtained from system identi!cation. This subject matter has received wide attention from as early as
late 1980s culminating in devoting an entire issue of the IEEE Transactions on Automatic Control to this
topic (see [3]).
With these factors serving as the backdrop a new formulation for the system identi!cation problem was

presented in [6–8]. Our formulation addressed problems arising out of identi!cation of in!nite-dimensional
systems from !nite-noisy data and we will give a brief account of it here for the sake of completion. The
class of in!nite-dimensional LTI systems (T) cannot be uniformly approximated by a !nite-dimensional
space. Nevertheless, we represent our prejudice by selecting a !nitely parameterized set of models (G) from
which an estimate of the original system will ultimately be drawn. The motivation is that it is possible to only
estimte a !nite number of parameters from noisy !nite data and the objective should be to estimate that model
from the model parameterization that minimizes the unmodeled dynamics. The outcome of the identi!cation
problem will result in estimates of the model, the parametric and non-parametric errors.
In general, solutions to such identi!cation problems are computationally cumbersome. However, in a Hilbert

space setting, it is possible to signi!cantly reduce the computational complexity. By appealing to the duality
theorem the in!nite-dimensional system, T ∈ T, can be uniquely decomposed into a model G belonging to
the subspace G, the unmodeled dynamics minimizer, and the residual, T −G, the space of systems orthogonal
to G. This helps in the construction of annihilating !lters that when applied to the output virtually strip away
the unmodeled error in the input–output equation. This forms the basis for the solution to the identi!cation
problem. The solution can be implemented recursively and the corresponding computational complexity is no
more than that of RLS. Although, the solution to the identi!cation problem is also possible in the l1 topology,
the computational complexity is signi!cantly higher.
These facts serve as a motivation to pursue robust control synthesis and analysis for Hilbert spaces and we

identify some of the salient issues here. In short, the residual error dynamics, resulting from the identi!cation
procedure, is an arbitrary element belonging to the set of all norm (de!ned on the Hilbert space) bounded
systems. Now robustness analysis generally examines the stability of a feedback interconnection of a system
and an arbitrary perturbation belonging to a set of stable systems. The set of perturbations are required to
be stable because the proof technique relies on a continuity of poles argument (see [11]). The space H2

of systems, with bounded impulse response energy admits unstable systems making it unsuitable for stability
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analysis using traditional robust control techniques. Therefore, in order to maintain consistency between robust
control and identi!cation, we have to restrict the class of systems to a space that has a Hilbert space structure
and yet satis!es the requirements of robust control (i.e., where norm boundedness implies stability). In general,
an appropriately weighted energy norm su"ces. This is indeed the motivation for the space of functions
denoted by the symbol, H(r), in Section 1.
We will now enumerate the organization of the paper. The robust control problem is discussed in

Section 3. We restrict ourselves to perturbation that are of rank-one (perturbations that can either be written as
multi-input–single-ouput or single-output–multi-input). Following on the lines of [5] a convex parameterization
of all robustly stabilizing controllers is derived. The methodology adopted is general enough to extend it to
mixed rank-one perturbations with real-parameter uncertainties. It turns out that the optimal robust controller
even for the SISO problem is in general in!nite dimensional. This is in direct contrast to both the H∞ and
l1 problems.
The robust analysis problem is discussed in Section 4. We develop tools for analysis for robust stability in

the face of diagonally structured SISO block perturbations belonging to the Hilbert space. Su"cient conditions
for robust stability is derived by employing the well-known S procedure (see [4]). The robust analysis problem
reduces to verifying a !nite-dimensional LMI thus making the problem computationally e"cient. The solution
to the problem leads us to developing new su"cient conditions for robust stability for structured real-parameter
uncertainties.

