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Abstract—In this paper, we present a method for de-
signing discrete-time state-feedback controllers for a class of
continuous-time switched homogeneous systems which includes
switched linear systems as a special case. A discrete-time
approximate value iteration over a quantization of the unit
sphere is used to compute an approximation of the continuous-
time value function over the entire unbounded state space.
Properties of the value function and its approximations are
elicited and used to provide conditions under which state-
feedback controllers with provable guarantees in stability and
performance can be constructed. To illustrate the results,
the methodology is applied to an example switched system
possessing two unstable modes, one of which is nonlinear.

I. INTRODUCTION
In this paper, we examine an optimal control problem for a

class of switched homogeneous systems. The systems in this
class may be viewed as a subclass of hybrid systems in which
the operating mode is treated as an external input and each
subsystem possesses homogeneity properties. We concern
ourselves with optimizing the performance of the system by
designing a state-feedback switching law that approximately
minimizes a cost function, which also satisfies certain ho-
mogeneity properties. The problem formulation covers, as
special cases, switched linear systems and nonlinear switched
systems for which accurate homogeneous approximations
can be developed. To determine an approximately-optimal
control law, we compute an approximation to the value
function over the unit sphere, which, by homogeneity, can be
extended to provide an approximation to the value function
over the entire state space.
One important aspect to our work is the use of dynamic

programming to compute an approximately optimal control
law. A novel approach to approximating the value function
of a discrete-time switched linear system is presented in
[1], where approximate value iteration over a finite subset
of a complete function basis is used to perform the ap-
proximation. Computational complexity is easily managed
by scaling the number of functions in the subset, and, under
certain conditions, the algorithm is guaranteed to produce
a stabilizing feedback law. However, the results rely on the
existence of a function in the finite subset that satisfies certain
bounds over the state space, which is not guaranteed.
In [2], a slightly different approximate value iteration is

used to approximate the value function. For certain classes
of systems, the methodology leverages the structure of the
finite-horizon value function as the minimum over a finite
set of functions. The resulting controller arising from this
approximate value function is guaranteed to be stabilizing

and approximately optimal, but for more general systems or
costs functions, it is not clear if the algorithm is tractable.
In this case, a quantization of the state-space may be con-
sidered, but the benefits in [2] may no longer apply under a
quantization.
Beyond switched linear systems, the work in [3] offers a

constructive proof of the existence of stabilizing discrete-
time feedback controllers for a class of asymptotically
controllable continuous-time homogeneous systems. Further-
more, it provides an algorithm for computing an approxi-
mation to the feedback law. However, when the results of
[3] are specialized to switched homogeneous systems, the
assumption on homogeneity requires each subsystem of the
switched system to have the same homogeneity characteris-
tics, including degree.
In this work, we leverage homogeneity to reduce the

computation of an approximation to the continuous-time
value function over the unbounded state space to a linear
program over a finite set. We also provide conditions under
which a discrete-time feedback law exists and is stabilizing
and approximately optimal. Furthermore, it is not necessary
for the subsystems to have the same degree of homogeneity.
This work may be seen as a generalization of the approach
we used in [4], which applied to controllable, degree-1
homogeneous systems.
This paper is organized as follows. In sections II and III,

we lay out basic definitions and assumptions and also provide
some rudimentary results concerning dynamic programming.
In section IV, we prove the existence of a sampling time
that generates an asymptotically controllable discrete-time
system. Finally, in section V, we introduce an algorithm
(a value iteration over a finite subset of the unit sphere)
that computes a discrete-time state-feedback controller with
guarantees in stability and performance. We provide an
example of the methodology applied to a switched system
consisting of an unstable degree-1 and an unstable degree-3
subsystem. All proofs for the results in this paper may be
found in [5].

II. BACKGROUND

A. Continuous-Time (CT) Switched Systems: Definitions and
Notations

We consider the problem of stabilizing CT switched
systems of the form

ẏ(τ) = gi(τ)(y(τ)) (1)



where y(τ) ∈ "n is the state, i(τ) ∈ Q is the switching
input and is a piecewise-constant function continuous from
the right, and Q ⊂ Z+ is the set of modes and is a finite set.
Because i is continuous from the right, the one-sided limit
of i at τ ,

i(τ−) = lim
α→τ , α<τ

i(α)

may not be equal to i(τ). In fact, at points of discontinuity
(a switch), the two will not be equal.
At times, we want to explicitly express the trajectory of

(1) as a function of time, the initial condition, and the input
i. Denote the value at time τ of the trajectory originating
from y0 under a switching law i as y(τ, y0, i).
We treat i as a design parameter for the system and seek

a feedback control law that stabilizes (1). To this end, we
focus our attention to the class of switched systems that can
be controlled to the origin in the following formal sense [6].
Definition 1: System (1) is asymptotically controllable if:
1) (attractiveness) for each y0 there exists a switching law

i such that y(τ, y0, i) → 0 as τ → ∞.
2) (Lyapunov stability) for each ε > 0 there exists a δ > 0

such that for each ‖y0‖ < δ there exists a switching
law i as in 1) such that ‖y(τ, y0, i)‖ < ε.

