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Abstract

We study the rate of convergence of Bayesian learning in
social networks. Each individual receives a signal about the
underlying state of the world, observes a subset of past ac-
tions and chooses one of two possible actions. Our previous
work [1] established that when signals generate unbounded
likelihood ratios, there will be asymptotic learning under
mild conditions on the social network topology—in the sense
that beliefs and decisions converge (in probability) to the
correct beliefs and action. The question of the speed of
learning has not been investigated, however. In this paper, we
provide estimates of the speed of learning (the rate at which
the probability of the incorrect action converges to zero). We
focus on a special class of topologies in which individuals
observe either a random action from the past or the most
recent action. We show that convergence to the correct action
is faster than a polynomial rate when individuals observe
the most recent action and is at a logarithmic rate when
they sample a random action from the past. This suggests
that communication in social networks that lead to repeated
sampling of the same individuals lead to slower aggregation
of information.

I. INTRODUCTION

In this paper, we study the speed of Bayesian learning
in social networks. We start with the canonical sequential
learning problem, where each member of a social group (net-
work) takes one of two actions. Which action yields a higher
payoff depends on an underlying unknown state of nature.
Each individual receives a private signal correlated with the
underlying state and observes some of the actions taken in the
past. On the basis of this information, he makes a decision.
The previous literature has investigated conditions under
which there will be asymptotic learning in this environment.
We say that there is asymptotic learning if individual beliefs
and actions converge (in probability) to the correct beliefs
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and actions. Our previous work, Acemoglu, Dahleh, Lobel
and Ozdaglar [1], characterized the general conditions under
which such asymptotic learning takes place.1 In particular,
we showed that when signals generate unbounded likeli-
hood ratios (meaning that there is no absolute bound on
the informativeness of possible signals) and the (possibly
stochastic) network topology determining which subset of
past actions each individual observes satisfies some relatively
weak regularity conditions, all perfect Bayesian equilibria of
this sequential game generate asymptotic learning.

The rate at which learning happens is of considerable
interest, since convergence to approximately correct beliefs
and actions might take an arbitrarily long time (or require
an arbitrarily large network). In particular, the results in [1]
guarantee that a very minimal amount of communication
is necessary between agents to obtain asymptotic learning
(when signals have unbounded likelihood). Therefore, ana-
lyzing the speed of learning is important for understanding
how network topology affects learning in social networks.
Nevertheless, the question of the speed of learning has not
be investigated in the social learning literature. In this paper,
we investigate the rate of convergence of individual beliefs
and actions to the correct beliefs and actions in a simplified
version of our general setup from [1]. In particular, instead of
general network topologies, we focus on situations in which
individuals observe only one past action. We distinguish two
cases. In the first, which we refer to as random sampling,
each individual observes any one of the past actions with
equal probability. In the second, which referred to as imme-
diate neighbor sampling, each individual observes the most
recent action.

We develop a new method of estimating a lower bound on
the rate of convergence in both cases, based on approximat-
ing this lower bound with an ordinary differential equation.
Our main results are as follows:

• With random sampling, the probability of the incorrect
action converges to zero faster than a logarithmic rate
[in the sense that this probability is no greater than

1See Bikchandani, Hirshleifer and Welch [5], Banerjee [3], and Smith
and Sorensen [12] for analyses of learning behavior of this model when
individuals observe all past actions.
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(log(n))−1/(K+1) where n is the number of individuals
in the network and K is a constant]. By means of an
example, we show that this probability does not go to
zero at a polynomial rate.

• In contrast, with immediate neighbor sampling, the
probability of the incorrect action converges to zero
faster than a polynomial rate [in the sense that this
probability is no greater than n−1/(K+1)].

