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Abstract— The Good-Turing estimator for the missing mass
has certain bias and concentration properties which define
its performance. In this paper we give distribution-dependent
conditions under which this performance can or cannot be
matched by a trivial estimator, that is one which does not
depend on observation. We introduce the notion of accrual
function for a distribution, and derive our conditions from
the fact that the latter governs the decay rate of the mean
of the missing mass. These results shed light on the inner
workings of the Good-Turing estimator, and explain why it
applies particularly well for heavy-tailed distributions such as
those that arise when modeling natural language.

I. INTRODUCTION

Let (X ,P) be a discrete probability space, possibly count-
able. We write the outcomes as X = {1, 2, · · · } and their
probability distribution as P = (p1, p2, · · · ). We associate
with this space a sampling source: a process X1, X2, · · · of
independent and identically P-distributed random variables.
For each positive integer n, we refer to {X1, · · · , Xn} as an
observation sample.

Definition. For each n, we define the missing mass as:

Mn = P {i ∈ X : i /∈ {X1, · · · , Xn}} .

The name derives from the fact that Mn is the probability
mass which is not represented in the observation sample. For
any given n, it is a random variable, and therefore it defines
a random process. The problem of interest in this paper is
the estimation of Mn from the observation {X1, · · · , Xn},
without or with partial information about P.

A. Estimator Performance

Let M̂n(x1, · · · , xn) be some estimator for Mn. We will
focus in particular on two performance valuations: bias and
concentration.

Definition. If there exists a function f(n) such that
|E[M̂n]−E[Mn]| = O (f(n)), we say that M̂n has asymp-
totic bias of order f(n).

Particularly, when |E[M̂n]−E[Mn]| → 0 as n→∞, we
say that M̂n is asymptotically unbiased and, intuitively, the
bias vanishes no slower than f(n).
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Definition. If there exist constants a and b, such that for all
ε > 0 and n we have

P{M̂n < Mn − ε} < a exp(−bε2n),

we say that M̂n concentrates above Mn. If this holds for
M̂n > Mn + ε instead, then we say M̂n concentrates below
Mn. If both hold, then M̂n concentrates around Mn.

Concentration results can have various forms of the expo-
nent. The choice of ε2n reflects the results in the literature,
such as [1] and [2], based on Chernoff-like bounds.

B. The Good-Turing Estimator

We now consider the popular estimator for the missing
mass, proposed by Good [3] (with due credit to Turing).

Definition. The Good-Turing estimator for the missing mass
is defined as:

Gn =
1

n

∑
j

1Xj /∈{Xk : k 6=j}.

In particular, note that Gn is simply the fraction of
symbols occurring exactly once in the observation.

It was known to Good that Gn is asymptotically unbiased
and that for all P, Gn has asymptotic bias of order 1/n.
More recently, McAllester and Schapire [1] showed that Gn
concentrates above Mn, uniformly for all P. There are no
parallel results for concentration from below.

C. Trivial Estimators

Let’s call an estimator M̂n trivial if it does not depend on
the observation sample. In other words, a trivial estimator is a
function that depends on n alone. We will use such estimators
as comparative benchmark against the performance of the
Good-Turing estimator. In particular, we would like to meet
the order of asymptotic bias and assert concentration from
above.

D. Overview of Results

The aforementioned performance bounds for the Good-
Turing estimator are distribution independent, and thus as-
sume no information about P. In this paper we investigate
whether, for certain distributions, Gn fails to be informative
about Mn. We make this notion concrete by comparing these
performance bounds with those of trivial estimators.

When the same performance can be met by a trivial
estimator, there is no discernible benefit in using the Good-
Turing estimator. Conversely, when no trivial estimator can
meet these guarantees, the value of the estimator is rein-
forced, and its use is promoted.



As an example, consider the simplest trivial estima-
tor: one which evaluates to the constant 0 for all ob-
servations and for all n. Indeed, the (random) event
{i ∈ X : i /∈ {X1, · · · , Xn}}, by construction, is not repre-
sented in the empirical measure. Therefore the 0-estimator
is the empirical estimate of Mn. Furthermore, it is easy to
show that E[Mn] converges to 0, and thus the 0-estimator
is also asymptotically unbiased. One consequence of the
present work is that if P falls in a certain category, then the
0-estimator has asymptotic bias decaying at the same order
as that of Gn. In another category, however, Gn distinctly
outperforms this trivial estimator. Such categories turn out
to depend on how probability decays within P.

