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Abstract

This paper studies the problem of estimating the probability of symbols that have occurred
very rarely, in samples drawn independently from an unknown, possibly infinite, discrete
distribution. In particular, we study the multiplicative consistency of estimators, defined
as the ratio of the estimate to the true quantity converging to one. We first show that the
classical Good-Turing estimator is not universally consistent in this sense, despite enjoying
favorable additive properties. We then use Karamata’s theory of regular variation to prove
that regularly varying heavy tails are sufficient for consistency. At the core of this result
is a multiplicative concentration that we establish both by extending the McAllester-Ortiz
additive concentration for the missing mass to all rare probabilities and by exploiting regu-
lar variation. We also derive a family of estimators which, in addition to being consistent,
address some of the shortcomings of the Good-Turing estimator. For example, they per-
form smoothing implicitly and have the absolute discounting structure of many heuristic
algorithms. This also establishes a discrete parallel to extreme value theory, and many of
the techniques therein can be adapted to the framework that we set forth.

Keywords: Rare events, probability estimation, Good-Turing, consistency, concentration

1. Introduction

In modern statistical applications, one is often showered with such large amounts of data
that invoking the descriptor “rare” seems misguided. Yet, despite the increasing volumes,
critical patterns and events have often very little, if any, representation. This is not unrea-
sonable, given that such variables are critical precisely because they are rare. We then have
to raise the natural question: when can we infer something meaningful in such contexts?

Motivated particularly by problems of computational language modeling, we are inter-
ested in the following archetypal problem. Let X1, · · · , Xn be an observation sequence
of random variables drawn independently (i.i.d.) from an unknown distribution P =
(p1, p2, · · · ) over a countable alphabet of symbols, which we denote by the positive inte-
gers. An alternative description is in terms of boxes (or urns) and balls, where each sample
corresponds to the label of the box which a throw of a ball lands in, randomly with probabil-
ity P. In language modeling, sub-words, words, and syntactic structures are but a few of the
wide array of possible characterizations of natural language. Although an i.i.d. model may
seem too simple to address the complexity of this domain, it remains a core construction
upon which more sophistication can be built. For example, n-gram models combine corre-
lation among various hierarchies with a basic learning process that is based on conditional
independence within each hierarchy.
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We are interested in using the observations to perform probability estimation. For events
occurring frequently, this is a task handled easily by the maximum likelihood estimator, i.e.
the empirical probability. However, this works questionably, if at all, for infrequent events.
In particular, it is desirable not to assign zero probability to symbols that are never seen in
the training data, since that would sabotage any technique that uses the learned model to
evaluate the likelihood of test instances which happen to contain a new symbol. Therefore,
our focus is on obtaining estimators for qualitatively rare events. One concrete class of
such events are the subsets Bn,r of symbols which have appeared exactly r times in the
observation. For “rare” to be a valid qualifier, we think of r as much smaller than the
sample size n. The case r = 0, for example, corresponds to the subset of symbols which do
not appear in the observation. Define the rare probabilities as:

Mn,r := P{Bn,r}.

In particular, Mn,0 denotes the missing mass, the probability of unseen outcomes. We call
the estimation of Mn,r the Good-Turing estimation problem, in reference to the pioneering
work of Good (1953), who gives due credit to Turing. Their solution to this estimation
problem, the Good-Turing estimator, is:

Gn,r :=
(r + 1)Kn,r+1

n
, (1)

where Kn,r := |Bn,r| is the number of distinct symbols appearing exactly r times in the
sample, i.e. the number of boxes containing exactly r balls. The study of Kn,r for every r,
and of the total number of distinct symbols in the sample Kn :=

∑
r≥1Kn,r, is known as the

occupancy problem. Why have we not used the obvious estimator, the empirical probability
of Bn,r, which would be

rKn,r
n in contrast to (1)? For the case r = 0, it is evident that this

degenerates to the trivial 0-estimator, and one would expect to do better. But in general,
Good showed that (1) guarantees a bias of no more than 1/n universally, i.e. regardless of
the underlying distribution. This is not true for the empirical estimator.

Many other statistical properties of this estimator, and in particular for the missing mass,
have been studied beyond the bias results, such as its asymptotic normality, Esty (1983), its
admissibility with respect to mean squared error only with finite support and inadmissibility
otherwise, and being a minimum variance unbiased estimator of E[Mn−1,r] (both by Cohen
and Sackrowitz (1990)). More recently McAllester and Schapire (2000) also showed that
Gn,0 concentrates above Mn,0. More properties and alternative algorithms may be found in
the survey of Gandolfi and Sastri (2004). Most of these results put no assumption on the
underlying distribution, therefore giving great generality. Without underlying assumptions,
however, worst case distributions can severely hamper what one can say about our ability
to estimate rare probabilities. In particular, most convergence results, including those just
listed, are often in additive form, that is one is concerned with characterizing the behavior
of the difference between the estimated and true probability values. For a fixed discrete
distribution, rare probabilities all decay to zero, and one would expect a more meaningful
characterization to be in multiplicative form. What we mean by this is that the natural
mode of convergence is for ratios to converge to one, probabilistically. So, in this paper, we
call an estimator M̂n,r of Mn,r consistent, if M̂n,r/Mn,r → 1, where the convergence can be
either in probability or almost surely, over the observation sequence.
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We first show that, without restricting the class of distributions, the Good-Turing es-
timator is not consistent. We then use Karamata’s theory of regular variation to give a
general description of heavy-tailed discrete distributions, and show that this is a sufficient
condition for the consistency of the Good-Turing estimator. We do so by extending the
McAllester and Ortiz (2003) additive concentration results for the missing mass to all of
the rare probabilities, and then using the regular variation property to show multiplicative
concentration. Additionally, we construct new families of estimators that address some of
the other shortcomings of the Good-Turing estimator. For example, they perform smooth-
ing implicitly. This framework is a close parallel to extreme value theory (Beirlant et al.
(2004)), which has been successfully employed to estimate rare probabilities in continuous
settings. With the insight provided by this paper, many of the techniques therein can be
adapted to our discrete setting.

Rare probability estimation, especially in the context of language modeling, has been
extensively investigated. Simple approaches, such as Laplace or add-one estimators and
their variants have been compared to Good-Turing estimators, as in Gale and Sampson
(1995), highlighting the latter’s superiority albeit at the expense of volatility and necessity
to smooth out. Some of the most successful approaches to n-gram modeling and learning
have been the algorithm proposed by Kneser and Ney (1995) and its variants, as studied in
the influential survey of Chen and Goodman (1998). These are inspired by Good-Turing,
but incorporate it in a general hierarchical smoothing scheme, using back-off or interpola-
tion between n-gram levels. We do not address this hierarchical smoothing here, but shed
light on a smoothing technique used within each level, called “absolute discounting”. This
appears naturally in the estimators that we propose, where we furthermore identify the
“discount” precisely as the regular variation index. This correspondence between Kneser-
Ney algorithms and heavy tails has also been pointed out on the Bayesian front by Teh
(2006). Extending early work by MacKay and Peto (1995), who only focused on light-tailed
priors, Teh uses the two-parameter Poisson-Dirichlet process, proposed by Pitman and Yor
(1997), as prior. Instances of this random measure have indeed regularly varying heavy
tails, almost surely (Gnedin et al. (2007)). In this paper, however, we do not model or
parameterize the entire distribution. We focus rather on describing the tail alone, which
is sufficient for both characterizing the behavior of the rare probabilities and consistently
estimating them. Lastly, in light of the duality between compression and probability esti-
mation, the problem of rare probability estimation also appears in the information theory
community, especially when handling very large alphabets. In particular, in their pioneering
work, Orlitsky et al. (2004) show that universal compression of sequences is possible over
arbitrarily large alphabets, provided one drops the identity of symbols, while preserving
their order. In this context, the Good-Turing estimator is shown to behave better than
simpler approaches, but not as well as what one could optimally achieve.