3. Synthesis problem

In this section we will formulate the synthesis problem and give a convex parameterization of all robustly
stabilizing controllers. The setup is as shown in Fig. 3. In this con!guration G is a known LTI system
representing, as usual, the nominal system and K represents the control system. As is now typical, we
represent the perturbation ", which denotes the system uncertainty, in the form of a feedback loop as shown in
Fig. 3. Speci!cally, w the input to ", is a scalar signal. The results in the paper also hold when the output,
z, is a scalar and for the sake of brevity we assume that w is a scalar signal. It follows that the uncertainty
" is spatially structured, belonging to the set ! given by

!= {": "= [#1; : : : ; #L; "L+1; : : : ; "L+F ]}; |(#1; : : : ; #L)|61; ‖"i‖H(ri)61; ∀i; (1)

where #i is a scalar real-parametric perturbation and "k is a non-parametric SISO perturbation. A note of
caution in our notation. We denote the impulse response of "∈H(r) by (#(k)) and this should not be
confused with the real-parameter uncertainties which are indexed by means of subscript. We point out that
we allow di#erent weight sequences, r ∈S, for each non-parametric perturbation amounting to a di#erent
norm for each output channel. This will be particularly useful in the next section when we consider mixed
real-parametric and non-parametric perturbations. With these preliminaries we will now describe obtaining a
convex parameterization of all controllers K that simultaneously stabilize the system for all " ∈ !. The result
is obtained by a combination of well-known ideas and we follow the development in [5] in deriving these
results. First, we need a de!nition for stability.

De!nition 1. A system T : u → y that takes inputs, u ∈ l, to outputs, y ∈ l, is said to be stable if it satis!es
the conditions for BIBO stability (see [1]). For an LTI system T the conditions for BIBO stability are met
if and only if T ∈ l1. Equivalently, an LTI system T is stable if it belongs to the disc algebra of bounded
analytic functions on the closed unit disc.

With this de!nition for stability as a backdrop, consider the setup of Fig. 1 and note in particular that w
is a scalar. From Youla parameterization [10] of stabilizing controllers, we may assume that the admissible
transfer functions, Tzw, from w to z are of the form

Tzw = T1 + T2Q; (2)
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Fig. 1. Uncertain control system.

where T1; T2 ∈ lm+r
1 are !xed and Q is any transfer function in l1. As the uncertainty loop w=$z is closed,

the system is robustly stable if and only if

(1− "(T1 + T2Q))−1 ∈ l1; ∀" ∈ !; (3)

where ! is as in Eq. (1). The problem is to !nd a convex parameterization of all Q ∈ l1 such that Eq. (3)
is satis!ed.

3.1. SISO case

We !rst derive the solution for the simple case when there is only one block of perturbation, i.e., let

!0 = {" ∈ H(r): ‖"‖H(r)61; r ∈ S}:

We have the following theorem:

Theorem 1. Suppose T1; T2 ∈ l1. Then the following two conditions on the function Q ∈ l1 are equivalent.
1. Q ∈ l1 and

[1− "(T1 + T2Q)]−1 ∈ l1; ∀" ∈ !0: (4)

2. Q = $=% for some %; $ ∈ l1 satisfying
∥

∥

∥

∥

W ′R

(

T1%+ T2$
i(T1%+ T2$)

)

(exp(i!))
∥

∥

∥

∥

2
¡R (%(exp(i!))); ! ∈ [− "; "] (5)

where W (·) is a continuous matrix function of ! ∈ [− "; "].

Proof. The proof follows in several steps. First, we determine the image " ∈ H(r) on the boundary of
the unit disc. The image turns out to be an ellipse at every point on the boundary of the unit disc as seen in
Fig. 2. This will lead us to establish the equivalence between the two conditions.

Step 1 (Image of !0 in the frequency domain): Let the impulse response of " ∈ !0 be given by (#(k)).
At any point on the unit disc, say exp(i!), the image is given by the following set in the complex plane:

{ ∞
∑

k=0

#(k)(cos(k&) + i sin(k&)) ∈ C: " ∈ !0

}

:

Note that the set is bounded follows from the fact that sup"∈!0‖"‖l1 is bounded. Equivalently, we may
characterize the real and imaginary parts as follows:

'(!) =
{[

x1(!)
x2(!)