The rest of the paper is organized as follows. In section
II we introduce the notions of accrual function and accrual
rates of a distribution. These characterize the aforementioned
decay of probability, and do so intrinsically without reference
to an arbitrary index. Then, in section III-A, we use accrual
rates to determine the asymptotic behavior of the expected
value of the missing mass. We apply these in section III-
B to describe the distribution-dependent performance of the
Good-Turing estimator. Lastly we conclude in section IV
with descriptive and predictive consequences of our results.

II. ACCRUAL FUNCTION AND RATES

We now introduce the notion of accrual function, and use
it to characterize probability distributions. Our goal is to
capture the notion of probability decay and heaviness of tail
without an arbitrary indexing or ordering of the symbols,
such as by descending mass. We therefore give an intrinsic
definition, as follows.

Definition. We define the accrual function of a distribution
P as:

F (x) =
∑
pi≤x

pi.

Note that F (x) is not a cumulative distribution. Rather, it
describes how the probability mass accrues from the ground
up, whence the name. It is intrinsic, because it parametrizes
by probability, rather than by index. More importantly, prob-
ability decay can be described by considering its behavior
near x = 0, using the concept of accrual rates.

Definition. Let the distribution P have an accrual function
F (x). We define the lower and upper accrual rates of P
respectively as:

ρ = lim inf
x→0

logF (x)

log x
, and ρ = lim sup

x→0

logF (x)

log x
.

If the limit exists, we simply say that P has accrual rate ρ.

We illustrate this with three examples. First, note that
when the support of P is finite the accrual function is 0
near x = 0, therefore its accrual rate is infinite. This is
indeed the steepest possible form of decay. Next, consider
the case of the geometric distribution with parameter q, i.e.
pi = (1− q)i−1q. In this case, one can compute the accrual
function to be F (x) = x/q, at every x = pi, and a piecewise

Fig. 1. Accrual functions for geometric, power law, and finite distributions.

step in between. Consequently, the accrual rate is 1. Lastly,
consider the power law pi = 6/(πi)2. In this case, the accrual
function is F (x) =

∑
6/(πi)2, for i ≥ π−1

√
6/x. Near

x = 0, we can approximate the sum with an integral, and
find F (x) ≈ C ·

√
x. Therefore, the accrual rate is 1/2.

These examples suggest a taxonomy that relates accrual
rate to conventional notions of decay. Exponentially decaying
tails have an accrual rate of one. Above one, the decay
is super-exponential; below one, it is sub-exponential. It
is interesting that one arrives at these notions, without an
explicit indexing in the definition of the accrual function.

III. DISTRIBUTION DEPENDENCE

A. Behavior of E[Mn]

We start by giving basic bounds for the expected missing
mass using the accrual function. We then specialize these
bounds to obtain asymptotic behavior, based on the accrual
rates of the distribution.

Lemma. Let the distribution P have an accrual function F .
Then for any x, y ∈ [0, 1], the expected missing mass E[Mn]
can be bounded as follows:

(1− x)nF (x) ≤ E[Mn] ≤ (1− y)n + F (y). (1)

Proof. Let {Yi}, i = 1, 2, · · · , be indicator random variables
which are 1 when symbol i does not appear in the sample
and 0 otherwise. Then it follows that Mn =

∑
i piYi and

consequently that:

E[Mn] =
∑
i

piE[Yi] =
∑
i

pi(1− pi)n.

Both bounds are then obtained by splitting this sum around
values of pi below and above a given value. For the lower
bound:

E[Mn] =
∑
pi≤x pi(1− pi)

n +
∑
pi>x

pi(1− pi)n
≥

∑
pi≤x pi · (1− x)n +

∑
pi>x

pi · 0.

And for the upper bound:

E[Mn] ≤
∑
pi≤y pi · 1 + (1− y)n.

The lemma then follows from the definition of F .



Theorem 1. Let P have lower and upper accrual rates 0 <
ρ ≤ ρ <∞. Then for every δ > 0 there exists n0 such that
for all n > n0 we have:

n−(ρ+δ) ≤ E[Mn] ≤ n−(ρ−δ)

or, equivalently, for every δ > 0 we have that E[Mn] is both
Ω
(
n−(ρ+δ)

)
and O

(
n−(ρ−δ)

)
.

Proof. We start with the lower bound. Choose any α in
(ρ, ρ + δ). Then there exists x1 such that for all x < x1
we have logF (x)/ log x ≤ α, or alternatively F (x) ≥ xα.

Consider the expression (1 − x)nxα, and note that its
maximal value is achieved at x = α/(n + α). For n large
enough, x < x0, and we can use the bound for F (x) together
with the left-hand inequality in (1) to write:

E[Mn] ≥ (1− x)nF (x)

≥ (1− x)nxα =
(

1− α
n+α

)n
αα

(n+α)α

≥ e−ααα 1
(n+α)α ,

therefore there exists n1, such that for all n > n1 we have
E[Mn] ≥ n−(ρ+δ).