These results are intuitive. The immediate neighbor sam-
pling enables faster aggregation of information, because each
individual is sampled only once. In contrast, with random
sampling, each individual is sampled infinitely often. Thus,
with a random sampling, there is slower rate of arrival of
new information into the system. While real-world social
networks are much more complex than the two stylized
topologies we study, our results already suggest some general
insights. In particular, they suggest that social networks in
which the same individuals are the (main or only) source of
the information of many others will lead to slower learning
than networks in which the opinions and information of
new members are incorporated into the “social belief” more
rapidly.

In addition to our previous work and to the papers on
Bayesian social learning mentioned above, our paper is re-
lated to Tay, Tsitsiklis and Win [13], who study the problem
of information aggregation over sensor networks. They focus
on threshold rules for learning (different from the perfect
Bayesian equilibrium characterized here) and provide a lower
bound on the rate of convergence of posteriors generated
by decentralized agents. The formal model is similar to our
model of social learning with immediate neighbor sampling,
though our bounds on the rate of convergence with imme-
diate neighbors sampling are not present in this paper. In
addition, to the best of our knowledge, our results on the
speed of learning in the random sampling case are also not
present in any previous paper.

The next section introduces our model, and Section III
provides the main results. Section IV illustrates our main
results using two examples and Section V concludes.

II. MODEL

In this section, we introduce our model of social learning.
The environment is a special case of that presented in our
previous work, Acemoglu, Dahleh, Lobel and Ozdaglar [1].

A countably infinite number of agents, indexed by n ∈N,
make decisions sequentially. The payoff of agent n depends
on an underlying state of the world θ and his decision. To
simplify the notation and the exposition, we assume that both
the underlying state and decisions are binary. In particular,
the decision of agent n is denoted by xn ∈ {0,1} and the

underlying state is θ ∈ {0,1}. The payoff of agent n is

un (xn,θ) =
{

1 if xn = θ
0 if xn 6= θ .

Again to simplify notation, we assume that both values of
the underlying state are equally likely, so that P(θ = 0) =
P(θ = 1) = 1/2.

Each agent n ∈ N forms beliefs about the state θ using a
private signal, sn ∈ S (where S is a metric space or simply a
Euclidean space) and his observation of the actions of other
agents. Conditional on the state of the world θ , the signals
are independently generated according to a probability mea-
sure Fθ . We refer to the pair of measures (F0,F1) as the
signal structure of the model. We assume that F0 and F1

are absolutely continuous with respect to each other, which
immediately implies that no signal is fully revealing about
the underlying state. We also assume that F0 and F1 are not
identical, so that some signals are informative.

Each agent n observes the actions of a subset of agents,
denoted by B(n) ⊆ {1, . . . ,n− 1}, according to the social
network. In this paper, we study two particular network struc-
tures. First, we analyze the immediate neighbor sampling
network, where B(n) = {n−1}. That is, each agent observes
the action of the agent that acted most recently. The second
topology we study is the random sampling network, where
for each agent n and each b∈ {1, ...,n−1}, B(n) = {b} with
probability 1/(n− 1). In this topology, each agent samples
uniformly the action of an agent from the past. We assume
that agent n knows the identity of the agent he is observing,
that is, he knows B(n), but no other agent does. For a detailed
discussion of these informational assumptions, please refer
to [1].

The set of all possible information sets of agent n is
denoted by In. A strategy for individual n is a mapping
σn : In → {0,1} that selects a decision for each possible
information set. A strategy profile is a sequence of strate-
gies σ = {σn}n∈N. We use the standard notation σ−n =
{σ1, . . . ,σn−1,σn+1, . . .} to denote the strategies of all agents
other than n and also (σn,σ−n) for any n to denote the
strategy profile σ .

Definition 1: A strategy profile σ∗ is a pure-strategy Per-
fect Bayesian Equilibrium of this game of social learning if
for each n ∈ N, σ∗n maximizes the expected payoff of agent
n given the strategies of other agents σ∗−n.