3) (no Zeno effect) i has a finite number of switches in a
finite time interval.

We now define several important notations used through-
out the paper:

• let τ0 = 0 and successively define the kth switching
instance τk as the first time i(τ) changes value since
time τk−1, i.e. τk = minτ>τk−1 {τ | i(τ−) '= i(τ)}

• denote the dwell time of the kth switch as ∆k = τk+1−
τk,

• define yk = y(τk) as the kth switching state,
• and define ik = i(τk) as the kth operating mode and
denote the mode sequence as the list (i0, i1, . . .).

If the mode becomes a constant after some switching time
tk, i.e. i(τ) = a is constant for τ ≥ τk, then as there are no
more switches, we define τj = ∞ and ij = a for all integers
j ≥ k.
At times, we equivalently express i by its mode and dwell

time sequence (ik, ∆k)k, which will be useful for expressing
the dynamics of (1) between switching instances.

B. Assumptions
In this paper, we consider CT switched systems possess-

ing certain homogeneity properties, which will significantly
reduce the difficulty of computing a stabilizing control law.
Below is the definition of homogeneity used in this paper.
Definition 2: A function h is degree-(d+1)

homogeneous-in-the-state if there exists a matrix function
G(α) = diag(αr1 , . . . , αrn) for positive real constants ri

such that
h(G(α)y, w) = αdG(α)h(y, w)

For example, for a function h(y) = −y3, G(α) = α and
d = 2.
Because we do not concern ourselves with homogeneous

functions other than homogeneous-in-the-state functions, we

simply call such a function homogeneous. Homogeneity will
allow us to concentrate our analysis to the unit sphere. We
denote the unit sphere in "n as the set Sn−1.
We now state two assumptions about the structure of (1).
Assumption 1: For each i ∈ Q, gi is a continuous, degree-

(di + 1) homogeneous function with G(α) = αI for some
real di ≥ 0.
Assumption 2: For fixed i, y(τ, t0, i) is continuous over

the pair (τ, y0).

C. Discrete-Time (DT) Switched Systems: Definitions and
Notations
Because the controller will require switching logic to

compute i(τ), it is practical to consider implementing it in
discrete time. To this end, we examine DT systems with
dynamics that arise from a time-discretization of (1) in which
gi satisfy Assumption 1.
In this paper, we apply a special state-dependent sampling

period T : "n × Q → "+ that will yield convenient
properties for the resulting DT system, properties that a
constant sampling period would not give us otherwise.
A DT system constructed using a variable sampling time

T is formally defined as follows. Let t be an integer, let
i(t) be a DT input (i.e., i = (i(0), i(1), i(2), . . .)), and let x
be the DT state. The sampling period at time t is given by
T (x(t), i(t)), and the DT system is

x(t + 1) = y(T (x(t), i(t)), x(t), i(t))

Essentially, x(t + 1) is the value of the CT trajectory
sampled at time T (x(t), i(t)) starting from the initial state
x(t) with the mode fixed to i(t) over the time interval.
For convenience, we denote the DT dynamics by fi(x) =
y(T (x, i), x, i) so that

x(t + 1) = fi(t)(x(t))

Now, for computational reasons, we are interested in having
the DT system satisfy

fi(αx) = αfi(x)

for all modes i. We now provide a sampling time that yields
this property.
Proposition 1: For a positive constant T0, the state-

dependent sampling period given by T (x, i) = T0‖x‖−di

yields a continuous, degree-1 homogeneous function fi for
all x and i.
We call T0 the base sampling period.
In the remainder, τ is the CT time variable, t is the DT

time variable, y is the CT state, x is the DT state, and i is
the input in both settings.

