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Abstract— The problem of finding an optimal path in an
uncertain graph arises in numerous applications, including
network routing, path-planning for vehicles, and the control
of finite-state systems. While techniques in robust and stochas-
tic programming can be employed to compute, respectively,
worst-case and average-optimal solutions to the shortest-path
problem, we consider an alternative problem where the agent
that traverses the graph can request limited information about
the graph before choosing a path to traverse.

In this paper, we define and quantify a notion of information
that is compatible to this performance-based framework, bound
the performance of the agent subject to a bound on the capacity
of the information it can request, and present algorithms for
optimizing information.

I. INTRODUCTION

Path planning on uncertain graphs is considered in numer-
ous areas of study, and specific studies of the problem have
appeared many times in the literature. For example, determin-
ing the complexity of finding the shortest path, computing
the distributions of path lengths for certain graph structures
or edge-weight distributions [1][2], and bounding the mean
of the shortest path [3][4]. In this paper, we consider an
alternate formulation where the graph’s edge weights are
random, but the agent that traverses the graph is limited to
knowing them within a specified degree of accuracy. This
formulation is a special case of uncertain decision problems
whereby a random objective is to be minimized subject to
some prior information about the realization of the objective.

We begin this paper with a brief presentation of stochastic
optimization but under a particular definition of partial
information. We then immediately specialize this framework
to our problem of interest: shortest-path optimization under
limited information. For this application, we will provide
performance bounds for the shortest path algorithm as well
as present algorithms for (sub)optimizing partial information.
We conclude the paper with some final remarks about future
work.

II. DEFINITIONS, NOTATION, AND FORMULATION

A. Random Variables and Sets

We write random variables (RVs) in capital letters (e.g.,
X), and denote the event X ∈ S as P (X ∈ S) or PX(S).
We write X ∼ p if X has p as its probability density
function (PDF), and let N(µ, σ2) be the normal distribution
with mean µ and variance σ2. E [X] and VAR [X] are,
respectively, the expected value and variance of X , and
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for a random vector X = (X1, . . . , Xn), VAR [X] =∑n
i=1 VAR [Xi] and COV [X] = E

[
XXT

]
−E [X] E [X]T .

For two RVs X,Y , we define X̂(Y ) = E [X|Y ] as the
estimate of X given Y (which we simplify to X̂ if the
argument is understood), and we say X

d= Y if both RVs
are drawn from the same distribution.

For two sets A and B, A−B is the set of elements in A
but not in B. Finally, |A| is the number of elements in A.

B. Graphs

We define a graph G by a pair (V,E) of vertices V and
edges E. Because we allow any two vertices to have multiple
edges connect them, we forgo the usual definition E ⊂ V ×V
and instead define a head and tail for each edge e ∈ E by
hd (e) ∈ V and tl (e) ∈ V respectively.

Each edge e in the graph is associated with an edge weight
we. The vector of all weights is w =

[
w1 . . . w|E|

]T
. Because

we consider edge weights to be random, we write the vector
as W , and we assume that the probability distribution is
known. Finally, we denote the first and second moments of
W by

µ = E [W ] , µe = E [We] ,

Λ = COV [W ] , σ2
e = Λee = VAR [We] .

We now define the notion of a path in the graph.
Definition 1 (Path): A sequence p = (e1, e2, . . . , en) is a

path if tl (ei) = hd (ei+1), and we say p goes from v1 =
hd (e1) to vn+1 = tl (en).

Definition 2 (Acyclic Path): A path p = (ei) is acyclic if
there are no two indices i < j such that hd (ei) = tl (ej).

Assumption 1 (DAG): G is a directed acyclic graph
(DAG) (i.e., all paths the p of G are acyclic).

We also assume the existence of two vertices s, t ∈ V ,
respectively termed the start and termination vertices, that
(uniquely) satisfy the following assumption.

Assumption 2: There is a path from s to each vertex v ∈
V − {s} as well as a path from each vertex v ∈ V − {t} to
t.

Let P = P (G) be the set of all paths from s to t in G.
With some abuse of notation, we can write each p ∈ P as
a 0-1 vector in <|E| where pe = 1 if e ∈ p and pe = 0
otherwise. In this case, P is a set of all such vectors in
<|E|. Let P = convex hull{P}. It is well known that P
has an efficient representation as a finite number of equality
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constraints:

P =x ∈ [0, 1]|E| such that

∑
e|e=tl(v)

xe −
∑

e|e=hd(v)

xe =


1 v = s

−1 v = t

0 otherwise.