A pure-strategy Perfect Bayesian Equilibrium always ex-
ists in this game. Given a strategy profile σ , the expected
payoff of agent n from action xn = σn(In) is simply P(xn =
θ |In). Therefore, for any equilibrium σ∗, we have

σ∗n (In) ∈ arg max
y∈{0,1}

P(y = θ | In).
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Fig. 1. Equilibrium decision rule.

We say that asymptotic learning occurs in a Perfect Bayesian
Equilibrium if xn converges to θ in probability. In this paper,
our goal is to characterize the speed of learning for the
special classes of network topologies considered here.

The key property of the signal structure that determines
learning in social networks is the set of possible beliefs about
the state that it induces. We call pn(sn) = P(θ = 1|sn) the
private belief of agent n and it is equal to

pn(sn) = P(θ = 1|sn) =
(

1+
dF0

dF1
(sn)

)−1

, (1)

where dF0
dF1

is the Radon-Nikodym derivative of F0 by F1,
which is finite and positive everywhere since F0 and F1 are
absolutely continuous with respect to each other.

The decision rule that agents use in equilibrium is given
by the following proposition from [1].

Proposition 1: Let B(n) = {b} for some agent n. In equi-
librium, there exist deterministic Lb and Ub such that

xn =





0, if pn(sn) < Lb
xb, if pn(sn) ∈ (Lb,Ub)
1, if pn(sn) > Ub.

The thresholds Lb and Ub are indexed by b because they
are functions of the probability that agent b’s action is correct
in each possible state of the world, i.e., P(xb = θ |θ = 0) and
P(xb = θ |θ = 1).

The state-conditional distribution of private belief is rep-
resented by G j, for each j ∈ {0,1}, i.e.,

G j(r) = P(p1(s1)≤ r|θ = j). (2)

In this paper, we assume G0 and G1 are continuous distri-
butions in order to guarantee that there is a unique Perfect
Bayesian equilibrium. This assumption could be relaxed at
the expense of more notation.

The following lemma from [1] establishes a lower bound
on the amount of improvement in the ex-ante probability of
making the correct decision between an agent and his neigh-
bor. This bound will be key in the subsequent convergence
rate analysis.

Lemma 1: Let B(n) = {b} for some n and denote α =
P(xb = θ). In equilibrium,

P(xn = θ |B(n) = {b})≥ α +
1
8
(1−α)2 min

{
G1

(
1−α

2

)
,1−G0

(
1+α

2

)}
.

III. RATE OF CONVERGENCE

In this section, we prove the results about the speed of
learning in social networks. We first introduce an important
property of the private belief distributions that will impact
the rate of convergence results.

Definition 2: The private belief distributions have poly-
nomial shape if there exist some constant C′ > 0 and K > 0
such that

G1 (α)≥C′αK and 1−G0 (1−α)≤ 1−C′αK (3)

for all α ∈ [1/2,1]. If Eq. (3) holds only for α ∈ [1− ε,1]
for some ε > 0, then the private belief distributions have
polynomial tails.

For simplicity, the results in this paper assume polynomial
shape, but they extend immediately to private belief distri-
butions with polynomial tails. Note that polynomial shape
implies there exist some constants C > 0 and K > 0 such
that

min
{

G1

(
1−α

2

)
,1−G0

(
1+α

2

)}
≥C(1−α)K

for all α ∈ [1/2,1].
When the private beliefs have polynomial shape, we obtain

from Lemma 1 that for some C > 0 and K > 0,

P(xn = θ |B(n) = {b})≥ α +
C
8

(1−α)K+2, (4)

where α = P(xb = θ). Note that the right-hand side of Eq.
(4) is increasing in α over [1/2,1] if

C <
2K+1

K +2
. (5)

Note that if Eq. (4) holds for some C > 0, then it also
holds for any C′ ∈ (0,C). So, we can assume without loss of
generality that Eq. (5) holds and, therefore, the right-hand
side of Eq. (4) is increasing in α .