The rest of this paper is organized as follows. In Section 2, we give the basic definition of
consistency and show the failure of Good-Turing to be consistent for geometric distributions.
In Section 3, we define regularly varying distributions with heavy tails. The rest of the
needed background material is given in Appendix A as an exposition to the exponential
moment method and the property of negative association. Using these tools, in Section 4.1
we extend the additive concentration results of McAllester, Schapire and Ortiz – McAllester
and Schapire (2000); McAllester and Ortiz (2003) – to all rare probabilities.
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Employing the same methodology, but adding regular variation, we derive multiplicative
concentration and strong laws under heavy tails in Section 4.2. Lastly, in Section 5, we
use the strong laws to show the consistency of Good-Turing estimation under heavy-tailed
regular variation, and to construct a family of new consistent estimators. All detailed proofs
can be found in Appendix B, organized by section. We end with a summary in Section 6.

Notation

Throughout the paper, it is convenient to use the limiting notation f ∼ g to mean f/g → 1.
We also use the subscript a.s. to indicate almost sure convergence with random quantities.

2. The Good-Turing Estimator is not Universally Consistent

Let us first formalize the multiplicative notion of consistency, which we use throughout the
paper, and which naturally conforms to the asymptotics of rare probabilities.

Definition 1 (Consistency) We say that an estimator M̂n,r of Mn,r is consistent if
M̂n,r/Mn,r → 1 in probability. We say that it is strongly consistent if M̂n,r/Mn,r → 1
almost surely. We also write the latter as M̂n,r/Mn,r →a.s. 1 or M̂n,r ∼a.s. Mn,r.

We first show that consistency is not trivial, as even in the case of fairly well-behaved
distributions, the Good-Turing estimator does not result in a consistent estimator for the
missing mass.

Proposition 2 For a geometric distribution pj = (1− q)qj for j ∈ N0, with small enough
q ∈ (0, 1), there exists a positive η > 0, and a subsequence ni such that for i large enough
we have that Gni,0/Mni,0 = 0 with probability no less than η. In particular, it follows that
the Good-Turing estimator of the missing mass is not consistent.

This motivates us to ask what are sufficient conditions to obtain consistent estimation.
In particular, the problem seems to be that with a light-tailed distribution like the geometric,
there are not enough samples to learn the rare probabilities well enough for consistency.
With this insight, we move next to show that regularly varying heavy-tailed distributions
are a natural situation in which one has enough samples and, most importantly, consistency.

3. Regularly Varying Heavy-Tailed Distributions

We now characterize heavy-tailed discrete distributions, by using Karamata’s theory of
regular variation, which was developed originally in Karamata (1933), with the standard
reference being Bingham et al. (1987). The application we have here is based on the early
work of Karlin (1967), which was recently given an excellent exposition by Gnedin et al.
(2007). We follow the notational convention of the latter.

It is first useful to introduce the following counting measure on [0, 1]:

ν(dx) :=
∑
j

δpj (dx),

where δx is a Dirac mass at x.
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Using ν, we define the following function, which was used originally by Karlin (1967) to
define what is meant by a regularly varying distribution, and which is a cumulative count
of all symbols having no less than a certain probability mass:

ν(x) := ν[x, 1].

We also define the following family of measures, parametrized by r = 1, 2, · · · :

νr(dx) := xrν(dx) =
∑
j

prjδpj (dx).

Definition 3 (Regular Variation) Following Karlin (1967), we say that P is regularly
varying with regular variation index α ∈ (0, 1), if the following holds:

ν(x) ∼ x−α`(1/x), as x ↓ 0, (2)

where `(t) is a slowly varying function, i.e. for all c > 0, `(ct)/`(t)→ 1 as t→∞.

The following portmanteau theorem (which compiles results found in Gnedin et al.
(2007)) is a very useful collection of conditions that are equivalent to regular variation as
given by Definition 3, in addition to facts that follow from regular variation.

Theorem 4 Equation (2) is equivalent to any (and therefore all) of the following:

• Probability accrual:

ν1[0, x] ∼ α

1− α
x1−α`(1/x), as x ↓ 0,

• Expected number of distinct observed symbols:

E[Kn] ∼ Γ(1− α)nα`(n), as n→∞,

• Expected number of symbols observed exactly once:

E[Kn,1] ∼ αΓ(1− α)nα`(n), as n→∞, (3)

• Number of distinct observed symbols:

Kn ∼a.s. Γ(1− α)nα`(n), as n→∞, (4)

• Number of symbols observed exactly once:

Kn,1 ∼a.s. αΓ(1− α)nα`(n), as n→∞, (5)

Finally any of the above implies the following for all r > 1:

νr[0, x] ∼ α

1− α
xr−α`(1/x), as x ↓ 0,

E[Kn,r] ∼
αΓ(r − α)

r!
nα`(n), as n→∞, (6)

Kn,r ∼a.s.
αΓ(r − α)

r!
nα`(n), as n→∞. (7)
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Theorem 4 shows how the regularly varying case is very well behaved, especially in terms
of the strong laws on the occupancy numbers Kn,r, which are the elementary quantities for
Good-Turing estimation. In fact, from Equations (3), (5), (6), and (7), we have that for all
r ≥ 1, Kn,r/E[Kn,r]→a.s. 1. We will harness this fact throughout the paper.

Lastly we note that, with additional care, it is possible to also incorporate the cases
α = 0 (slow variation, light tail) and α = 1 (rapid variation, very heavy tail), as is done for
example in Gnedin et al. (2007). The example of the geometric distribution illustrates why
care is needed. Indeed, the geometric satisfies regular variation with α = 0, yet the decay
of rare probabilities, in expectation, can have oscillatory behavior, as hinted at by the proof
of Proposition 2.

4. Concentration Results for Rare Probabilities

4.1. Additive Concentration for General Distributions

We now follow the methodology of McAllester and Ortiz (2003) in order to extend their
additive concentration results for the missing mass Mn,0, to all of Mn,r. These results
are valid for all distributions, whereas the next section we specialize to regularly varying
distributions, and show multiplicative concentration. The main theorem of this section is
as follows.

Theorem 5 Consider an arbitrary P. Then, for every r = 0, 1, 2, · · · , there exist absolute
constants ar, br, εr > 0 such that for every n > 2r, and for all 0 < ε < εr, we have

P {|Mn,r −E[Mn,r]| > ε} ≤ are−brε
2n. (8)

Proof sketch For the proof of this theorem, we cannot directly parallel the proofs of
McAllester and Ortiz (2003) for the additive concentration of the missing mass, because
unlike Mn,0, Mn,r cannot be expressed as a sum of negatively associated random variables.
Instead, we work with a quantity that can be expressed as such, namely the total probability
of all symbols appearing no more than r times:

Mn,0→r :=
r∑

k=0

Mn,k.