Using our vector notation, the length of a path p ∈ P is
simply pTW .

C. Stochastic Optimization under Partial Information

To motivate our framework for shortest path optimization
under limited information, we present the basic ideas in a
general stochastic optimization setting. For the purposes of
this section, let W be any RV with some distribution.

Consider the following stochastic optimization:

J(W ) = min
x∈X

h(x,W ).

Clearly, since W is a RV, J(W ) is also a RV, and so the
average performance of the optimization is E [J(W )].

Consider now the task of finding an “optimal” decision x
without knowing W . Of course, a reasonable objective is to
select the x that minimizes the average of the objective:

J = min
x∈X

E [h(x,W )].

Since J is a constant, E
[
J
]

= J . By Jensen’s Inequality,
E [J(W )] ≤ J .

We call the first case (where the realization of W was
known) the full-information case. We call the latter case the
zero-information case.

We are interested in formulating an in-between partial-
information case. To this end, we introduce another RV
Y that represents our information about W and write the
optimization as a function of our information:

J(Y ) = min
x∈X

E [h(x,W )|Y ].

Once again, because Y is a RV, J(Y ) is also a RV, and
so the average performance under Y is simply E [J(Y )].
Clearly, the information Y contains about W is completely
determined by their joint-distribution pWY , so we define
J(pWY ) = E [J(Y )]:

J(pWY ) = E
[
min
x∈X

E [h(x,W )|Y ]
]
. (1)

Remark 1: Intuitively, we are ”averaging-out” the infor-
mation about h(x,W ) that we do not have from Y , much like
in the zero-information case. The full- and zero-information
cases are easily obtained by substituting Y = 0 (a constant)
and Y = W to respectively yield J(Y ) = J and J(Y ) =
J(W ).

A goal of this paper is to choose the information Y so as
to minimize the average performance J(pWY ) under some
constraint on the “total information” Y has about W . We
can bound information simply by placing a constraint on the

set of allowable joint-distributions pWY . Formally, if we let
Γ be such a constraint set for pWY , we seek the solution to

J(Γ) = min
pW Y ∈Γ

J(pWY ). (2)

We call J(Γ) the optimal performance under Γ, and we call
(2) the information optimization.

We can further generalize the concept of information
optimization to optimizations over a family of constraint sets
{Γ(C)}. Here, the scalar C is called the capacity, and (for no
technical reason) we assume that Γ(C1) ⊂ Γ(C2) whenever
C1 ≤ C2. For ease, we simplify our notation by writing
J(C) = J(Γ(C)) and call J(C) the optimal performance
under capacity C.

Remark 2: The “natural” choice for {Γ(C)} depends on
the application. For example, if we were to specialize (2) to
a rate-distortion problem, we could consider minimizing the
distortion d(Ŵ (Y ),W ) between Ŵ (Y ) and W under the set
Γ(C) = {pWY |I(Y ;W ) ≤ C}.

D. Specializing to Shortest Path Optimization

We now specialize our framework (2) to shortest path
optimization. First, for any RV Y , (1) specializes to

J(pWY ) = E
[
min
p∈P

{
pT E [W |Y ]

}]
= E

[
min
p∈P

{
pT Ŵ

}] (3)

All that is left is to define our information constraint sets.
As we will see, a particularly convenient set of capacity
constraints is

Γ(C) = {pWY | VAR
[
Ŵ
]
≤ C}. (4)

Notice that both (3) and (4) both only depend on pŴ , not
pWY

1. Therefore, from here on, all of our statements will
be made with respect to knowing pŴ only.

E. Objective

The goal of this paper is to develop practical algorithms
for information optimization as well as to compute analytic
bounds for J(C) that provide an intuitive understanding of
the relationship between capacity and performance.

III. INFORMATION OPTIMIZATION

A challenge in information optimization is the evaluation
of the objective J(pŴ ). To avoid this difficulty, we instead
seek to optimize upper and lower bounds for the objective.
In the case of an optimizing an upper bound, of course, one
is guaranteed some improvement in actual performance.

We begin this section with some notation for the case
of Gaussian edge weights. We then present two examples
that highlight the impact that even a modest information
optimization can have. We then present two optimization
algorithms and conclude the section with a technique for
reducing the complexity of information optimization.