Proposition 2: Suppose agents sample immediate neigh-
bors and the private beliefs have polynomial shape, then

P(xn 6= θ) = O
(

n
−1

K+1

)
.

Proof: To prove this bound, we construct a pair of
functions φ and φ̃ , where φ is a difference equation and φ̃
is a differential equation and show that for all t ∈N, P(xn =
θ)≥ φ(t)≥ φ̃(t).

When the conditions of the proposition hold, we have from
Eq. (4) that for all n ∈ N,

P(xn+1 = θ)≥ P(xn = θ)+
C
8

(1−P(xn = θ))K+2 . (6)
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Construct a sequence {φ(n)}n∈N where φ(1) = P(x1 = θ)
and, recursively, for all n ∈ N,

φ(n+1) = φ(n)+
C
8

(1−φ(n))K+2 .

Now, we show by induction that for all n ∈ N,

P(xn = θ)≥ φ(n). (7)

The relation holds for n = 1 by construction. Suppose the
relation holds for some n. Then,

P(xn+1 = θ) ≥ P(xn = θ)+
C
8

(1−P(xn = θ))K+2

≥ φ(n)+
C
8

(1−φ(n))K+2

= φ(n+1),

where the second inequality holds because we assumed that
Eq. (4) is increasing in α . Therefore, Eq. (7) holds for all n.

Let us now define φ(t) on non-integer values of t by linear
interpolation of the integer values. That is, for any t ∈ [1,∞),

φ(t) = φ(btc)+
C
8

(t−btc)(1−φ(btc))K+2 .

Finding such a φ is equivalent to solving the following
differential equation (where derivatives are defined only at
non-integer times):

dφ(t)
dt

=
C
8

(1−φ(btc))K+2 .

Let us now construct yet another continuous time function
φ̃(t) to bound φ(t). Let φ̃(1) = φ(1) and

dφ̃(t)
dt

=
C
8

(
1− φ̃(t)

)K+2
. (8)

Note that both φ and φ̃ are increasing functions. We now
show that

φ̃(t)≤ φ(t) for all t ∈ [1,∞). (9)

Let t∗ be some value such that φ̃(t∗) = φ(t∗). Then, for any
ε ∈ [0,1− (t∗−bt∗c)],

φ(t∗+ ε) = φ(t∗)+ ε
C
8

(1−φ(bt∗c))K+2

≥ φ(t∗)+ ε
C
8

(1−φ(t∗))K+2

= φ̃(t∗)+ ε
C
8

(
1− φ̃(t∗)

)K+2

≥ φ̃(t∗)+
∫ t∗+ε

t∗
C
8

(
1− φ̃(t)

)K+2 dt

= φ̃(t∗+ ε),

where the first equality comes from φ ’s piecewise linearity,
the following inequality from the monotonicity of φ , the
second equality from φ̃(t∗) = φ(t∗) and the second inequality
from the monotonicity of φ̃ . Therefore, for any t∗ such that
φ̃(t∗) = φ(t∗), we have that for all ε ∈ [0,1− (t∗−bt∗c)],
φ̃(t∗+ε)≤ φ(t∗+ε). Hence, φ̃ does not cross φ at any point

Fig. 2. Bound used to prove Propositions 1 and 2.

and, since both functions are continuous, it implies Eq. (9)
holds.

Combining Eqs. (7) and (9) we obtain that for any n ∈N,

P(xn = θ)≥ φ(n)≥ φ̃(n).

See Figure 2 for graphical description of this bound. We
can solve the ODE of Eq. (8) exactly and calculate φ̃(n) for
every n. The solution is that there exists some other constant
C (which is determined by the boundary value P(x1 = θ) =
φ̃(1)) such that for each n,

φ̃(n) = 1−
(

1
8(K +1)C(n+C)

) 1
K+1

.