Indeed, we can express it as follows Mn,0→r =
∑

j pjZn,j,r, where Zn,j,r = 1{Cn,j ≤ r},
where Cn,j :=

∑n
i=1 1{Xi = j} designates the count of symbol j. Thus Zn,j,r’s are indicator

random variables associated with each symbol j, in order to contribute its probability mass
only when it appears no more than r times in the observation. Note that each Zn,j,r is
a non-increasing function of the corresponding count Cn,j . Since {Cn,j}j∈N are negatively
associated by Lemma 17, then by Lemma 16 so are {Zn,j,r}j∈N.

To establish additive concentration for Mn,0→r, we use the exponential moment method
and the Gibbs variance lemma and negative association, as outlined in Appendix A, in a
close parallel to McAllester and Ortiz (2003). The main technical challenge is to properly
bound the Gibbs variance for the upper deviation. To complete the proof, we show that it’s
sufficient to establish additive concentration for all Mn,0→r, in order to have it for Mn,r.
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4.2. Multiplicative Concentration and Strong Laws under Heavy Tails

Our objective is to establish strong laws for Mn,r for all r = 0, 1, · · · , which is an exten-
sion of the known result for the case of the missing mass (r = 0), which was previously
established (without explicit proof) by Karlin (1967) (Theorem 9) and (with an explicit
proof) by Gnedin et al. (2007) (Proposition 2.5). Beyond being a generalization for all r,
the results we present here differ from the latter in two important ways: they use power
(Chebyshev) moments and concentration whereas we use exponential (Chernoff) moments
and concentration, and they use the Poissonization method whereas we use negative as-
sociation instead. The derivation of multiplicative concentration parallels that of additive
concentration as in the previous section, with the use of regular variation to more tightly
bound moment growth. The main theorem of this section is as follows.

Theorem 6 Assume P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then
for every r = 0, 1, 2, · · · , there exists an absolute constant ar, and distribution specific
constants br > 0, nr < ∞ and δr > 0, such that for all n > nr and for all 0 < δ < δr, we
have:

P
{∣∣∣∣ Mn,r

E[Mn,r]
− 1

∣∣∣∣ > δ

}
≤ are−brδ

2nα`(n). (9)

Proof sketch We cannot deduce the multiplicative concentration of Theorem 6 directly
from the additive concentration of Theorem 5, because the latter uses a worst case bound
on the Gibbs variance, whereas regular variation allows us to give more information about
how this variance behaves. This is what we harness in the detailed proof.

The strong laws for the rare probabilities are easily established using the multiplicative
concentration of Theorem 6.

Proposition 7 If P is regularly varying with index α ∈ (0, 1), as in Definition 3, then for
every r = 0, 1, 2, · · · , we have

Mn,r

E[Mn,r]
→a.s. 1, (10)

and the asymptotic expression:

Mn,r ∼a.s. E[Mn,r] ∼
αΓ(r + 1− α)

r!
nα−1`(n). (11)

5. Consistent Probability Estimation

5.1. Consistency of Good-Turing Estimation

As a first application of the strong laws of Proposition 7, in conjunction with the strong
laws for Kn,r, we prove the strong consistency of the Good-Turing estimator in this regime.

Proposition 8 If P is regularly varying with index α ∈ (0, 1), as in Definition 3, then the
Good-Turing estimators are strongly consistent for all r = 0, 1, · · · :

Gn,r
Mn,r

→a.s. 1. (12)
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5.2. New Consistent Estimators

Since we are now considering a model where regular variation plays a critical role, we can
take inspiration from extreme value theory, Beirlant et al. (2004), where regular variation
is also pivotal. In particular, we suggest dividing the estimation task into two: estimating
the regular variation index, then using it in asymptotic expressions, in order to estimate the
quantities of interest. In particular, we shall show that the Good-Turing estimator for the
missing mass itself has such a two-stage characterization, but that the concept can be used
to develop a richer class of estimators for the missing mass and other rare probabilities.

Estimating the Regular Variation Index

Using Equations (4) and (5), we have that the ratio of the number of symbols appearing
exactly once to the total number of distinct symbols defines a consistent estimator of the
regular variation index:

α̂ :=
Kn,1

Kn
→a.s. α. (13)

Note that this is by no means the only approach to estimating the index. For example,
other asymptotic expressions that appear in Theorem 4 may be harnessed. Moreover, one
may devise methods that are inspired from techniques in extreme value theory Beirlant
et al. (2004), such as performing a Gumbelian splitting of the data into M blocks of size
N , i.e. n = M ·N . Then one can perform the naive index estimation of Equation (13) in
each block, call it α̂m, m = 1, · · · ,M , then average out:

α̂ =
1

M

∑
m

α̂m. (14)

With proper choices of M and N , this empirically shows much less volatility than a
straight application of (13) (i.e. M = 1, N = n). In Figure 1, we qualitatively illustrate the
improved volatility of a Gumbelian estimator with an example. The underlying distribution
is regularly varying with index 0.5. For a sample size of n, the Gumbelian estimator is
performing averaging of M = b

√
nc blocks of size N = b

√
nc, according to Equation (14).

Figure 1: Qualitative comparison of naive and Gumbelian index estimators.
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Two Probability Estimator Constructions

We have shown that the Good-Turing estimator is consistent in the regularly varying heavy-
tailed setting. But could one do better by working within this framework explicitly? We now
provide two new rare probability estimators, and show that they are consistent. Further-
more, these address some of the shortcomings of the Good-Turing estimator. For example,
they incorporate smoothing implicitly. As suggested in the preamble of this section, our
constructions are in two stages. We first assume that we have chosen a consistent estimator
α̂→a.s. α. This can be given by (13), or potentially more powerful estimators. We then use
the estimated index to construct consistent estimators for rare probabilities.

Proposition 9 Consider the following family of estimators, for r = 1, 2, · · · :

M̂ (1)
n,r := (r − α̂)

Kn,r

n
, (15a)

and for r = 0:

M̂
(1)
n,0 := 1−

∑
r≥1

M̂ (1)
n,r = α̂

Kn

n
. (15b)

If P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then M̂
(1)
n,r are strongly

consistent for all r = 0, 1, · · · , that is M̂
(1)
n,r/Mn,r →a.s. 1.

One motivation for introducing the M̂
(1)
n,r family is because it has the “absolute dis-

counting” form that is a component of many language learning heuristics, and especially
the Kneser-Ney line of state-of-the-art algorithms, proposed originally by Kneser and Ney
(1995) and extended by Chen and Goodman (1998) and others. What we mean by absolute
discounting is that, effectively, the multiplicity of symbols in the empirical distribution is

corrected by a constant:
rKn,r
n is replaced by

(r−α̂)Kn,r
n , as though a symbol that appeared

r times did in fact only appear r − α̂ times. Most interestingly, we have systematically
established the nature of the discount as the regular variation index.