D. Objectives
The remainder of this paper will be focused on deter-

mining conditions under which (1) can be sampled quickly
enough to yield a DT system that is asymptotically control-
lable. Formally, we want to find a base sampling period T0

and a DT feedback control law u so that
x(t + 1) = fi(t)(x(t))

i(t + 1) = u(x(t), i(t))
(2)



is stable. Note that, in this formulation, the mode i is
actually a system state, but we do not treat it as a state
in our definition of stability and, rather, consider only the
convergence of x.

III. THE VALUE FUNCTION AND DYNAMIC
PROGRAMMING

In this section, we present some basic definitions and re-
sults related to dynamic programming. We will use dynamic
programming to construct optimal controllers for special cost
functions that will guarantee feedback stabilizability.

A. The CT and DT Value Functions

In order to compute a stabilizing DT feedback law, we
use a cost function for the CT system that will eventually be
approximated in discrete time to yield a stabilizing control
law.
Define the CT cost function J(y0, i) as

J(y0, i)

=
∞
∑

k=0

[
∫

∆k

‖y(τ, yk, ik)‖2+dik dτ + ‖yk‖
2Ki(τ−

k
)i(τk)

]

where ∆k and yk are the kth dwell time and switching state
respectively (as defined in Section II-A), and the switching-
cost constants Kmn are positive for m '= n and zero
otherwise.
Optimizing over all switching laws i with initial mode i0,

we obtain the CT value function,

J∗
i0(y0) = inf

{i|i(0)=i0}
J(y0, i)

Now, define the DT cost function as

V (x0, i) =
∞
∑

t=0

L (x(t), i(t), i(t + 1))

=
∞
∑

t=0

[T0‖x(t)‖2 + ‖x(t)‖2Ki(t)i(t+1)]

where T0 is the base sampling period. Similarly, define the
DT value function as

V ∗
i0 (x) = inf

{i|i(0)=i0}
Vi0(x, i)

B. The Bellman Equation and the DT Value Function

In this section, we discuss a method for approximating J∗
i0

and V ∗
i0
.

Consider a general degree-1 homogeneous, DT switched
system with control inputs i and w,

x(t + 1) = hi(t)(x(t), w(t))

and let W ⊂ "m be such that w(τ) ∈ W . We consider a DT
system with an additional input w because we will eventually
transform the CT switched system into a DT switched system
with an additional input.

The computation of an optimal control law is tantamount
to the computation of the value function V

∗
i0
for all i0 ∈ Q,

which satisfies Bellman’s Equation

V
∗
i0(x) = inf

{j,w}
{V

∗
j (hi0(x, w)) + L(x, w, i0, j)} (3)

where L is the incremental cost and is a function of the
state, mode, and inputs. For ease, from here on we write V

∗
i

instead of V
∗
i0
, where in this case i is understood to be a

scalar in Q.
Now, let hi and L satisfy the following assumptions.
Assumption 3: hi is bounded over Sn−1×W (and, there-

fore, contained within a compact set).
Assumption 4: L is positive-definite, degree-2 homoge-

neous in x, and L(x, w, i, j) ≥ L(x, 0, i, j) for all x, w, i, j.
Under Assumption 4, it is easy to show that V ∗

i is degree-2
homogeneous.
If the value function V

∗
i is known, the optimal policy can

be computed through an evaluation of the expression

(j∗(x, i), w∗(x, i)) ∈ argmin
{j,w}

{V
∗
j (hi(x, w)) + L(x, w, i, j)}

if the minimum exists.
In general, it is impossible to determine the value function

analytically. On the other hand, a numerical approximation
of the value function can be obtained by applying an algo-
rithm called value iteration. In value iteration, successively-
improving approximations to the value function are com-
puted iteratively in the following manner: pick some V

0
i on

"n and compute the sequence (V
1
i , V

2
i , . . .) iteratively by

the relation

V
k+1
i (x) = inf

{j,w}
{V

k

j (hi(x, w)) + L(x, w, i, j)} (4)

For convenience, we always set the initial condition V
0
i = 0,

which results in (V
k

i )k being a monotonically increasing
sequence of functions bounded by V

∗
i . Denote V

∞
i =

limk→∞ V
k

i . While it is not generally true that value iteration
will converge to V

∗
i , there are certain assumptions that may

be imposed to guarantee the convergence of value iteration.
In particular, the results of this paper make heavy use of a
convergence result given in [1], which we restate here in a
form more amenable to our framework.
Proposition 2: If V

∗
j (hi(x, w)) ≤ γL(x, w, i, j) holds

uniformly for some γ < ∞ and if V
∗
i is bounded over a

compact set E, then (V
k

i )k converges uniformly to V
∗
i over

E.
The two following useful results stem from an application

of Proposition 2.
Lemma 1: If, for each k, (4) is minimized by some j∗

and w∗ and if L(·, 0, i, j) is lower bounded by a positive
constant over Sn−1 for all i, j, then V

∗
i is equal to V

∞
i if

V
∞
i is bounded over Sn−1.
Corollary 1: If W is a compact set, V

k

j is continuous
for all k, hi(x, w) is continuous in w, and L(x, w, i, j) is
continuous in w, then V

∗
i is continuous and equal to V

∞
i if

V
∞
i is bounded over Sn−1.