1This is true for any linear objective, not just shortest path optimization.
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A. Simplifying to the Gaussian Case

Consider the case of (a) independent edge weights and (b)
W and Y being jointly-Gaussian so that Ŵ (Y ) is Gaussian
as well. If we let

γ2
e = VAR [E [We|Y ]] ,

then Ŵe(Y ) = γeZe + µe for independent RVs Ze ∼
N(0, 1). Because µe is fixed, the distribution of Ŵ only
varies with γe. We now no longer need to consider optimiz-
ing the distribution pŴ but rather only over the variances
{γ2
e}. Furthermore, we can write

Γ(C) = {γ = (γe)e such that γ ≥ 0, ‖γ‖2 ≤ C},

so that Γ(C) is a convex set. By parameterizing over γ
instead of pŴ , we write the average performance as J(γ)
instead of J(pŴ ).

B. The Impact of Information Selection: Comparative Exam-
ples

Using our notation from the Gaussian case, we can high-
light the impact that even a modest information optimization
can have.

Example 1: Let G be the graph having n disjoint paths
{P1, . . . , Pn} from s to t with each path having n edges
each, and let Wij ∼ N(0, 1) be the (random) weight of edge
j on path i. Let the “distribution” γs ∈ Γ(n) satisfy γse = 1
if e ∈ P1 and γse = 0 otherwise. Essentially, the estimates
Ŵ only contain information about the edges in P1, meaning
that Ŵe = We for e ∈ P1 and Ŵe = 0 for e /∈ P1.

For this distribution, the average performance is

J(γs) = E

min

∑
j

W1j , 0




= E

min

∑
j

γ1jZ1j , 0




= E

min


√∑

j

γ2
1jZ, 0




= E
[
min

{√
nZ, 0

}]
=
√
nE

[
min {Z, 0}

]
,

where Z ∼ N(0, 1).
Example 2: Let G be the same graph as in Example 1,

but take a different distribution γp ∈ Γ(n) such that γpe = 1
if e is the first edge of any path Pi and γpe = 0 otherwise.
Essentially, the estimates Ŵ only contain information about
the first edge in each path, meaning that Ŵe = We if e is
one of these links and Ŵe = 0 otherwise.

For this distribution, the average performance is

J(γp) = E
[
min {W11 + 0,W21 + 0, . . . ,Wn1 + 0}

]
= E

[
min {Z11, Z21, . . . , Zn1}

]
≥ −
√

2 lnn

where the last inequality is obtained by using Lemma 3 in
[5].

There is a significant difference between the performances
of the two examples. If we increase n, the average perfor-
mance yielded from applying γs outstrips that obtained using
γp quite substantially.

C. Information Optimization via Lower Bounds

An approach for “optimizing” information is to optimize a
lower bound for J(pŴ ). One method to obtain a lower bound
is to compute the lower bound via an optimization over
arbitrary distributions subject only to a few constraints. For
this purpose, we can apply an extension of the generalized
Chebyshev inequality presented in [6].

For our problem, it is convenient (and computationally
efficient) to compute such a bound directly for J(C) subject
to 1st order (the mean) and 2nd order (the variance and
capacity bound) constraints on the distribution:

J(C) = min
pŴ

{
E
[
min
p

{
pT Ŵ

}]}
subject to

E
[
Ŵ
]

= µ, VAR
[
Ŵ
]
≤ C

0 ≤ VAR
[
Ŵe

]
≤ σ2

e .

(5)

Clearly, J(C) ≥ J(C). It can be shown that the dual to this
optimization is a semi-definite optimization having a number
of constraints larger than the number of paths in the graph
(each path generates a constraint). Hence, it is impractical
for even moderately-sized graphs.

An approach for practically bounding the performance
of uncertain 0-1 optimizations is presented in [7], but, in
our case, it requires some modification. This is because [7]
assumes that feasible distributions for pŴ are constrained
in their marginals only, but our capacity constraint in (5)
disobeys this rule. Nonetheless, the approach is still useful,
and we present our first information optimization algorithm
as a corollary to Corollary 3.2 in [7].