]

Kz ∈ R2: ‖z‖l261
}

; (6)
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Fig. 2. Image of ! is an ellipse at every point on the disc.

where

x1(!) = (1; cos(!); cos(2!); : : :);

x2(!) = (0; sin(!); sin(2!); : : :);

K = diag[1=r(0); 1=r(1); 1=r(2); : : : ; 1=r(k); : : : ]:

Next, we point out that:

L(!) =
[

x1(!)
x2(!)

]

K

is a !nite-rank operator on l2 and we can therefore obtain a singular value decomposition of it:

L(!) = (U(V ′)(!);

where (= diag[)1(!); )2(!)]. We now let W be a weighting function over ! ∈ [− "; "] de!ned as
W (!) = (U()(!): (7)

It follows that the set '(!) can be equivalently characterized as:

'(!) =
{

W (!)
[

*
+

]

: *; + ∈ R; ‖[*; +]‖261
}

: (8)

In order to apply the results in [5] we will have to prove that the weighting function, W , is continuous as a
function of frequency. This is not di"cult upon observation of the fact that the singular values and vectors
are amplitude and directions of the major and minor axes of the ellipsoid. These quantities can be computed
analytically which we present here for the sake of completion. For the sake of notational simplicity, let

C =
∞
∑

k=0

cos(2k!)
2(r(k))

; S =
∞
∑

k=0

sin(2k!)
2(r(k))

:
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Then, the amplitude of the major and minor axis as a function of frequency is given by

(2 = 1
2 (diag[1 +

√

C2(!) + S2(!); 1−
√

C2(!) + S2(!)])

and the singular vectors U (!) = [u1=‖u1‖2; u2=‖u2‖2] as a function of frequency are given by

u1 =

[

√

C2(!) + S2(!) + C(!)
S(!)

1

]′

; u2 =

[

−
√

C2(!) + S2(!) + C(!)
S(!)

1

]′

:

This shows that the weight, W , is continuous with respect to frequency.
Step 2 (Equivalence between the two conditions of the theorem): The following statements are equivalent:

(A) (1− "(T1 + T2Q))−1 ∈ l1 for all " ∈ !0.
(B) (1− "(T1 + T2Q))(exp(i!)) )= 0 for ! ∈ [− "; "] and " ∈ !0.
(C)

(

1− [*; +]W ′
[

T1 + T2Q
i(T1 + T2Q)

]

(exp(i!))
)

)= 0 (9)

for *; + ∈ R and ‖[*; +]‖261.
(D) There is a rational function Q ∈ l1 and there exists a rational function % ∈ l1 that satis!es

R

{(

1− [*; +]W ′
[

T1 + T2Q
i(T1 + T2Q)

]

(exp(i!))
)

%(exp(i!))
}

¿ 0 (10)

for " ∈ !0; ! ∈ [− "; "] and ‖[*; +]‖261.
(E) There exist rational functions %; $ ∈ l1 such that Q = $=% and

R (%(exp(i!)))− [*; +]R
(

W ′
[

T1%+ T2$
i(T1%+ T2$)

]

(exp(i!))
)

¿ 0 (11)

for " ∈ !0, ! ∈ [− "; "] and ‖[*; +]‖261.
The fact that (E) is equivalent to the second statement of Theorem 1 and (A) implies (B) is straightfor-
ward. We need to prove that (B) implies (A) which we do so using the usual continuity of poles argument
(see [11]). We present it here for the sake of completion. Consider the set of solutions to the following
equation:

(1− ,"(T1 + T2Q))(!) = 0; " ∈ !0; ! ∈ C (12)

as a function of the parameter , ∈ [0; 1] for a !xed " ∈ !0. We know that for small enough , the above
equation is satis!ed only for |!|¿ 1, i.e. (1− ,"(T1 + T2Q))−1 is analytic on the closed unit disc for small
enough ,. For a !xed ", solutions to Eq. (12) are continuous with respect to ,. Now, if (A) does not hold
for some " ∈ !0 but (B) holds, it follows that, Eq. (12) has a solution for some |!|¡ 1 and " ∈ !0. But
now by continuity there is an , ∈ [0; 1] such that for some |!| = 1 Eq. (12) holds, contradicting (B). That
(B) and (C) are equivalent follows from Eqs. (6) and (8). To prove that (C) and (D) are equivalent we note
that the set