IV. STABILITY UNDER DISCRETE-TIME FEEDBACK
To prove the existence of a base sampling period T0 that

yields an asymptotically controllable system, we must first
prove that the CT value function is continuous so that we
can treat the DT value function as an approximation of it.

A. Continuity of the CT Value Function
To simplify the proofs of this section, we apply a useful

transformation that will generate a degree-1 system having
the same trajectories as (1). As in [3], let

ż(τ) = g̃i(τ)(z(τ)) = ‖z(τ)‖−di(τ)gi(τ)(z(τ)) (5)

Under suitable choices for each switching law, both (1)
and (5) generate the same trajectories, but (5) is degree-1
homogeneous by this time scaling of (1).
If we define the cost function J̃ for system (5) as

J̃(z0, i)

=
∞
∑

k=0

[
∫

∆k

‖z(τ, zk, ik)‖2dτ + ‖zk‖
2Ki(τ−

k
)i(τk)

]

with J̃∗
i0
is defined similarly as

J̃∗
i0

(y0) = inf
{i|i(0)=i0}

J̃(y0, i)

then it can be proven that J̃∗
i = J∗

i . Therefore, from here
on, we can assume without loss of generality that di = 1 for
all i in (1). The remaining results will still hold for any set
of d′is as long as the CT system is sampled using T (x, i).
Note that assuming di = 1 yields T (x, i) = T0, a constant.
First, we seek to show that J∗

i is continuous by leveraging
Corollary 1, but this result only applies to DT systems. In
order to apply it to J∗

i , we relate J∗
i to a DT Bellman

equation, using the time until the subsequent switch as a
control input over which we minimize. To this end, we define
a new DT system with dynamics given by

hi(x, τ) = y(τ, x, i)

Basically, hi is the sampled dynamics of (1) for a “sampling
period” τ , though we actually treat τ as an input. Note that
hi(x, T0) = fi(x). Also, define

l(x, τ, i, j) =

∫ τ

0
‖y(γ, x, i)‖2dγ + ‖y(τ, x, i)‖2Kij

as the sampled cost. The cost essentially represents the cost
of allowing (1) to evolve in a fixed mode i for τ time units,
after which time the system changes to mode j.
If we treat i and τ as control inputs, we have a degree-1

homogeneous DT system

x(t + 1) = hi(t)(x(t), τ(t))

By substitution and by optimality, we can express J∗
i by

J∗
i (x) = inf

{j,0≤τ≤T0}
{J∗

j (hi(x, τ)) + l(x, τ, i, j)}

In essence, all we have done is split-up the expression of the
value function by the switching times, which is possible by

optimality. We can now express J∗
i as the limit of the value

iteration sequence (Jk
i )k where

Jk+1
i (x) = inf

{j,0≤τ≤T0}
{Jk

j (hi(x, τ)) + l(x, τ, i, j)}

With these relationships, we are lead to the following impor-
tant theorem.
Theorem 1: System (1) is asymptotically controllable if

and only if J∗
i is continuous.

Remark 1: It is important to note that the proof of conti-
nuity relies on l(x, τ, i, j) being positive for all t if i '= j.
This condition is made possible by having positive switching
costs Kij . If Kij = 0 for some i '= j, then l(x, 0, i, j) = 0,
and the boundedness condition of Proposition 2, which is
used in the proof, would not hold.

B. Discrete-Time Stabilization
To prove the existence of a DT stabilizing control law, we

use value iteration to generate a sequence of functions that
converge to the DT value function while being bounded by
J∗

i , which essentially bounds V ∗
i and proves the existence

of control laws that yield a finite cost. We begin with the
following convergence result.
Proposition 3: If V ∞

i is bounded over Sn−1, then V ∗
i =

V ∞
i and V ∗

i is continuous.
We now state the main results of this paper.
Theorem 2 (Approximation of the CT value function): If

(1) is asymptotically controllable, then for each ε > 0, there
exists a positive time T 0 such that for all base sampling
periods T0 ≤ T 0, |J∗

i − V ∗
i | < ε over Sn−1.