Therefore,

P(xn 6= θ)≤
(

1
8(K +1)C(n+C)

) 1
K+1

and the desired result follows.
Proposition 3: Suppose that agents use random sampling

and the private beliefs have polynomial shape, then

P(xn 6= θ) = O
(
(logn)

−1
K+1

)
.

Proof: To prove this result, we also construct a pair of
functions φ and φ̃ and show that for all t ∈ N, P(xn = θ)≥
φ(t)≥ φ̃(t).

When the conditions of the proposition hold, we have for
all n ∈ N,

P(xn+1 = θ) =
1
n

n

∑
b=1

P(xn+1 = θ |B(n+1) = {b})

=
1
n

[P(xn+1 = θ |B(n+1) = {n})+(n−1)P(xn = θ)] ,

because conditional on observing the same b < n, agents n
and n+1 have identical probabilities of making an optimal
decision. From Eq. (4), we obtain that

P(xn+1 = θ)≥ P(xn = θ)+
C
8n

(1−P(xn = θ))K+2 . (10)
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Note that the right-hand side of Eq. (10) is increasing in
P(xn = θ) for any n ≥ 1 because we assumed Eq. (4) is
increasing in α .

Let’s recursively construct a sequence φ(n) with φ(1) =
P(x1 = θ) and, for all n ∈ N,

φ(n+1) = φ(n)+
C
8n

(1−φ(n))K+2 .

Now, we show by induction that

P(xn = θ)≥ φ(n). (11)

The relation holds for n = 1 by construction. Suppose the
relation holds for some n. Then,

P(xn+1 = θ) ≥ P(xn = θ)+
C
8n

(1−P(xn = θ))K+2

≥ φ(n)+
C
8n

(1−φ(n))K+2

= φ(n+1).

where the second inequality holds because the right-hand
side of Eq. (10) is increasing in P(xn = θ). Therefore, Eq.
(11) holds for all n.

Let us now define φ(t) on non-integer values of t by linear
interpolation of the integer values. That is, for any t ∈ [1,∞),

φ(t) = φ(btc)+
C

8btc (t−btc)(1−φ(btc))K+2 .

Finding such a φ is equivalent to solving the following
differential equation (where derivatives are defined only at
non-integer times):

dφ(t)
dt

=
C

8btc (1−φ(btc))K+2 .

Let us now construct yet another continuous time function
φ̃(t) to bound φ(t). Let φ̃(1) = φ(1) and

dφ̃(t)
dt

=
C
8t

(
1− φ̃(t)

)K+2
. (12)

Note that both φ and φ̃ are increasing functions. We now
show that

φ̃(t)≤ φ(t) for all t ∈ [1,∞). (13)

Let t∗ be some value such that φ̃(t∗) = φ(t∗). Then, for any
ε ∈ [0,1− (t∗−bt∗c)],

φ(t∗+ ε) = φ(t∗)+ ε
C

8bt∗c (1−φ(bt∗c))K+2

≥ φ(t∗)+ ε
C

8t∗
(1−φ(t∗))K+2

= φ̃(t∗)+ ε
C

8t∗
(
1− φ̃(t∗)

)K+2

≥ φ̃(t∗)+
∫ t∗+ε

t∗
C
8t

(
1− φ̃(t)

)K+2 dt

= φ̃(t∗+ ε),

where the first equality comes from φ ’s piecewise linearity,
the following inequality from the monotonicity of φ , the

second equality from φ̃(t∗) = φ(t∗) and the second inequality
from the monotonicity of φ̃ . Therefore, for any t∗ such that
φ̃(t∗) = φ(t∗), we have that for all ε ∈ [0,1− (t∗−bt∗c)],
φ̃(t∗+ε)≤ φ(t∗+ε). Hence, φ̃ does not cross φ at any point
and, since both functions are continuous, it implies Eq. (13)
holds.

Combining Eqs. (11) and (13) we obtain that for any n∈N,

P(xn = θ)≥ φ(n)≥ φ̃(n).