Corollary 1:

J(C) = min

{∑
e

[
0 1

2
1
2 0

]
·He

}
subject to

He ≥ 0

He ≥
[
γ2
e + µ2

e µe
µe 1

]
∑
e

([
0 0
0 1

]
·He

)
ve ∈ P

0 ≤ γ2
e ≤ σ2

e∑
e

γ2
e ≤ C

(6)

where ve is the elementary basis vector with the eth compo-
nent equal to 1.

Proof: For space reasons, we present only a detailed
sketch of the proof. First, if we remove the capacity con-
straint from (5) and instead fix the variances {γ2

e} for Ŵ ,
we get a tight lower bound for J(pŴ ) for any pŴ having
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variances given by the γe’s. By Corollary 3.2 in [7], this
lower bound is equivalent to 2

J(γ) = max
{Γe},d∈<|E|

{
J(d) +

∑
e

Γe ·
[
γ2
e + µ2

e µe
µe 1

]}
subject to

Γe ≤ {0,
[

0 1
2

1
2 de

]
}.

Now we clearly have

J(C) = min
γ∈Γ(C)

{J(γ)}.

Taking the dual of the inner optimization for J(γ) yields a
new inner optimization

min
He

max
d

{
J(d) +

∑
e

He ·
[

0 1
2

1
2 −de

]}
subject to

He ≥ 0

He ≥
[
γ2
e + µ2

e µe
µe 1

]
.

Let He =
[
ae be
be ce

]
. Then the objective in the minimax is

=J(d) +
∑
e

be −
∑
e

cede

= min
p∈P

{
pT d

}
− cT d+

∑
e

[
0 1

2
1
2 0

]
·He

= min
p∈P

{
(p− c)T d

}
+ constant.

Of interest to us is the minimaximin expression:

min
c

max
d

min
p∈P

{
(p− c)T d

}
If c ∈ P , then this expression must always be nonpositive
since 0 ∈ P − c. If c /∈ P , then one can show that the
expression will always be ∞. Therefore, we require c ∈
P . Since P has no volume (not proven in this paper), d
should make itself orthogonol to the subspace containing P−
c (which is the same for all c) in order to maximize the
expression to 0.

The constraint c ∈ P is represented by∑
e

([
0 0
0 1

]
·He

)
ve ∈ P.

The remainder of the claim easily follows.
Remark 3: By our definition of J(W ), J(d) is simply

J(W ) with W = d, a constant.
A significant drawback to this lower bound optimization

is that the resulting lower bound can be quite conservative.
In particular, the optimization over distributions for pŴ
may include non-realizable distributions. For example, in
the case of parallel requests, we know that the rate of

2Although we are not applying any Gaussian assumptions, because we are
restricted to first and second order moments, we adopt the same approach of
writing J(γ) since the optimization is only a function of this characteristic
of the distribution.

improvement with each request is slower than logarithmic for
the Gaussian case, but the minimizing distribution yields a
square root improvement [8] since the optimization generates
dependencies among the edge weights. Hence, it is not clear
if this information optimization is meaningful, despite it
giving a potentially useful lower bound for the performance.

D. Information Optimization via Upper Bounds

We now consider an alternative information optimiza-
tion that optimizes an upper bound for J(pŴ ) that better
leverages the structure of the graph to reduce complexity.
The upper bound is based in Jensen’s Inequality, and it
applies a dynamic-programming-like approach to computing
the average performance backward through the graph, but it
requires that the edge weights obey the Gaussian assumptions
discussed before.

Theorem 1: An upper bound J(C) under independent
Gaussian edge weights is

J(C) ≤ min
{γ2

e}∈Γ(C)

{
J(s, {γ2

e})
}

(7)

where

J(v, {γ2
e}) =

∫
j
∂

∂x
· ∏

e| hd(e)=v

[
1− Φ

(
x− J(tl (e) , {γ2

e})− µe
γe

)] |x=jdj

and J(t, {γ2
e}) = 0.

Proof: Let J(v, Ŵ ) be the length of the shortest path
from vertex v to t under edge weights Ŵ :

J(v, Ŵ ) = min
e| hd(e)=v

{
J(tl (e) , Ŵ ) + Ŵe

}
,

J(t, Ŵ ) = 0.

By Jensen’s Inequality and acyclicity, we have

E
[
J(v, Ŵ )

]
≤ E

[
min

e| hd(e)=v

{
E
[
J(tl (e) , Ŵ )

]
+ Ŵe

}]
,

so that the set of equations

J(v, {γ2
e}) = E

[
min

e| hd(e)=v

{
J(tl (e) , {γ2

e}) + Ŵe

}]
yields an upper bound for E

[
J(v, Ŵ )

]
.