Corollary 2 (Stability of the CT system via DT control):
There exists a positive base sampling period T0 such that
(1) is asymptotically stable using the DT control law

u∗(x, i) ∈ argmin
j

{V ∗
j (fi(x)) + L(x, i, j)}

V. APPROXIMATING THE VALUE FUNCTION
In this section, we present an algorithm for practically

constructing a stabilizing DT feedback controller by approx-
imating V ∗

i .

A. Value Iteration over a Finite Set
By (3) and by the homogeneity of the functions V ∗

i , fi,
and L, we have the following relationship for all x ∈ Sn−1

V ∗
i (x) = min

j
{‖fi(x))‖2V ∗

j

(

fi(x)

‖fi(x)‖

)

+ L(x, i, j)} (6)

where if x = 0, we define ‖x‖2V ∗
i

(

x
‖x‖

)

= 0.
We now extend the relationship in (6) to the value iteration

algorithm. For all x ∈ Sn−1, define the sequence of functions
(V k

i ) by

V k+1
i (x) = min

j
{‖fi(x)‖2V k

j

(

fi(x)

‖fi(x)‖

)

+ L(x, i, j)}

(7)
Though (7) allows us to express (V k

i )k as a sequence of
functions only over the compact set Sn−1, a brute-force
computation using (7) is still impractical. We now consider



the implications of quantizing Sn−1 in order to practically
compute an approximation to V ∗

i .
First, we define our quantization function. For some δ >

0, let Ŝn−1
δ be a finite subset of Sn−1 such that for each

x ∈ Sn−1, there is an approximating state x̂ ∈ Ŝn−1
δ that

is “close” to x in the sense that ‖x − x̂‖ < δ. Define the
quantization function Θδ : "n → "n by

Θδ(x) ∈ ‖x‖ argmin
x̂∈Ŝn−1

δ

{‖x̂ −
x

‖x‖
‖}

Using homogeneity, Θδ (which is degree-1 homogeneous) is
able to generate an uncountable set of approximation points
in "n. From here on, we drop the δ subscript notation.
We now define a new value iteration over the set Ŝn−1.

For all x ∈ Ŝn−1, define the sequence (V̂ k
i ) by

V̂ k+1
i (x) =min

j
{V̂ k

j (Θ(fi(x))) + L(x, i, j)}

=min
j

{‖fi(x)‖2V̂ k
j

(

Θ

(

fi(x)

‖fi(x)‖

))

+ L(x, i, j)}

(8)

Because Θ ◦ fi is degree-1 homogeneous and bounded
over Sn−1 and since the minimizer j∗ of (8) exists, we
have by Lemma 1 that (8) converges to its cooresponding
value function V̂ ∗

i . Furthermore, since the computation is
performed over a finite set, we can compute V̂ ∗

i using the
following linear program [4], [7]

max
∑

i∈Q,x∈Ŝn−1

V̂ ∗
i (x) subject to

V̂ ∗
i (x) ≤ ‖fi(x)‖2V̂ ∗

j

(

Θ

(

fi(x)

‖fi(x)‖

))

+ L(x, i, j)

for all i, j ∈ Q and x ∈ Ŝn−1

where Θ
(

fi(x)
‖fi(x)‖

)

∈ Ŝn−1.
The continuity results derived earlier come into play once

we begin to consider the application of approximation states.
If V ∗

j is δ-ε uniformly continuous over Sn−1, then for all
x ∈ Sn−1, we have the following inequalities.

V ∗
j (fi(x)) <

> ‖fi(x)‖2

[

V ∗
j

(

Θ

(

fi(x)

‖fi(x)‖

))

± ε

]

This relationship allows us to approximate the value function.
Proposition 4: If V ∗

i is continuous, then for each ε > 0,
there exists a δ such that |V̂ ∗

i − V ∗
i | < ε over Ŝn−1.

