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Abstract— Bayesian network structure learning is a useful
tool for elucidation of regulatory structures of biomolecular
pathways. The approach however is limited by its acyclicity
constraint, a problematic one in the cycle-containing biological
domain. Here, we introduce a novel method for modeling cyclic
pathways in biology, by employing our newly introduced Gen-
eralized Bayesian Networks (GBNs) and proposing a structure
learning algorithm suitable for the biological domain. This
algorithm relies on data and perturbations which are feasible
for collection in an experimental setting, such as perturbations
affecting either the abundance or activity of a molecule. We
present theoretical arguments as well as structure learning
results from simulated data. We also present results from a
small real world dataset, involving genes from the galactose
system in S. cerevisiae.

I. INTRODUCTION

Since the seminal work by Pe’er [2], Bayesian networks
have been used extensively in biology, to model regula-
tory pathways both in the genetic ([15], [2]) and in the
signaling pathway domain ([4], [16]). Bayesian network
models encode probabilistic relationships among random
variables in a domain, providing a framework for tasks such
as structure learning. In a biological setting, the random
variables represented are biologically important entities such
as genes, small molecules and activated or phosphorylated
proteins. The structure learning task consists of searching the
space of possible structures to find the one that bests reflects
probabilistic relationships in a biological dataset. Under
appropriate conditions and assumptions, the framework of
causation can be employed to enable a causal interpretation
to these models, indicating that the parent of a variable in the
learned graph causally influences the variable’s quantity (ei-
ther directly or indirectly) [13], [10]. Within the framework
of causation, structure learning can be used to elucidate the
structure of interactions in regulatory pathways.

In spite of their usefulness, Bayesian network models are
limited in their applicability in this domain because they
are constrained to be acyclic, while positive and negative
feedback loops abound in biological pathways. In particular,
Bayesian network structure learning will always yield an
inaccurate structure for any cycle containing pathway and,
as a result, will fail in its predictive capacity (at minimum)
for variables downstream of an incorrectly directed edge.
When time course data are available, it is feasible to represent
cycles by unrolling them in time, using a Dynamic Bayesian
networks (DBNs), or Continuous Time Bayesian networks
(CTBNSs) [9], [11]. However, DBNs suffer from various com-
putational and data related challenges and, in some domains,
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the requisite timecourse data are not feasibly attainable in
an applicable form. Therefore, it would be useful to find an
approach for learning cyclic structures from static ’snapshot’
data, collected at a single timepoint from a dynamic system.

We have recently developed a formalism for represent-
ing cyclic structures using Generalized Bayesian networks
(GBNs), a form of Bayesian networks that we have gen-
eralized to encompass cycles [6]. This formalism enables
structure learning in a cyclic domain, relying on perturbations
which break the cyclic structure. Far from requiring an
exhaustive set of perturbations, this algorithm is designed to
minimize the amount of interventional data needed, requiring
as few as merely one perturbation per cycle for accurate
structure learning. However, the generalized algorithm is not
necessarily applicable to biology, due in part to the nature of
the necessary perturbations, which are often not feasible in
biological systems. Here, we present the first ever application
of GBNs in a biological context. For this application, we
modify the structure learning algorithm to bring it incre-
mentally closer to applicability in a biological domain, by
generalizing the algorithm to enable structure learning with
biologically feasible data. We present the algorithm as well
as results from two simulated synthetic networks containing
cycles, and one real world genetic feedback system from the
galactose metabolism system in yeast.