It is worth mentioning that this structure addresses a peculiarity of the Good-Turing
estimator. In particular Gn,r will assign a probability of zero to a group of symbols, simply
because there are no symbols appearing in the one higher occupancy level r+ 1, regardless
to how many symbols there are in the occupancy level r of interest. Good-Turing is coarse
in this sense, and Good (1953) originally suggests various ways to “smooth” this behavior
out. Here, on the contrary, the estimator evaluates to 0 if and only if there are no symbols

in the occupancy level itself. We can thus think of M
(1)
n,r as having smoothing built-in.

Instead of using individual occupancy numbers Kn,r, we can perform additional smooth-
ing by using Kn, the number of distinct observed symbols. Since Kn has less variability,
e.g. it is non-decreasing with sample size, the resulting estimator inherits that robustness.

Proposition 10 Consider the following family of estimators, for r = 0, 1, · · · :

M̂ (2)
n,r :=

α̂Γ(r + 1− α̂)

r!Γ(1− α̂)

Kn

n
≡
(
r − α̂
r

)
α̂
Kn

n
. (16)

If P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then M̂
(2)
n,r are strongly

consistent for all r = 0, 1, · · · , that is M̂
(2)
n,r/Mn,r →a.s. 1.
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It is worth noting that we always have M̂
(1)
n,0 = M̂

(2)
n,0 by construction, and that if α̂ is

the naive index estimator as in (13), we also have:

M̂
(1)
n,1 = (1− α̂)

Kn,1

n
= (1− α̂)α̂

Kn

n
= α̂

Γ(2− α̂)

Γ(1− α̂)
= M̂

(2)
n,1.

Good-Turing as a Two-Stage Estimator

If we use the naive index estimator α̂ as in (13), then we have:

Gn,0 =
Kn,1

n
=
Kn,1

Kn

Kn

n
= α̂

Kn

n
= M̂

(1)
n,0 = M̂

(2)
n,0.

Therefore, we can interpret the Good-Turing estimator of the missing mass as a two-
stage estimator: estimate the regular variation index α, as in (13), and then use it to obtain
a probability estimator, as in (15) or (16). However, the advantage of the estimators that
we propose is that we can use any alternative index estimator α, for example as suggested
by Equation (14), in order to benefit from less volatile convergence.

Example

As an illustration of the various convergence results and estimators, we use a simple case
where pj ∝ j−1/α is a pure power law. This defines a distribution P which is regularly
varying with index α. In the numerical examples below we use α = 3

4 , motivated by the
very heavy tails that appear in natural language word frequencies.

In Figure 2(a), we show the decay behavior over up to 100, 000 samples, of a sample
path of the rare probabilities Mn,r and their expectations E[Mn,r], for r = 0, 1, 2, and 3.
We can qualitatively observe the close correspondence to the theoretical nα−1 rates.

In Figure 2(b) we illustrate the strong law by plotting the ratio Mn,r/E[Mn,r]. Though
the convergence is far from smooth, nor does it occur at a uniform rate over r, we can
qualitatively see that the sample paths narrow down toward 1 as the sample size increases.

To showcase the performance of the new estimators and to compare them to the Good-

Turing estimator, we plot the general behavior of Gn,r, M̂
(1)
n,r , and M̂

(2)
n,r alongside Mn,r, in

the same example. We make two deliberate simulation choices:

- We use the naive estimator for α, as given by Equation (13), in order to show that the
benefit of the new estimators comes from their structure too, and not only because
from better index estimation.

- We purposefully use fewer samples than in Figure 2, in order to emphasize that the
improvements appear even at moderate sample sizes. We let n range from 0 to 10, 000.

Since we know that all estimators coincide for the case r = 0, and the new estimators
coincide for r = 1, we only look at the first distinctive case, r = 2. The typical behavior
for larger r is comparable. We show the raw behavior of the estimators in Figure 3(a). To
make the comparison crisper, we also show the behavior of the ratios of each estimator to
Mn,r in Figure 3(b). For reference, this figure also shows the 1-line and the ratio of the
mean itself, i.e. E[Mn,r]/Mn,r.
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We end with a few qualitative comments. First, it is apparent that M̂
(1)
n,r outperforms all

estimators when it comes to tracking Mn,r closely. It is followed by M̂
(2)
n,r in performance,

while Ĝ
(1)
n,r is consistently more volatile than both of the new estimators. Also note that

M̂
(2)
n,r is the smoothest estimator. However, it tracks the expectation E[Mn,r] rather than

Mn,r itself. Asymptotically, this does not matter, however for small samples this might be
a feature or a shortcoming depending on whether the focus is on Mn,r or E[Mn,r].

(a) (b)

Figure 2: (a) Decay behavior of Mn,r and E[Mn,r]. (b) Multiplicative concentration of Mn,r

around E[Mn,r] and strong law behavior, where Mn,r/E[Mn,r] approaches 1.

(a) (b)

Figure 3: (a) Behavior of Gn,2, M̂
(1)
n,2, and M̂

(2)
n,2, alongside Mn,2 and E[Mn,2]. (b) Ratios

Gn,2/Mn,2, M̂
(1)
n,2/Mn,2, and M̂

(2)
n,2/Mn,2 alongside E[Mn,2]/Mn,2.
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6. Summary

In this paper, we studied the problem of rare probability estimation, from the perspective
of the (multiplicative) consistency of the estimator: requiring that the ratio of the estimate
to the true quantity converges to one. We first showed that consistency is not to be taken
for granted. In particular, even in well-behaved distributions such as the geometric, the
Good-Turing estimator may not be consistent. We then focused our attention to heavy-
tailed distributions. To characterize these, we used Karamata’s theory of regular variation
Karamata (1933), following closely the early development of Karlin (1967) in the context of
infinite urn schemes. We then used the McAllester and Ortiz (2003) method to extend their
additive concentration results to all rare probabilities. Moreover, in the setting of regularly
varying heavy-tailed distributions, we showed that one has multiplicative concentration.

We then used the multiplicative concentration to establish strong laws. These allowed
us to show that regularly varying heavy tails are sufficient for the consistency of the Good-
Turing estimator. We used the newly established strong laws, in addition to those estab-
lished for the occupancy numbers by Karlin, to construct two new families of consistent
rare probability estimators. These new estimators address some of the shortcomings of the
Good-Turing estimator. In particular, they have built-in smoothing, and their structure
follows closely the “absolute discounting” form used extensively in computational language
modeling heuristics, such as in the algorithm proposed by Kneser and Ney (1995) and ex-
tended by Chen and Goodman (1998) and others. As such, in addition to a systematic and
principled estimation method, our results provide a justification to these algorithms and an
interpretation of the discount as the regular variation index. Since our estimators can be
split into two parts, first index estimation and then probability estimation, they are closely
related to tail estimation techniques in extreme value theory (Beirlant et al. (2004)). This
correspondence opens the door for modern semiparametric methods to be applied in the
present framework.