{

*; + ∈ R:
(

1− [*; +]W ′
[

T1 + T2Q
i(T1 + T2Q)

]

(exp(i!))
)

; ‖[*; +]‖261
}

(13)

is convex at every !. Therefore, there is a complex valued function, %(exp(i!)), satisfying Eq. (13). That
such a function is continuous and can be approximated by a real rational function in l1 follows exactly as in
[5]. The equivalence between (D) and (E) follows by change of variables (Q = $=%). Note that $=% is stable
follows from the fact that the choice * = 0; + = 0 implies that Re(%(exp(i!)))¿ 0. We can see this easily
by making the usual conformal map, z = C(s), from the unit-disc to the imaginary axis. Then %(C(s)) is a
strictly positive real transfer function on the imaginary axis. This implies that %(C(s)) is stable minimum-phase
transfer function.
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3.2. Extensions

We now extend the results of Theorem 1 to the general rank-one perturbations belonging to the set, !,
given in Eq. (1). The general condition for robust stability in this case is

(1− [#′; "1; : : : ; "m](T1 + T2Q))−1 ∈ l1; ∀"= [#′; "1; : : : ; "m] ∈ !: (14)

Again T1 + T2Q describes the nominal closed-loop transfer function from w to z and the decomposition:

[T1 T2] =











T#1 T#2
T"11 T"12
...

...
T"m
1 T"m

2











∈ lm+r
1 (15)

corresponds to the decomposition taken with respect to the perturbation, " = [#′; "1; : : : ; "m]. We have the
following corollary for the synthesis problem which follows in a straightforward fashion from Theorem 1.

Corollary 1. The following two conditions on the rational function Q are equivalent:
1. There is a rational function Q ∈ l1 and

[1− "(T1 + T2Q)]−1 ∈ l1; " ∈ !; (16)

where ! is given by Eq. (1).
2. Q = $=% for some rational functions %; $ ∈ l1 satisfying

|R (T#1 %+ T#2 $)(exp(i!))|d +
m
∑

i=1

∥

∥

∥

∥

W ′R

(

T"i
1 %+ T"i

2 $
i(T"i

1 %+ T"i
2 $)

)

(exp(i!))
∥

∥

∥

∥

2

¡R (%(exp(i!))); (17)

where ! ∈ [− "; "], W (·) is a continuous matrix function of ! ∈ [− "; "] and | · |d is the norm on the
dual of the space of real-parameter uncertainties.

Again as in [5] we can also extend these results to the case of coprime-factor descriptions of uncertain
systems for single-input–multi-output (SIMO) and multi-input–single-output (MISO) type systems. The results
follow in a straightforward way as an extension to Corollary 1 and is omitted here.
The solution methodology presented here requires solving in!nite-dimensional optimization problems.

As in [5] we propose using the “Ritz” method consisting of solving the problem over larger and larger
!nite-dimensional spaces. Here, this means that we solve for feasible solutions to Eq. (17) over, %; $. Dual
formulations for these class of problems is currently being pursued in order to give strict accuracy bounds
which can be used as a stopping criterion.