For the lower bound, choose any β in (ρ−δ, ρ). Then there
exists x2 such that for all x < x2 we have logF (x)/ log x ≥
β, or alternatively F (x) ≤ xβ .

Now consider the expression (1 − x)n + xβ , which we
evaluate at the test point x = 1− (β/n)

β/n. Note that using
the fact that ez ≥ 1 + z with z = β

n log β
n we can show that

x ≤ β
n log n

β , and thus for n large enough we will have x <
x2. Using the bound for F (x) with the right-hand inequality
in (1), we can write:

E[Mn] ≤ (1− x)n + F (x)

≤ (1− x)n + xβ =
(
β
n

)β
+

(
1−

(
β
n

) β
n

)β
≤

(
β
n

)β
+
(
β
n log n

β

)β
,

therefore there exists n2, such that for all n > n2 we have
E[Mn] ≤ n−(ρ−δ). Finally, set n0 = n1 ∨ n2.

B. Performance of Gn
We apply these results to categorize the performance of

the Good-Turing estimator, based on the accrual rates of the
distribution. We start with a general statement pertaining to
trivial estimators, and then derive corollaries about when
such estimators have the same performance guarantees as
the Good-Turing estimator.

Theorem 2. Let 0 < r < ∞ be given. Then there exists
a trivial estimator, namely M̂n = 1/nr, that achieves
asymptotic bias of order 1/nr for all distributions with lower
accrual rate ρ > r.

Conversely, given any trivial estimator, there exists a
distribution with upper accrual ρ < r for which the trivial
estimator does not have asymptotic bias of order 1/nr.

Another way to state the converse statement is that, given
a trivial estimator, there is always a distribution with ρ < r

such that for all n0, there exists n > n0 where the bias is
larger than 1/nr.

Proof. Consider the forward statement. Set M̂n = 1/nr, and
let P be any distribution such that ρ > r. From theorem 1,
we know that for large enough n we have E[Mn] ≤ 1/nr.
It immediately follows that 0 < M̂n − E[Mn] < 1/nr,
demonstrating the bias claim.

For the converse, assume to the contrary that there exists
an estimator M̂n, such that for all P with ρ < r the bias is of
order 1/nr, that is: there exists n0 such that for all n > n0

we have |E[Mn]− M̂n| < 1/nr.
Now, pick two distributions. First, let P be such that 0 <

ρ ≤ ρ < r. Then, let P′ be such that ρ′ < ρ. Also pick any
t and s such that ρ′ < t < s < ρ. We will show that if M̂n

has proper bias with P′, it has to decay slowly, and therefore
will fail to have proper bias with P.

Focusing on P′, let n0 be large enough such that for every
n > n0, all of the following hold:
• E[Mn]− M̂n < 1/nr for P′ by our assumption,
• E[Mn] > 1/nt for P′ by theorem 1,
• ns−t > 2, and nr−s > 1.

In particular, we get M̂n > E[Mn]− 1/nr > 1/nt − 1/nr.
Now, moving on to P, choose n1 > n0 such that E[Mn] <

1/ns, by theorem 1. Then, for all n > n1 we have:

M̂n −E[Mn] > 1/nt − 1/ns − 1/nr

=
(
nr−s(ns−t − 1)− 1

)
/nr > 1/nr.

But this contradicts our assumption, therefore it’s false.

This immediately results in the following corollary.

Corollary. If P has accrual rates greater than 1, then the
trivial estimator M̂n = 1/n matches the performance of the
Good-Turing estimator asymptotically.

Proof. The bias claim follows from the forward part of
theorem 2, by setting r = 1. For the concentration result,
first note that from theorem 1 we know that for large enough
n, we have E[Mn] ≤ 1/n = M̂n, then invoke the fact that
Mn concentrates around its own mean. Namely, there exist
constants a and b such that for every ε > 0 and n we have:

P{E[Mn] < Mn − ε} < a exp(−bε2n), (2)

This was shown first by McAllester and Schapire [1], and
later with tighter constants (in addition to concentration from
below) by McAllester and Ortiz [2]. From here, one needs
only to observe that for large enough n, an event of the
form {M̂n < Z} is a subset of event {E[Mn] < Z}, and
particularly

P{M̂n < Mn − ε} ≤ P{E[Mn] < Mn − ε},

and asymptotic concentration follows from (2).

It is worthwhile to remark that, in this case, even the 0-
estimator achieves bias of order 1/n, since E[Mn] ≤ 1/n
for large enough n, but it does not match concentration
performance.