Heavy tails are a very good model for natural language, as observed early on by Zipf
(1949). As such, it is satisfying that we have shown here that this is a property that is suf-
ficient for consistently estimating rare probabilities. The core multiplicative concentrations
have room to generalize to heavy tails that are potentially not regularly varying, as long as
the mean and variance growths balance out to yield a proper unbounded exponent. Nat-
urally, to completely describe when rare probability estimation is possible in a meaningful
manner, one ought to establish necessary conditions as well.
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Appendix A. Preliminaries

A.1. Exponential Moment Method and the Gibbs Variance Lemma

We adhere closely to the exposition of McAllester and Ortiz (2003). The exponential mo-
ment method takes its name from Markov’s inequality applied to an exponentiated random
variable. It is embodied in the following statement, which traces back to Chernoff (1952).

Theorem 11 Let W be a real-valued random variable with finite mean E[W ]. Associate
with W the function S : R+ → R, w 7→ S(W,w), where:

S(W,w) = sup
β∈R

wβ − logZ(W,β), with Z(W,β) = E[eβW ].

Then, the lower and upper deviation probabilities can be bounded by:

P{W < E[W ]− ε} ≤ e−S(W,E[W ]−ε) and P{W > E[W ] + ε} ≤ e−S(W,E[W ]+ε).

We now give some background on Gibbs measures, which have distinct roots in statistical
mechanics, but are also an integral part of the exponential moment method. For a given
W , let (β−, β+) be the largest open interval over which Z(W,β) is finite. In this paper
this interval will always be the entire real line. Denote the law of W by µ, then with each
β ∈ (β−, β+), we can associate a new probability measure, the Gibbs measure:

µβ(dw) =
eβw

Z(W,β)
µ(dw).

Denote by Eβ any expectation carried out with respect to the new measure. In particular
denote the variance of W under the Gibbs measure by σ2(W,β) := Eβ[(W−Eβ[W ])2]. Note
that Eβ[W ] is continuous and monotonically increasing as β varies in (β−, β+). Denote its
range of values by (w−, w+), and let β(w), for any w ∈ (w−, w+) refer to the unique value
β(β−, β+) satisfying Eβ[W ] = w. McAllester and Ortiz (2003) distill a particular result out
of Chernoff’s original work, and dub it the Gibbs variance lemma.

Lemma 12 (Gibbs Variance) Let W be an arbitrary finite mean real-valued random
variable. Then for any w ∈ (w−, w+) and β ∈ (β−, β+), we have:

S(W,w) = wβ(w)− logZ(W,β(w))

= D
(
µβ(w)‖µ

)
=

∫ w

E[W ]

∫ v

E[W ]

1

σ2(W,β(u))
dudv, (17)

log(Z(W,β)) = E[W ]β +

∫ β

0

∫ α

0
σ2(W,γ)dγdα. (18)
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The importance of this lemma is that it showcases how we can establish concentration by
controlling the variance σ2(W,β) in (17) and (18). The following two lemmas (reproducing
Lemmas 9 and 11 from McAllester and Ortiz (2003), with the exception of part (ii) below)
are established by doing precisely that.

Lemma 13 Let W be an arbitrary finite mean real-valued random variable.

(i) If for some β ∈ (0,∞], we have sup0≤β≤β σ
2(W,β) ≤ σ2, then for all ε ∈ [0, βσ2]:

S(W,E[W ] + ε) ≥ ε2

2σ2 .

(ii) If for some β ∈ [−∞, 0), we have supβ≤β≤0 σ
2(W,β) ≤ σ2, then for all ε ∈ [0,−βσ2]:

S(W,E[W ]− ε) ≥ ε2

2σ2
.

We can specialize part (ii) to the following case:

Lemma 14 If W =
∑

j bjWj, where bj > 0 and Wj are independent Bernoulli with param-
eter qj, then for all ε > 0, we have:

S(W,E[W ]− ε) ≥ ε2

2
∑

j b
2
jqj

. (19)

A.2. Negative Association

We now introduce the concept of negatively associated random variables. We start with
the definition, then give a few lemmas that facilitate establishing the property. Finally we
illustrate the usefulness of this concept within the framework of the exponential moment
method. All these statements and their proofs can be found in the exposition by Dubhasi
and Ranjan (1998), and are also outlined in McAllester and Ortiz (2003). We present the
definitions and results in terms of finite collections of random variables, but everything
extends to countable collections with some additional care.

Definition 15 (Negative Association) Real-valued random variables W1, · · · ,Wk are
said to be negatively associated, if for any two disjoint subsets A and B of {1, · · · , k},
and any two real-valued functions f : R|A| → R, and g : R|B| → R that are both either
coordinate-wise non-increasing or coordinate-wise non-decreasing, we have:

E[f(WA) · g(WB)] ≤ E[f(WA))] ·E[g(WB)].

This lemma constructs new negatively associated random variables from existing ones.

Lemma 16 If W1, · · · ,Wk are negatively associated, and f1, · · · , fk are real-valued func-
tions on the real line, that are either all non-increasing or all non-decreasing, then f1(W1),
· · · , fk(Wk) are also negatively associated.
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The elementary negatively associated random variables in our context are the counts of
each particular symbol, or equivalently the components of the empirical measure.

Lemma 17 Let P = (p1, · · · , pk) define a probability distribution on {1, · · · , k}. Let X1,
· · · , Xn be independent samples from P, and define, for each j ∈ {1, · · · , k}:

Cn,j :=
n∑
i=1

1{Xi = j}.

Then the random variables Cn,1, · · · , Cn,k are negatively associated.

The reason why negative association is useful is the following lemma, which shows
that, for the purpose of the exponential moment method, sums of negatively associated
random variables can be treated like a sum of independent random variables with the same
marginals. More precisely, the exponent of the negatively associated sum dominates that
of the independent sum, and thus bounding the latter from below, bounds the former also.

Lemma 18 Say W =
∑k

j=1Wj, where W1, · · · ,Wk are negatively associated. Let W̃ =∑k
j=1 W̃j, where W̃1, · · · , W̃k are independent real-valued random variables such that for

each j the law of W̃j is the same as the (marginal) law of Wj. Then for all w, we have:

S(W,w) ≥ S(W̃ , w).

It is worth noting that this approach is not unlike the Poissonization technique used by
Karlin (1967), Gnedin et al. (2007), and others who have studied the occupancy problem.
Instead of randomizing the sampling epochs to make counts independent, which creates
independence at the cost of distorting the binomial distributions into Poisson distribu-
tions, the negative association method enforces only independence. Of course, just like
de-Poissonization which allows one to reconstruct results in terms of the original variables,
here too we need such inversion theorems, and Lemma 18 does precisely that.

Appendix B. Proofs

B.1. Proofs of Section 2

Consider a geometric distribution given by pj = (1 − q)qj for j ∈ N0, parametrized by
q ∈ (0, 1). We first show the following precise behavior for the counts of symbols seen
exactly once.

Lemma 19 For the subsequence ni = bc/pic = bcq−i/(1− q)c, with c > 0, we have:

E[Kni,1]→ h(c, q),

where

h(c, q) :=
∞∑

m=−∞
cqme−cq

m
. (20)
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Proof In general, by Poissonization (e.g. Gnedin et al. (2007), Lemma 1) or using the
dominated convergence theorem with

(
1− s

n

)n ↑ e−s, one has that as n→∞:∣∣∣∣∣∣
∞∑
j=0

npj(1− pj)n −
∞∑
j=0

npje
−npj

∣∣∣∣∣∣→ 0. (21)

This limit is not in general a bounded constant. It can grow unbounded, or can be
bounded but oscillatory. However, in the geometric case, we can obtain a bounded constant
limit by restricting our attention to a subsequence, such as the one we hypothesized, ni =
bc/pic. For the moment, assume that there exists a rather convenient sequence ji → ∞
that grows slow enough such that i− ji →∞ and

ji∑
j=0

c
pj
pi
e
−c

pj
pi → 0.