4. Robustness analysis for structured uncertainty

In this section we will derive conditions for robust stability for diagonally structured SISO blocks of systems
belonging to the Hilbert space. Consider the feedback con!guration shown in Fig. 3. We assume that both G
and " are LTI stable discrete-time systems. The system G is known and the perturbation " belongs to the
following collection:

!= {": "= diag["1; "2; : : : ; "n]; "i SISO; ‖"‖H(ri )
61; ri ∈ S; i = 1; 2; : : : ; n}: (18)

We point out that the norm is di#erent on each channel, characterized by di#erent weighting sequences. The
two issues of interest in an interconnection of two system is well-posedness and stability. Well-posedness in
the linear setting implies that (I−G")−1 is causally invertible on the space l. In addition, the interconnection
is stable as long as the inverse is also bounded, i.e.,

T
∑

t=0

‖v(t)‖22 + ‖w(t)‖226
T
∑

t=0

‖e(t)‖2 + ‖f(t)‖22; ∀T; f(·) ∈ l2e: (19)
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Fig. 3. Robust-stability for structured perturbations.

Alternatively, since G and " are linear the condition simpli!es to

det(I − G")(exp(i!)) )= 0; ∀! ∈ [− "; "]; " ∈ !: (20)

In the H∞ situation the structured block-diagonal perturbation (see [2]) is typically dealt in the following
manner. One observes that mapping G to D−1GD with diagonal frequency-dependent scales D does not change
the condition for stability because "→ D−1"D is a one-to-one mapping. This then forms the basis for several
algorithms to check stability wherein a search for the minimum of the maximum singular value of D−1GD
gives a good su"cient condition for stability. In our situation, as seen in the previous section the image of
each block perturbation is an ellipse. It is di"cult to !nd a transformation on G as in H∞ situation that does
not change the condition for stability. The principle problem is that, unlike H∞ or l1, the Hilbert spaces
under consideration are not Banach algebras and so even though H1; H2 ∈ H(r), we cannot guarantee that
H1H2 ∈ H(r). However, it should be noted that this property alone does not su"ce. Indeed in the case of
l1 a diagonal frequency-dependent scaling is in general inadmissible because the mapping in general is not
one to one (for MIMO unstructured blocks).
To exploit the structure of the perturbations we apply the well-known S-procedure technique (see [4] and

references therein) for this problem. We state the salient features here for the sake of completion.
The application of this technique, for our situation, requires “modeling” the uncertain elements by means

of quadratic constraints (QCs). Consider two signals, v ∈ ln
2 and w ∈ ln

2 and their corresponding fourier
transforms v̂(!) and ŵ(!) at some frequency ! ∈ [− "; "]. Let

v̂r(!) =R(v̂(!)); v̂i(!) = I (v̂(!)); ŵr(!) =R(ŵ(!)); ŵi(!) = I (ŵ(!)):

Two signals u ∈ ln
2 and w ∈ ln

2 are said to satisfy a QC de!ned by -(!) if








v̂r(!)
v̂i(!)
ŵr(!)
ŵi(!)









T

-(!)









v̂r(!)
v̂i(!)
ŵr(!)
ŵi(!)









¿0; (21)

where -(!) is any symmetric matrix valued function taking values in R4n×4n. These QCs are used to describe
relations between signals of perturbation " at each frequency.
The collection of LTI stable sytems ! is said to satisfy the QC at frequency ! de!ned by -(!) if

Eq. (21) holds for w=$v. Once the uncertainty is modeled with QCs we can derive a robust stability result
as follows which is based on S procedure.

Theorem 2. Let G and " be LTI stable discrete-time systems; interconnected as in Fig. 3; with " having the
structure de!ned by Eq. (18). Further; let the feedback interconnection be well-posed. Suppose; the quadratic
constraint de!ned by -(!) at every frequency is satis!ed by every " ∈ ! and there is an ,¿ 0 such that

[

LG
I

]T

-(!)
[

LG
I

]

6− ,I; ∀! ∈ [− "; "]; (22)
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where;

LG =
[

R (G(exp(i!))) −I (G(exp(i!)))
I (G(exp(i!))) R (G(exp(i!)))

]

: (23)

Then the feedback interconnection is stable.

Proof. The proof follows by direct extension of Theorem 1 in [4] and is omitted.