B. Stability and Performance
Given V̂ ∗

i (x), define the control law u as

u(x, i) ∈ argmin
j

{V̂ ∗
j (Θ(fi(x))) + L(x, i, j)} (9)

which exists. Clearly, system (2) subject to (9) is a degree-1
homogeneous system.
Now, to prove stability, we show the closed-loop system

yields a finite cost

Ṽi(x) =
∞
∑

t=0

L (x(t), i(t), u(x(t), i(t)))

=Ṽu(x,i)(fi(x)) + L(x, i, u(x, i))

To derive conditions under which Ṽi is bounded, we
leverage the structure of (6) and compute a bound for the
performance (and, hence, establish a certificate for stability)
using value iteration. To this end, we define the sequence of
functions (Ṽ k

i (x))k by

Ṽ k+1
i (x) = Ṽ k

u(x,i)(fi(x)) + L(x, i, u(x, i))

Clearly, limk→∞ Ṽ k
i (x) exists and is equal to Ṽi(x).

We now state the main performance and stability results
of this section.
Lemma 2: If V ∗

i is continuous, then for each ε > 0, there
exists a δ such that |V ∗

i − Ṽi| < ε over Sn−1, and, hence,
(2) is asymptotically stable.
Finally, for convenience, we summarize the results of this

paper with the following theorem.
Theorem 3: System (1) is asymptotically controllable if

and only if there exists a time Tmax and a spacing δmax such
that system (2) with u given by (9) is asymptotically stable
for all base sampling periods T0 ≤ Tmax and all quantization
spacings δ < δmax. u stabilizes (1) in discrete time, and the
closed-loop cost Ṽi may be made arbitrarily close J∗

i .

C. Lipschitz Special Case
Of course, in general, we do not know the δ-ε relationship

for V ∗
i , and so the results above only assert the existence

of a level of approximation that provide these benefits. If
we strengthen our assumptions about L and fi, though, we
compute an upper bound for δ to offer a prescribed ε.
Proposition 5: If {L(·, ·, i, j)}i,j and {fi}i are Lipschitz

functions over Sn−1 with respective Lipschitz constants ζ
and η < 1, then V ∗

i is Lipschitz over Sn−1 with a Lipschitz
constant ζ

1−η .
It is noteworthy that the constraint on η translates into the

requirement each fi is a contraction.

VI. SIMULATIONS
The example comes from a slight modification of the

example switched system from [8]. The dual-mode switched
system is given by

g1(y) =

[

0.1y3
1 − y3

2

10y3
1 + 0.1y3

2

]

, g2(y) =

[

0.1y1 − 10y2

y1 + 0.1y2

]

where y1 and y2 are the components of the vector y. Both
g1 and g2 are unstable systems that “spiral” away from the
origin. Note that g1 is degree-3 homogeneous while g2 is
degree-1 homogeneous.
To construct a DT stabilizing control, we use a base

sampling time of 0.1s and a quantization spacing of 0.1 radi-
ans along a semi-sphere1, yielding 32 approximation states.
Finally, we use the incremental cost function L(x, i, j) =
‖x‖2 + ‖x‖2Kij where Kij = 1 for i '= j.
The optimal control laws u (as given by (9)) are plotted in

Figure 1 as a function of angle because they are independent
of the magnitude of y.
Finally, Figure 2 shows a plot of CT closed-loop trajec-

tories resulting from an initial state y0 = (1, 0) and i0 = 1.

1By homogeneity, we need not consider the entire sphere.
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Fig. 1. Plot of u for each initial mode. As u is a degree-0 homogeneous
function, it is just a function of the angle in the phase space of x. Striped
regions represent where u takes a value of 1, and solid regions represent
where u takes a value of 2.
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Fig. 2. Simulation of the closed-loop systems from the initial pair y0 =
(1, 0) and i0 = 1.

Notice that although the system is executed for 30 time
samples, the simulations take nearly 30 seconds to complete,
despite a 0.1 base sampling period. This is because as the
trajectory approaches the origin, g1 reacts far more slowly, a
consequence of using T (x, 1) = ‖x‖−2T0, which approaches
∞ as ‖x‖ → 0.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a framework for constructing stabilizing
discrete-time state-feedback controllers for continuous-time
switched homogeneous systems was presented. Homogeneity
and a state-dependent sampling period were leveraged to
reduce the difficulty of computing a nearly optimal controller
to a linear program over the unit sphere.
We believe much can be gained from applying the the-

oretical methodology to practical problems. A particular
application of interest is determining if a switched system
is stabilizable under all possible switching sequences. Mod-
ifications to our framework may be able to be address this
problem by searching for the optimal unstable trajectory. An
additional extension of interest is the control of nonlinear
systems that can be locally approximated by homogeneous
systems at a set of equilbrium points. If the number of such
points is sizable, our approach may be able to be used in
conjunction with another algorithm to provide a means for
maneuvering through the state space, similar to the approach
taken in [9].
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