Now let,

J(v, {γ2
e}, Ŵ ) = min

e| hd(e)=v

{
J(tl (e) , {γ2

e}) + Ŵe

}
so that J(v, {γ2

e}) = E
[
J(v, {γ2

e}, Ŵ )
]
.

Using

P (Ŵe > x) = 1− Φ
(
x− µe
γe

)
and P (mini {Xi} > x) =

∏
i P (Xi > x) for indepen-

dent RVs {Xi} allows us to compute the CDF for the
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J(v, {γ2
e}, Ŵ ). Taking a derivative and integrating yields its

expected value:

J(v, {γ2
e}) =

∫
j
∂

∂x
· ∏

e| hd(e)=v

[
1− Φ

(
x− J(tl (e) , {γ2

e})− µe
γe

)] |x=jdj

E. Reducing Complexity by Path Pruning
The information optimizations presented above are quite

manageable, but we can further improve their performances
by leveraging a simple fact about real-world graphs: paths
of long average length are almost never the shortest path, so
information about them can be neglected. In this section, we
provide a bound on the performance lost from pruning such
paths.

Define ΘX(k) = E [min {X, k}]. If X ∼ N(0, 1), then
ΘX(0) = −1√

2π
. We use Θ to write a very simple pruning

algorithm. Let p∗ be the path in the graph with shortest
average length. We want to prune the paths p that are often
not the shortest path when compared to p∗. Formally, we
prune every path p satisfying

E
[
min

{
(p∗)TW,pTW

}]
− (p∗)Tµ = Θ(p−p∗)TW (0) ≈ 0.

However, it may be the case that no path in the graph is
pruned regardless of length because the variances of such
paths can be very large (a path with a sufficiently large
variance has a good chance of being the shortest path even
if the mean length is long). As a fix, we can bound the
variance of a path as a function of its mean length. A
particularly useful bound is VAR

[
pTW

]
≤ E

[
pTW

]
, a

sufficient condition for which is σ2
e ≤ µe and which is easy

to check.
Under this assumption, we can prune paths simply by

looking at their mean lengths, yielding the follow low-
complexity pruning algorithm:

1) Compute the average shortest path length from each
vertex v to t.

2) Remove those vertices whose lengths exceed some
predetermined length L.

We now provide a bound on the performance lost from
path pruning. For space reasons, we do not provide a proof
of this result and we restrict it to the Gaussian case.

Theorem 2: Assume VAR
[
pTW

]
≤ E

[
pTW

]
and that

the edge weights are independent Gaussian. The performance
lost from pruning paths p satisfying E

[
pTW

]
≥ L is∑

k>L

[
(# paths of length k)

(
(L− k)−

√
kΘZ

(
L− k√

k

))]
where

lim
k→∞

[
(L− k)−

√
kΘZ

(
L− k√

k

)]
= 0.

A consequence of Theorem 2 is that if the number of
paths of length k does not increase too quickly, then the
performance loss can be bounded.

IV. AN ANALYTIC RELATIONSHIP BETWEEN CAPACITY
AND PERFORMANCE

Another objective of our study is to establish an intuitive
relationship between information capacity and performance.
The previous information optimization algorithms are com-
putational in nature and, consequently, are not quite amend-
able for this purpose, so we take a different approach. The
following proposition is a first step in this direction.

Proposition 1: For any function f : X → < and any X ⊃
X ,

min
x∈X
{h(x,W )} ≥ min

x∈X
{f(x)}+ min

x∈X
{h(x,W )− f(x)}.

Proof: The proof follows immediately from the fact
that minx {a(x) + b(x)} ≥ minx {a(x)}+ minx {b(x)}.

Remark 4: Proposition 1 provides a generalization of the
approach taken in [8] to generate a low-complexity optimiza-
tion for bounding the mean of the minimum order statistic.
Let X be the simplex in <n and let W = (W1, . . .Wn) be
a random vector in <n. The the minimum order statistic is
given by mini {Wi} = minx∈X

{
xTW

}
. The bound in [8]

follows by setting f(x) = xT z for some vector z ∈ <n and
setting X to the unit cube.

While Proposition 1 does not shed much insight into an
analytic relationship between information and performance,
clever choices for f(x) and X can be used to provide one.