Remark. (i) The condition is also necessary in the sense that if Eq. (22) is not satis!ed, there are signals,
v; w, satisfying the QC (recall that the QC is a model for the perturbation) on Eq. (21) along with v=Gw+f
that violate the requirement for absolute stability (see Eq. (19)).
(ii) It is important to note that if the QCs de!ned by -1(!); -2(!); : : : ; -k(!) all satisfy the perturbation

class ! then a su"cient condition for stability is the existence of x1; : : : ; xk such that Eq. (22) holds for

-(!) = x1-1(!) + · · ·+ xk-k(!): (24)

Our objective now translates to obtaining the set; X(!); of all -(!) given by

X(!) =















-(!) ∈ R4n×4n

∣

∣

∣

∣

∣

∣

∣

∣









v̂r(!)
v̂i(!)
ŵr(!)
ŵi(!)









T

-(!)









v̂r(!)
v̂i(!)
ŵr(!)
ŵi(!)









¿0; w = "v; ∀v ∈ ‘2; " ∈ !















(25)

at each frequency ! such that the QC de!ned by them is satis!ed for w = "v; " ∈ ! with ! de!ned as
in Eq. (18). The motivation is to derive a !nite-dimensional characterization for the set, X(!), in order to
easily test the condition for stability.
It is easy to see that it su"ces to !nd such a set for each block of perturbation. This is because if the QC

de!ned by -k(!) is satis!ed for the kth block of perturbation then the QC given by

-(!) = diag[-1(!); : : : ; -n(!)] (26)

is satis!ed for "= diag["1; : : : ; "n]. Conversely, it is easy to see that, given the diagonal block structure for
the perturbation " every admissible -(!) will necessarily have the same diagonal structure. Therefore, we
only need to consider any SISO block perturbation. With this in mind consider the following perturbation set:

!0 = {"SISO : ‖"‖H(r)61; r ∈ S}: (27)

The following lemma gives a simpler convex characterization for the set X(!).

Lemma 1. Let G and " be LTI stable systems with " ∈ !0. Suppose; X(!); is the set of all QCs that
are satis!ed for the set !0. Then; veri!cation of absolute stability for the interconnection based on the set;
X(!); is equivalent to veri!cation of absolute stability based on the set; X0(!); given by

X0(!) =

{

-(!)

∣

∣

∣

∣

∣

[

I
W

]T

-(!)
[

I
W

]

¿0; -11¿0; -2260

}

: (28)

Therefore; X(!) ≡ X0(!). In the future; we will make no distinction between these two sets.

Proof. For the sake of simplicity, we drop the explicit functional dependence of - on frequency whenever
it is clear from the context. Recall, from the previous section that, at every frequency !, the image of the
perturbation, ", is an ellipse. To this end we de!ne

W (!) =
[

)1(!) cos(&+  (!)) −)2(!) sin(&+  (!))
)2(!) sin(&+  (!)) )1(!) cos(&+  (!))

]

;

where  (!) is the orientation of the ellipse at the frequency !; )i(!) is the length of the minor and major
axis and & is a parameter that tracks the boundary of the ellipse as it varies from −" to ". Note that, W ,
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should not be confused with the weight in Eq. (7). The weight, W , introduced here represents the boundary
of the set, '(!), de!ned in Eq. (8). With this de!nition the relationship between the two signals, w and u is
given by

[

ŵr(!)
ŵi(!)

]

∈
{

.W
[

v̂r(!)
v̂i(!)

]

; . ∈ [0; 1]
}

:

We need . as a variable because W alone only characterizes the outer periphery of the ellipse. Substituting
the above expressions in Eq. (25) we obtain

X(!) =

{

-(!)