We can solve the ODE of Eq. (12) exactly and calculate
φ̃(n) for every n. The solution is that there exists some
other constant C (which is determined by the boundary value
P(x1 = θ) = φ̃(1)) such that for each n,

φ̃(n) = 1−
(

1
8(K +1)C(logn+C)

) 1
K+1

.

Therefore,

P(xn 6= θ)≤
(

1
8(K +1)C(logn+C)

) 1
K+1

and the desired result follows.

IV. AN EXAMPLE

This section presents an example that demonstrates a
signal structure for which learning with random sampling
occurs at a logarithmic rate, hence establishing that the bound
of Proposition 3 is tight.

Example 1. For each n, let the signal sn ∈ [0,1] be generated
by the following signal structure:

F0(sn) = 2sn− s2
n and F1(sn) = s2

n.

For this example, the signals are identical to the private
beliefs, i.e., pn(sn) = sn [cf. Eq. (1)]. Therefore, the state-
conditional distributions of private signals [cf. Eq. (2)] are

G0(r) = 2r− r2 and G1(r) = r2.

Therefore, this signal structure has polynomial shape. We
now show that under this signal structure, for any n,

P(xn+1 = θ |B(n+1) = {n}) = P(xn = θ)+(1−P(xn = θ))2.

(14)
From Lemma 4 of [1], we obtain a recursion on P(xn = θ).
Since the signal structure is symmetric, we obtain that all
the terms used in Lemma 4 of [1] are the same, i.e.,

P(xn = θ) = Nn = Yn = Un = 1−Ln.

To simplify the notation, denote P(xn = θ) = z. The recursion
can be written as

P(xn+1 = θ |B(n+1) = {n}) =
1
2

[G0(1− z)+

(G1(z)−G0(1− z))z+(1−G1(z))+(G1(z)−G1(1− z))z] ,
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which reduces to

P(xn+1 = θ |B(n+1) = {n}) = z+(1− z)2,

and, thus proves Eq. (14). Using the same ODE bounding
methods from the two propositions, the probability P(xn =
θ) can be approximated by w(t) in the immediate neighbor
sampling case (B(n) = {n−1}) and

dw(t)
dt

= (1−w(t))2.

Solving this ODE yields that for some constant C,

w(t) = 1− 1
t +C

.

Thus, 1−w(t) = Θ
(
t−1

)
, which implies that

P(xn 6= θ) = Θ
(
n−1) .

For the random sampling case, the ODE that bounds the
probability of optimal decision is

dw(t)
dt

=
(1−w(t))2

t
.

Solving this ODE we obtain that for some constant C,

w(t) = 1− 1
log(t)+C

and thus obtain

P(xn 6= θ) = Θ
(
(logn)−1) .

Therefore, we conclude that learning is significantly slower
with random sampling than with immediate neighbor sam-
pling, at least for a class of signal structures.

V. CONCLUSION

In this paper we studied the rate of convergence of
Bayesian learning in a class of simple social networks. The
environment is as follows: each individual receives a signal
about the underlying state of the world, observes a subset of
past actions and chooses one of two possible actions.

This is a special case of the general environment studied in
previous work [1]. Although previous work has characterized
the conditions on signals and network topologies that ensure
asymptotic learning, the question of the speed of learning has
not been investigated. In this paper, we focus on a special
class of topologies in which individuals observe either a
random action from the past or the most recent action and
provide estimates of the speed of learning.

Our main results show that convergence to the correct ac-
tion is faster than a polynomial rate when individuals observe
the most recent action and is at a logarithmic rate when
they sample a random action from the past. These results
suggest that communication in social networks that lead to
repeated sampling of the same individuals lead to slower

aggregation of information. As a byproduct, we develop
a new method of determining lower bounds on the speed
of learning. The insights from the special networks studied
in this paper can be generalized to more realistic network
topologies. The analysis of speed of Bayesian learning in
more general networks is part of our ongoing work.
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