We now use Proposition 1 to provide an analytic bound
for performance.

Theorem 3:

J(0) ≥ J(C) ≥ J(0)− 1
2

√
|E|
√
C. (8)

Proof: Since P is the convex hull of 0-1 vectors, it
is contained in the unit cube. Applying Proposition 1 with
z = E [W ] and X=the unit cube yields

J(C) ≥ J(0)− E
[
min
x∈X

{
xT (Ŵ − µ)

}]
,

where J(0) is the no-information average performance.
Without loss of generality, assume µ = 0. Then

E
[
min
x∈X

{
xT Ŵ

}]
= E

[∑
e

min
xe∈[0,1]

{
xeŴe

}]
=
∑
e

E
[
min

{
0, Ŵe

}]
=
∑
e

γe E

[
min

{
0,
Ŵe

γe

}]
≥− 1

2

∑
e

γe

≥− 1
2

√
Ne

√∑
e

γ2
e

=− 1
2

√
Ne
√
C

where the first inequality results from Chebyshev’s Inequality
[8], and the last inequality results from Jensen’s Inequality.
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Fig. 1. Graph topology that achieves the lower bound.

The performance bound in Theorem 8 is straight-forward,
though somewhat conservative. Because P for any graph
is contained in the unit cube, the lower bound must hold
for all possible graphs, so we use no graph topological
information in the bound. Interestingly, however, there is
a graph topology that does provide the same asymptotic
performance as this bound even under independent edge
weights. It is presented below.

Theorem 4: There exists a graph with i.i.d. Gaussian edge
weights satisfying

J(C) = J(0)− 1
2
√
π

√
Ne
√
C.

Proof: Consider the graph in Figure 1. An expression
for J(γ) is

J(γ) =
∑
j

E
[
min

{
Ŵ1j , Ŵ2j

}]
=
∑
j

E
[
Ŵ2j

]
+ E

[
min

{
Ŵ1j − Ŵ2j , 0

}]
=J(0) +

∑
j

min
{√

γ2
1j + γ2

2jZ, 0
}

=J(0) + ΘZ(0)
∑
j

γj ,

where γj =
√
γ2

1j + γ2
2j and Z ∼ N(0, 1).

Optimizing over the γj’s (there are Ne/2 of them) requires
us to solve the optimization

max
γ

∑
j

γj

 subject to
∑
j

γ2
j = C

for which γj =
√

C
Ne/2

is the optimum. Thus,

J(C) = J(0) + ΘZ(0)
Ne
2

√
C

Ne/2
.

In some sense, it should be little surprise that graph
topology used to prove Theorem 4 is tight since the number
of extreme points of the unit cube and the polytope P for
this graph are on the same order (P has half as many).

A useful analytic upper bound for performance that uses
little distribution information is not known, but we show
below that such a bound is trivial when only first and second
order moment information about pŴ is used.

Proposition 2: A tight upper bound for J(C) over all
distributions subject to a mean and variance constraint is
J(0) (the zero-information case).

Proof: Without loss of generality, suppose E
[
Ŵ
]

= 0

and VAR
[
Ŵ
]

= 1, and let

pne (x) =
1

2n2
δ(x+ n) +

1
2n2

δ(x− n) +
2n2 − 2

2n2
δ(x).

Each distribution pne satisfies the moment constraints, but it
is easy to show that as n→∞, the limiting performance is
J(0).

V. CONCLUSIONS AND FUTURE WORK

A general framework for expressing stochastic optimiza-
tions under partial information was presented and specialized
to shortest path optimization. As part of this specialization,
a parametrization for information capacity is offered that
allowed us to efficiently perform information optimization
as well as provide an analytic relationship between capacity
and performance. We also showed how to efficiently reduce
the complexity of information optimization while incurring
a provable bound in performance loss.

Future work includes expanding our methods of informa-
tion optimization to approaches that use limited information
about the graph as a means to balance the amount of
information required of the distribution and the complexity
of the bound. We also seek to study the effect of spreading
information over subsequent decision (i.e., the agent can
request information as it traverses the graph). Finally, we
are interested in expanding our treatment of optimizing
performance under information to the case of having multiple
agents traverse the graph simultaneously and cause conges-
tion along the edges. Specifically, we seek to understand the
utility of information as we vary the number of agents.
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