This gives us enough approximation leeway to show first that we can replace ni by c/pi
in Equation (21), without altering the limit:∣∣∣∣∣∣

∞∑
j=0

nipje
−nipj −

∞∑
j=0

c
pj
pi
e
−c

pj
pi

∣∣∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣∣b
c
pi
c

c
pi

e

(
c
pi
−b c

pi
c
)
pj − 1

∣∣∣∣∣ cpjpi e−c
pj
pi

≤ (e+ 1)

ji∑
j=0

c
pj
pi
e
−c

pj
pi → 0

+
(pi
c
∨ (epji − 1)

) ∞∑
j=ji+1

c
pj
pi
e
−c

pj
pi → 0,

and second that we can remove the dependence on i from the limit, using the fact that:

∞∑
j=0

c
pj
pi
e
−c

pj
pi =

∞∑
j=ji

c
pj
pi
e
−c

pj
pi =

∞∑
j=ji

cq−(j−i)e−cq
−(j−i)

=

i−ji∑
m=−∞

cqme−cq
m →

∞∑
m=−∞

cqme−cq
m
.

Therefore, to complete the proof, we construct ji as desired. In particular, let ji =

i−
⌈
logq−1

(
2
c log 1

pi

)⌉
. First note that the subtracted term is of the order of log i, and thus

ji →∞ yet i− ji →∞. Then:

ji∑
j=0

c
pj
pi
e
−c

pj
pi ≤ c

pi
e
−c

pji
pi =

c

pi
e−cq

−
⌈
log
q−1( 2

c log 1
pi

)
⌉
≤ c

pi
e−cq

− log
q−1( 2

c log 1
pi

)
= cpi → 0,

by the fact that
∑
pj = 1 and e

−c
pji
pi is the largest of the lot since pji is the smallest.
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Proof [Proposition 2]
For any real-valued non-negative random variable W , Markov’s inequality yields:

P
{
W <

E[W ]

1− η

}
= 1− P

{
W ≥ E[W ]

1− η

}
≥ 1− E[W ]

E[W ]
1−η

= η.

Recall h from Equation (20). Assume for the moment that for some c > 0 and q0 > 0, and
for all 0 < q < q0, we have h(c, q) < 1. Choose any such q, then choose any η ∈ (0, 1−h(c, q)).
Consider the subsequence ni obtained in Lemma 19 and let i0 be large enough such that
for all i > i0 we have E[Kni,1] < 1− η. Since Kni,1 takes integer values, it follows that for
all i > i0:

P
{
Kni,1 <

E[Kni,1]

1− η

}
= P {Kni,1 = 0} ≥ η.

This means that there’s always a positive, bounded away from zero, probability that
Kni,1 = 0, implying Gni,0 = 0. Since Mni,0 > 0 for every sample, it follows that with
positive probability no less than η > we have Gni,0/Mni,0 = 0. Therefore, for all geometric
distributions with q < q0, Gn,0/Mn,0 9 1 in probability, let alone almost surely.

To complete the proof, we show that our assumption about h is true. We could argue
abstractly, but we give a concrete bound instead. In particular, using the fact that xe−x <
(x ∧ 1/x) for all x > 0, we have:

h(c, q) =

∞∑
m=−∞

cqme−cq
m
<

−1∑
m=−∞

1/(cqm) + ce−c +

∞∑
m=1

cqm = ce−c +

(
1

c
+ c

)
q

1− q
.

Let c = 1 and q0 = (1−e−1)/(3−e−1). Then it is easy to verify that ce−c+
(

1
c + c

) q
1−q is

continuous, monotonically increasing, and at q0 it evaluates to 1. Therefore, for all q < q0,
we have that h(1, q) < 1 as desired.

B.2. Proofs of Section 4

The following lemma allows us to move from Mn,0→r to Mn,r.

Lemma 20 If for every r = 0, 1, 2, · · · , there exist constants ãr, b̃r, ε̃r > 0 such that for
every n > 2r, and for all 0 < ε < ε̃r, we have

P {|Mn,0→r −E[Mn,0→r]| > ε} ≤ ãre−b̃rε
2n. (22)

then for every r = 0, 1, 2, · · · , there exist constants ar, br, εr > 0 such that for every n > 2r,
and for all 0 < ε < εr the concentration (8) holds.

Proof Define the events: A = {E[Mn,0→r] − ε/2 ≤ Mn,0→r ≤ E[Mn,0→r] + ε/2}, and
B = {E[Mn,0→r−1]− ε/2 ≤Mn,0→r−1 ≤ E[Mn,0→r−1] + ε/2}. Then A∩B ⊂ {E[Mn,r]− ε ≤
Mn,r ≤ E[Mn,r] + ε}, and thus:

{|Mn,r −E[Mn,r]| > ε} ⊂ Ac ∪Bc.
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Therefore we can use our hypothesis and the union bound to write that for every n > 2r,
0 < ε < ε̃r ∧ ε̃r−1:

P {|Mn,r −E[Mn,r]| > ε} ≤ P(Ac ∪Bc) ≤ P(Ac) + P(Bc)

≤ ãre
−b̃rε2n/4 + ãr−1e

−b̃r−1ε2n/4 ≤ (ãr + ãr−1)e−(b̃r∧b̃r−1)ε2n/4.

This establishes Equation 8, with ar = ãr+ãr−1, br = (b̃r∧ b̃r−1)/4, and εr = ε̃r∧ ε̃r−1.

Proof [Theorem 5]

By Lemma 20, we can now work with Mn,0→r rather than Mn,r. Because of the negative
association of {Zn,j,r}j∈N, it follows from Lemma 18 that in order to establish concentration
for Mn,0→r it suffices to show concentration for the quantity:

M̃n,0→r =
∑
j

pjZ̃n,j,r,

where Z̃n,j,r are independent and have marginal distributions identical to Zn,j,r, namely
Bernoulli with parameter qj =

∑r
k=0

(
n
k

)
pkj (1 − pj)

n−k. We would therefore like to use

Lemma 13, with W = M̃n,0→r. To obtain the lower exponent, it is easiest to use Lemma
14, with Wj = Z̃n,j,r and bj = qj . We have:

∑
j

p2
jqj =

r∑
k=0

∑
j

pj

(
n

k

)
pk+1
j (1− pj)n−k

=
r∑

k=0

(
n
k

)(
n+1
k+1

)∑
j

pj

(
n+ 1

k + 1

)
pk+1
j (1− pj)(n+1)−(k+1)

︸ ︷︷ ︸
E[Mn+1,k+1]

≤
r∑

k=0

r + 1

n+ 1
E[Mn+1,k+1] =

r + 1

n+ 1
E[Mn+1,1→r+1] ≤ r + 1

n+ 1
. (23)

Adapting this bound to Equation (19), we therefore have the lower exponent:

S(W,E[W ]− ε) ≥ ε2n/[2(r + 1)].