As we illustrated in section II, accrual rates above one
are characteristic of super-exponential tails. Distributions
in many applications fall under this category, and it is
instructive to see that there is no (asymptotic) advantage in
using the Good-Turing estimator in such situations.

One would like to assert a converse, to the effect that
when the accrual rate of a specific P is below 1, then no
trivial estimators can match the performance of the Good-
Turing estimator. However, this naive converse is not true: if
one has knowledge of the precise expression of E[Mn], and
uses it as a trivial estimator, then bias would be zero, and
concentration would follow from (2). Of course, this would
constitute much more than a partial knowledge about accrual
rate. In fact, the converse part of theorem 2 formalizes how
lack of such precise knowledge dooms trivial estimators to
failure in this case. We restate this as a corollary.

Corollary. Given any trivial estimator M̂n, there is always
some distribution P with accrual rates less than 1, for which
M̂n fails to match the performance of the Good-Turing
estimator.

Accrual rates above one are characteristic of sub-
exponential, heavy, tails. We have thus shown that here, in
contrast to the super-exponential case, one cannot construct a
single trivial estimator that works as well as the Good-Turing
estimator, without further knowledge about the distribution.
Therefore, the Good-Turing estimator presents a distinct
advantage in this situation.

C. Remarks

We end this section by noting that these results do not
cover cases where r, in particular r = 1, is straddled by
the accrual rates: ρ ≤ r ≤ ρ. This is due to the fact that
the limiting operation in the definition of accrual rate does
not provide enough maneuverability, in the same way that
ratio tests and root tests in calculus are not informative about
series convergence at the decision boundary. However, the
framework can be made to extend if more information is
available about the limits. For example, say we know that
there exists x0, such that for all x < x0, we have F (x) ≤
γx. In particular, this applies to the geometric distribution.
Then the proof of theorem 1 carries through and we find
out, for instance, that we have E[Mn] = O(log n/n). Other
extensions are also possible, depending on the nature of the
available information.

IV. CONCLUSION

In this paper, we considered the problem of estimation
of the missing mass, with the valuation of an estimator’s
performance based on bias and concentration. We presented
the popular Good-Turing estimator, and compared its per-
formance with that of trivial estimators, those that do not
depend on the observation. We introduced the notion of
accrual function and accrual rates of a discrete distribution,
and showed that they govern the asymptotic behavior of the
expected value of the missing mass.

Using these results, we divided distributions into two
categories: those with accrual rates greater than one, and
those with accrual rates less than one. For the first, we
showed that the performance of the Good-Turing estimator
can be matched by a trivial estimator, and thus Good-
Turing estimation offers no advantage. For the second, we
showed that any trivial estimator can be adversarially paired
with a distribution that puts it at a disadvantage compared
to the Good-Turing estimator, making the latter distinctly
nontrivial.

Distributions with accrual rates larger than one are heavy-
tailed. One domain of application where such distributions
appear extensively is language modeling. Zipf was one of
the earliest researchers in that field to bring out this fact,
as he wrote in 1949 [4]: “If we multiply the frequency of
an item in a ranked frequency list of vocabulary by its rank
on the frequency list, the result is a constant figure.” This
came to be known as Zipf’s law, and describes a family of
distributions with power law probability decay, relative to an
integer order index.

Our method of accrual function and accrual rates offers a
characterization of these and related laws intrinsically, that is
without the use of an arbitrary index. Furthermore, the proof
that Good-Turing estimation works precisely for such distri-
butions and not for others, can explain why this estimator
has been so successful in natural language processing [5],
but has not been adopted widely in other disciplines. It also
predicts that fields where practitioners are likely to apply it
with success are those where such distributions arise, such
as economics, networks, etc.

We conclude with an observation that may shed new light
on the inner workings of the Good-Turing estimator. Since
the accrual rate ρ dictates the asymptotic behavior of E[Mn]
to be approximately 1/nρ, it is tempting to estimate ρ from
observation and use that expression as an estimator for Mn.

Given the empirical distribution P̂n, one can construct
the empirical accrual function F̂n(x). By the definition of
ρ, we need to take a limit as x tends to 0. However, the
smallest value of x where F̂n is informative, is 1/n. Using
that, ρ̂ = − log F̂n(1/n)/ log n is a plausible estimator for
the accrual rate. Carrying out the above suggestion, we get
M̂n = 1/nρ̂ = F̂n(1/n) as an estimator for the missing
mass. But notice that F̂n(1/n) is nothing but the Good-
Turing estimator Gn. Whether this is more than just a
coincidence is worth investigating.
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