∣

∣

∣

∣

∣

[

I
.W

]T

-(!)
[

I
.W

]

¿0; . ∈ [0; 1]
}

:

In order for the set to be a useful characterization we will !rst need to !nd a means of getting rid of the
dependence on .. For this we !rst partition - as follows:

- =

[

-11 -12
-T
12 -22

]

:

We see that as we let . → 0 we will need to have -11¿0. However, this alone is not su"cient. We claim
that whenever the condition given by Eq. (22) holds it should also hold for .G(exp(i!)). The claim is only
veri!ed for SISO LTI discrete-time system G for simplicity.
Suppose now that the claim is not true, then there is a v= .Gw+ f with (v; w) satisfying the QC de!ned

by -(!) that violates stability in the sense of Eq. (19). But now if (v; w) satis!es the QC de!ned by -(!),
it implies that (v; .w) satis!es the QC too. Therefore, letting w̃ = .w we see that there is (v; w̃) such that
v=Gw̃+f and (v; w̃) satis!es the QC. This then contradicts the stability of the interconnection of G and ".
By substituting .G in Eq. (22) and letting . go to zero we !nd that

-2260

With these substitutions we !nd that the set X(!) can be reduced to Eq. (28).

Although the above expression gives a convex characterization for - at every frequency it does not make the
computation of allowable - explicit. We next present the following theorem which gives a !nite-dimensional
characterization for the set of all -(!) at each frequency.

Theorem 3. The set X(!) de!ned as in Eq. (28) has a !nite-dimensional characterization. Speci!cally; at
each frequency !; there exist constant matrices; A; B; and linear matrix functions C(-;!); D(-;!) in -(!)
such that

- ∈ X(!)⇔
[

ATP + PA PB− CT(!;-)
BTP − C(!;-) −(D(!;-) + DT(!;-)

]

60; -11¿0; -2260:

Proof. Observing that W is a trigonometric matrix polynomial, we make a judicious transformation of vari-
ables, cos(&) and sin(&), so that we can realize the matrix trigonometric polynomial as the real-part of a
!nite-dimensional system. The advantage in doing this would be to apply the KYP lemma as we will see
shortly. With this in mind we !rst partition the matrix -22:

-22 =
[

%11 %12
%12 %22

]

and re-write the expression in Eq. (28) as follows:

L(cos(&); sin(&)) =
[

I
W

]T

-(!)
[

I
W

]

¿0⇔ -11 +W T-T
12 +-12W +W T-22W¿0: (29)

In order to apply the KYP lemma, we transform, L(cos(&); sin(&)), in terms of the variable / as follows:

L(cos(&); sin(&)) =R(D + C( j/− A)−1B):
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The !rst term of the last expression in Eq. (29) is a constant. W which enters the second and third terms
can be realized as the real-part of a !nite-dimensional system by making the following substitutions:

cos(&) =
1− /2

1 + /2
; sin(&) =

2/2

1 + /2
; −∞6/6∞

and obtain

W =R

([

a11(!) 1−j/1+j/ + b11(!) j/
1+j/ −a12(!) 1−j/1+j/ − b12(!) j/

1+j/

a12(!) 1−j/1+j/ + b12(!) j/
1+j/ −a11(!) 1−j/1+j/ + b11(!) j/

1+j/

])

:

The !nite-dimensional system corresponding to the factors of W are of the form (1− s)=(1+ s) and s=(1+ s).
We may therefore write the second and third terms of the last expression in Eq. (29) as

W T-T
12 +-12W =

-12L0(!) + LT0 (!)-
T
12

(s+ 1)
+-12M0(!) +MT

0 (!)-12

which is easy to transform to state-space realization. The last term of Eq. (29) can be rewritten as

)1(!) cos(&+  (!))W-22 + )1(!) sin(&+  (!))-22

[

0 1
−1 0

]

:

Thus we need to express the terms cos2(&); sin2(&); sin(&) cos(&) as !nite-dimensional systems given our choice
for cos(&); sin(&). This turns out to be fairly easy as seen below:

cos2(&) = 1− sin2(&) = 1
2

(

R

(

1− j/
1 + j/

)2

+ 1

)

;

sin(&) cos(&) =R

(

(2j/(1− j/)
(1 + j/)2

+
1
2

(

1− (1− j/)2

(1− j/)2

))

:

With these expressions the matrices, A; B; C; D in Eq. (29) can be computed. As one can readily see the
matrices A and B are constant matrices that do not depend on - or on the frequency !. The matrices C and
D are given by the following expressions:

D(!;-) =-11 +-12D0(!) + DT0 (!)-
T
12 + E1(!)-22D1(!) + E2(!)-22D1;

C(!;-) =-12C0(!) + CT0 (!)-
T
12 + E1-22C1(!) + E1(!)-22C1;

where Ci; Di; Ei are all constants depending only on the frequency !. Now by applying the KYP (see [9])
lemma we obtain that the above expression is equivalent to an LMI, i.e.,

R (D(!;-) + C(!;-)( j/− A)−1B(!))¿0⇔
[

ATP + PA PB− CT(!;-)
BTP − C(!;-) − (D(!;-) + DT(!;-)

]

60: (30)

Thus the set X(!) can be reduced to the feasibility of a !nite-dimensional LMI.

It is now easy to provide a !nite-dimensional expression for X(!) for the spatially structured perturbation
as in Eq. (18). We present this here for the sake of completion. Corresponding to each diagonal perturba-
tion element. "k , in Eq. (18), there is a corresponding set, Xk(!) that can be re-written by means of a
!nite-dimensional LMI. Thus, the set X(!), can be expressed as

X(!) = {diag[-1(!); -2(!); : : : ; -n(!)]: -j(!) ∈ Xj(!); j = 1; 2; : : : ; n}:
We know from Theorem 3 that every set Xk(!) can be re-written as an LMI de!ned by matrices Ak; Bk ;
Ck(!;-k), Dk(!;-k) for each frequency ! ∈ [ − "; "]. Therefore, the above condition for X(!) can be
expressed as

-(!) ∈ X(!)⇔
[

ATk Pk + PkAk PkBk − CTk (!)
BTk Pk − Ck(!;-k) −(Dk(!;-k) + DTk (!;-k))

]

60; -k11¿0; -k2260;

k = 1; 2; : : : ; n; (31)

where -(!) = diag[-1(!); : : : ; -n(!)]. This in turn is a !nite-dimensional LMI feasibility condition.
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4.1. Robustness of real-parameter uncertainty

In this section we derive su"cient conditions for real-parametric uncertainty by embedding the uncertainty
in a Hilbert space. In this way the techniques developed in the previous section can form the basis for robust
stability for mixed real-parametric and non-parametric uncertainty. Thus we are left to !nd an appropriate
Hilbert space (in particular a weighting sequence, r(k)) that approximates the real-parameter uncertainty. To
this end, let v= 0w where 0 ∈ [− 1; 1]. Then,

[− 1; 1]⊂
{

"

∣

∣

∣

∣

∣

∞
∑

k=0

(#(k)1k)261; 1 ∈ (1;∞]
}

:

As we let 1 → ∞ we get increasingly better approximations to the real-parameter 0. Now, stability for per-
turbations belonging to a Hilbert-space are su"cient conditions for stability of real-parametric uncertainties.
By applying Theorems 2 and 3 we can reduce the problem to a !nite-dimensional LMI condition. More-
over, by incrementing the parameter 1 we obtain less-conservative conditions for stability for real-parametric
uncertainties.

5. Conclusions

In this paper we have obtained a convex parameterization of robustly stabilizing controllers for SISO pertur-
bations that belong to Hilbert spaces. These methods can be extended to SIMO or MISO block perturbations
with mixed-parametric and non-parametric parts. We have also derived robustness analysis tests based on
the S procedure. We have shown that the veri!cation of robust stability can be reduced to the veri!ca-
tion of a !nite-dimensional linear matrix inequality (LMI). These problems are naturally motivated from a
system-identi!cation perspective. System identi!cation of in!nite-dimensional systems belonging to a Hilbert
space with !nite noisy data results in estimates of nominal model along with non-parametric and parametric
error. The non-parametric error is typically described by a unit ball in the in!nite-dimensional Hilbert space.
Such uncertain models form the basis for pursuing control techniques and leads to a systematic methodology
for going from data to control.
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