To obtain the upper exponent, we would like to use part (i) of Lemma 13. Thanks
to independence and separation, the Gibbs measure for W = M̃n,0→r remains a sum of
independent Bernoulli random variables. However, rather than qj , these are parametrized
by the following:

qj(β) :=
qje

βpj

qjeβpj + 1− qj
.

Therefore, the Gibbs variance is given by:

σ2(W,β) =
∑
j

p2
jqj(β) (1− qj(β)) ≤

∑
j

p2
jqj(β).
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For β ≥ 0, we have qje
βpj + 1− qj ≥ 1. Using this and the fact that eβpj ≤ (1− pj)−β,

we can focus our attention on β ≤ n− r, and write:

σ2(W,β) ≤
∑
j

p2
jqj(1− pj)−β

=

r∑
k=0

∑
j

pj

(
n

k

)
pk+1
j (1− pj)n−β−k

=
r∑

k=0

(
n
k

)(
n−β+1
k+1

)∑
j

pj

(
n− β + 1

k + 1

)
pk+1
j (1− pj)(n−β+1)−(k+1)

︸ ︷︷ ︸
:= ζn,k+1(β)

=

r∑
k=0

k + 1

n− β + 1

(
n
k

)(
n−β
k

)ζn,k+1(β). (24)

Here we have used the usual extension of the binomial, to arbitrary real arguments,
which can be expressed in terms of the Γ function, or falling products. For every β ≤ n− r,
the ζn,k(β) define a (defective) probability mass function on the non-negative integers k (just
as E[Mn+1,k+1] did in the lower exponent derivation), in the sense that 0 ≤ ζn,k(β) ≤ 1
for every k, and

∑
k ζn,k(β) ≤ 1. Therefore, if we bound every summand, we can use the

largest bound to bound the entire sum. We have:(
n
k

)(
n−β
k

) ≤ (
ne
k

)k(
n−β
k

)k = ek (1− β/n)−k .

Therefore the largest summand bound is that at k = r:

σ2(W,β) ≤ r + 1

n− β + 1
er (1− β/n)−r =

(r + 1)er

n
(1− β/n)−(r+1) . (25)

Now select β = n/(r+ 2) and σ2 = (r+1)er+1

n . First observe that β < n− r since n > 2r.
Then, using the fact that x ≤ 1/(m + 1) implies (1 − x)−m ≤ e, it follows from Equation
(25) that for all 0 < β < β we indeed have σ2(W,β) ≤ σ2. Therefore, part (i) of Lemma 13
applies, and we deduce that for all 0 < ε ≤ 1 < r+1

r+2e
r+1 ≡ βσ2 we have:

S(W,E[W ] + ε) ≥ ε2

2σ2 .

By combining the lower and upper exponents using a union bound, we get that for
ãr = 2, b̃r = 1/[2(r + 1)er+1], εr = 1, we have that for every n > 2r and for all 0 < ε < 1,
the additive concentration for M̃n,0→r and consequently for Mn,0→r as given by Equation
(22) holds, and by Lemma 20, so does the additive concentration for Mn,r as given by
Equation (8). It is worth noting that, as remarked by McAllester and Ortiz (2003) for the
missing mass, Bernstein inequalities can recover the (simpler) lower deviation result of rare
probabilities, but the upper deviation appears to require the additional malleability of the
Gibbs variance lemma.
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Proof [Theorem 6]

Throughout this proof, η > 0 is an arbitrary constant. For clarity of exposition, we repeat
parts of the additive concentration proof, and use regular variation whenever it enters into
play. Once more, let’s first work with Mn,0→r rather than Mn,r. Again, because of the
negative association of {Zn,j,r}j∈N, it follows from Lemma 18 that in order to establish
(additive) concentration for Mn,0→r it suffices to show concentration for the quantity:

M̃n,0→r =
∑
j

pjZ̃n,j,r,

where Z̃n,j,r are independent and have marginal distributions identical to Zn,j,r, namely
Bernoulli with parameter qj =

∑r
k=0

(
n
k

)
pkj (1 − pj)

n−k. We would therefore like to use

Lemma 13, with W = M̃n,0→r. For the lower exponent, we use the specialized Lemma 14
instead, with Wj = Z̃n,j,r and bj = qj . Replicating (23), we have:

∑
j

p2
jqj ≤

r + 1

n+ 1

r∑
k=0

E[Mn+1,k+1].

At this point, we diverge from the additive concentration derivation, to use regular
variation. Let P be regularly varying with index α. Then there exists a sample size nr,1(η) >
2r that depends only on P, r, and η, such that for all n > nr,1(η) we have:

r + 1

n+ 1

r∑
k=0

E[Mn+1,k+1] =
r + 1

n+ 1

r∑
k=0

k + 2

n+ 2
E[Kn+2,k+2]

≤ (1 + η)
r + 1

n+ 1

r∑
k=0

k + 2

n+ 2

αΓ(k + 2− α)

(k + 2)!
nα`(n)

= (1 + η)(r + 1)
r∑

k=0

αΓ(k + 2− α)

(k + 1)!
n−(2−α)`(n).

Now observe that
∑r

k=0
αΓ(k+2−α)

(k+1)! < (r+1), since α ∈ (0, 1). Therefore, for cr,1 := (r+1)−2,

we have
∑

j p
2
jqj ≤

(
cr,1n

2−α)−1
(1 + η)`(n). Adapting this to Equation (19), we therefore

have, for all n > nr,1(η) and all ε > 0, the lower exponent:

S(W,E[W ]− ε) ≥ cr,1
2
ε2n2−α 1

(1 + η)`(n)
.

We follow a similar track for the upper exponent. Once again, we would like to use
part (i) of Lemma 13. Recall that the Gibbs measure for W = M̃n,0→r remains a sum

of independent Bernoulli random variables, with modified parameters qj(β) :=
qje

βpj

qje
βpj+1−qj

.

For any 0 ≤ β ≤ n− r, we replicate (24) and (25) to bound the Gibbs variance:

σ2(W,β) ≤
r∑

k=0

k + 1

n− β + 1

(
n
k

)(
n−β
k

)ζn,k+1(β) ≤ (r + 1)er

n
(1− β/n)−(r+1)

r+1∑
s=1

ζn,s(β).
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Recall that we chose nr,1 ≥ 2r. Then, for all n > nr,1, we have n/(r + 2) ≤ n/2 <
(n + 1)/2 ≤ n − r. If we again select β := n/(r + 2) then for all 0 ≤ β ≤ β and for all
n > nr,1, we have:

σ2(W,β) ≤ (r + 1)er+1

n

r+1∑
s=0

ζn,s(β). (26)

Unlike Theorem 5, we preserve here the sum of the ζn,s(β) and adding the s = 0 term.
We do this in order to exploit regular variation. With the addition of the s = 0 term,∑r+1

s=0 ζn,s(β) becomes a monotonic non-decreasing function over β ∈ [0, n − r]. To see
why, note that when β is an integer, this sum represents the expectation of the total rare
probabilities of symbols occurring no more than r + 1 times, out of n − β samples. The
larger the value of β, the fewer the samples, and there is in average more probability in
symbols with small counts.

Assume n is even, without loss of generality, as otherwise we can use (n+ 1)/2 instead.
Then, there exists a sample size nr,2(η) > nr,1 that depends only on P, r, and η, such that
for all n > nr,2(η) and for all β ≤ β, we have:

r+1∑
s=0

ζn,s(β) ≤
r+1∑
s=0

ζn,s(n/2) ≡
r+1∑
s=0

E[Mn/2+1,s] =
r+1∑
s=0

s+ 1

n/2 + 2
E[Kn/2+2,s+1]

≤ (1 + η)
r+1∑
s=0

s+ 1

n/2 + 2

αΓ(s+ 1− α)

(s+ 1)!
(n/2 + 2)α`(n)

= (1 + η)

r+1∑
s=0

21−ααΓ(s+ 1− α)

s!
n−(1−α)`(n). (27)

Now observe that (r+1)er+1
∑r+1

s=0 21−α αΓ(s+1−α)
s! < 2er+1(r+1)(r+2), since α ∈ (0, 1).

Therefore, using cr,2 := [2er+1(r + 1)(r + 2)]−1, we can combine Equations (26) and (27),
and obtain that for all β ≤ β, we have σ2(W,β) ≤ σ2, where

σ2 :=
[
cr,2n

2−α]−1
(1 + η)`(n).

With this bound, part (i) of Lemma 13 applies, and we deduce that for every n > nr,2(η),

and for all 0 < ε < 1
r+2

[
cr,2n

1−α]−1
(1 + η)`(n) ≡ βσ2 we have the upper exponent:

S(W,E[W ] + ε) ≥ ε2

2σ2 =
cr,2
2
ε2n2−α 1

(1 + η)`(n)
.

Let ãr = 2, b̃r = (cr,1 ∧ cr,2)/2, and ε̃r = d̃r(1 + η)nα−1`(n) where d̃r = 1
r+2c

−1
r,2 =

2(r + 1)er+1. Then, by combining the lower and upper exponents using a union bound, we
get that for every n > nr,2 and for all 0 < ε < ε̃r, the additive concentration for M̃n,0→r
and therefore of Mn,0→r holds as follows:

P {|Mn,0→r −E[Mn,0→r]| > ε} ≤ ãre−b̃rε
2n2−α 1

(1+η)`(n) .

Observe that the range of ε depends on n, but that will not be a problem when we switch
to multiplicative mode.
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By using the same development as the proof of Lemma 20, we can deduce that there exist
constants ar = ãr+ ãr−1, b̌r = (b̃r∧ b̃r−1)/4, and εr = dr(1+η)nα−1`(n) with dr = d̃r∧ d̃r−1,
such that for every n > nr,2 and for all 0 < ε < εr, we have:

P {|Mn,r −E[Mn,r]| > ε} ≤ are−b̌rε
2n2−α 1

(1+η)`(n) . (28)

Now, observe that:

E[Mn,r] =
r + 1

n+ 1
E[Kn+1,r+1] ∼ αΓ(r + 1− α)

r!
nα−1`(n). (29)

Let’s define mr := αΓ(r+1−α)
r! for convenience. It follows from Equation (29) that there

exists nr(η) > nr,2(η) that depends only on P, r, and η, such that for all n > nr(η) we have:

(1 + η)−1mrn
α−1`(n) ≤ E[Mn,r] ≤ (1 + η)mrn

α−1`(n).

Let br = b̌rm
2
r/(1 + η)3, and δr = dr/mr. Then for every n > nr(η) and for all δ < δr:

δE[Mn,r] ≤ δr(1 + η)mrn
α−1`(n) ≤ dr(1 + η)nα−1`(n) = εr.

Therefore Equation (28) applies, and we get:

P
{∣∣∣∣ Mn,r

E[Mn,r]
− 1

∣∣∣∣ > δ

}
= P {|Mn,r −E[Mn,r]| > δE[Mn,r]}

≤ are
−b̌rδ2E[Mn,r]2n2−α 1

(1+η)`(n)

≤ ar exp

{
−b̌rδ2

[
mrn

α−1`(n)

1 + η

]2

n2−α 1

(1 + η)`(n)

}

= ar exp

{
− b̌rm

2
r

(1 + η)3
δ2nα`(n)

}
= are

−brδ2nα`(n).

We end by noting that for fixed η > 0 and r, br and δr depend on P, but do so only
through α, due to mr. On the other hand, the sample size nr depends on the particular
convergence rates in the regular variation characterization, and to describe it explicitly re-
quires more distribution specific knowledge than simply having α.

B.3. Proofs of Section 5

Proof [Proposition 7]
For any α ∈ (0, 1), the integral

∫∞
0 e−z

α
dz = Γ

(
1 + 1

α

)
, i.e. converges and is bounded.

By a change of variable and the integral test, it follows that the right hand side of inequality
(9) is summable. Therefore, we can apply the Borel-Cantelli lemma in the usual way, to
obtain the almost sure convergence of Equation (10). As for equation (11), it follows from
this strong law and from Equation (6), using the fact that E[Mn,r] = r+1

n+1E[Kn+1,r+1], as
in Equation (29) above.
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Proof [Proposition 8]
Recall that Gn,r = r+1

n Kn,r+1. Therefore by the strong law of the rare counts, i.e.
Equations (6) and (7), we have that

Gn,r
E[Gn,r]

→a.s. 1. (30)

On the other hand, note that by equation (6), we have E[Kn,r]/E[Kn+1,r] → 1 for any
r. Since E[Mn,r] = r+1

n+1E[Kn+1,r+1], it follows that

E[Gn,r]

E[Mn,r]
→ 1. (31)

Combining the convergences (10), (30), and (31), we obtain (12).

Proof [Proposition 9] Since E[Mn,r] = r+1
n+1E[Kn+1,r+1], it follows from Equation (6) and

the strong law for Mn,r given by (10) that:

Mn,r ∼a.s.
αΓ(r + 1− α)

r!
nα−1`(n).

First consider the case r = 1, 2, · · · . Since α̂→a.s. α, it follows that (r− α̂) ∼a.s. (r−α).
Observing that Γ(r + 1− α) = (r − α)Γ(r − α), we can use Equation (7) to obtain:

M̂ (1)
n,r = (r − α̂)

Kn,r

n
∼a.s.

αΓ(r + 1− α)

r!
nα−1`(n) ∼a.s. Mn,r.

For the case r = 0:

M̂
(1)
n,0 = α̂

Kn

n
∼a.s.

αΓ(1− α)

r!
nα−1`(n) ∼a.s. Mn,0,

where we use Equation (4) and α̂→a.s. α.

Proof [Proposition 10] For convenience, define:

g(α) :=
αΓ(r + 1− α)

r!Γ(1− α)
≡
(
r − α
r

)
α.

We can thus write, as in the proof of Proposition 9:

Mn,r ∼a.s.
αΓ(r + 1− α)

r!
nα−1`(n) = g(α)Γ(1− α)nα−1`(n).

By the continuity of g(α), since α̂→a.s. α, we also have that g(α̂)→a.s. g(α). Therefore:

M̂ (2)
n,r = g(α̂)

Kn

n
∼a.s. g(α)Γ(1− α)nα−1`(n) ∼a.s. Mn,r,

using once more Equation (4).
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