A. Bayesian networks and Bayesian network structure learn-
ing

Bayesian networks [12], represent probabilistic depen-
dence relationships among multiple interacting components
[3], [2], [5]. In our context, the components are biomolecules
such as genes or signaling pathway proteins. Bayesian net-
work models illustrate the effects of pathway components
upon each other (that is, the dependence of each biomolecule
in the pathway on other biomolecules) in the form of an
influence diagram- a graph (G), and a joint probability
distribution. In the graph, the nodes represent variables (the
biomolecules) and the edges represent dependencies (or more
precisely, the lack of edges indicate a conditional indepen-
dency) [12]. For each variable, a conditional probability
distribution (CPD) quantitatively describes the form and
magnitude of its dependence on its parent(s). The graph must
be a DAG- a directed acyclic graph. By directed we mean
that the edges must be single-headed arrows, originating from
one node (the parent node) and ending in another (called the
child node). Acyclic indicates that the graph must not include
directed cycles, so it should not be possible to follow a path
from any node back to itself.
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These models can be automatically derived from exper-
imental data through a statistically founded computational
procedure termed network inference or structure learning.
The Bayesian network inference algorithm aims to discern a
model that is as close as possible to the observations made.
The algorithm finds the most likely models by traversing the
space of possibilities, via single arc changes that improve the
model score, a score which expresses the probability of the
model structure being considered, given the dataset at hand.
There is a trade-off between simple models and those that
accurately capture the empirical distribution observed in the
data. The employed Bayesian scoring metric captures this
trade-off, thus a high scoring model is a both simple and
accurate representation of the data[17].

In a Bayesian network, the graph G encodes the Markov
Assumptions: Each variable X; is independent of its non-
descendants, given its parents in G.

vX;X; L NondescX; | ParX;

As a consequence of the Markov assumption, the joint
probability distribution over the variables represented by
the Bayesian network can be factored into a product over
variables, where each term is local conditional probability
distribution of that variable, conditioned on its parent vari-
ables:

,Xp) = [ ] P(Xi[ParX;) (1)

i=1

P(Xy,...

This is called the chain rule for Bayesian networks, and it
follows directly from the chain rule of probabilities, which
states that the joint probability of independent entities is the
product of their individual probabilities.

It is this formulation for the joint probability that breaks
down in a cyclic domain, and thus necessitates an acyclicity
assumption. In our formalism, we present a factorization that
applies in the cyclic domain, and, in the context of this
framework, we present a cycle-enabling structure learning
algorithm.

B. Generalized Bayesian Networks

In this section we present the general model, using formal
definitions and remarks. We start with a formal characteriza-
tion of Bayesian networks that is consistent with our notation
in the rest of the paper. Consider a generic problem with
M random variables. We would like to define a probability
space (€2,.%,P) in which to study such a problem. We first
restrict ourselves to random variables taking values from
finite alphabets. To further simplify the exposition, we use
a universal alphabet that we denote by X" and let L = |X|.
Therefore, we may choose the outcome space {2 to be the
set of all possible configurations of the random variables at
hand, i.e. @ = XM. Our probability space then becomes
(€,29,P), for a suitable choice of probability measure P,
which we can think of as the joint mass function of all
random variables. We are interested in different descriptions
and characterizations of this measure. We start with some
traditional definitions, and proceed with new ones.

We start by introducing some of the terminology used here.
For a directed graph G = (V, E), the parents of node i are
defined as m; := {j € V : (j,i) € E}. A stochastic map
g : X — R, is a nonnegative real-valued map such that
>.x9g = 1. A stochastic kernel f : X x )Y — Ry is a
nonnegative real-valued map such that every restriction of
the second argument results in a stochastic map. For finite
X and Y a stochastic map ¢ is a probability vector, and a
stochastic kernel f is a stochastic matrix.

Definition 1: Bayesian Network

A Bayesian network is a pair (G, F'), where:

o G is a directed acyclic graph G = (V, E) and

o F is a set of stochastic kernels f; : X x XI™l — R,

indexed by all nodes i € V.

The probability space induced by a Bayesian network is
an instance of the generic problem, obtained by letting M =
|V|, associating to every node ¢ € V' a random variable X,
and defining the following probability measure (which can
be easily verified to be valid):

P(Xi =21, Xy =2Mm) = H filzizm,). (@)
iev

Note that when 7; = (), the corresponding stochastic
kernel is essentially a stochastic map f; : X — R,. We
use the terminology ’node’ to refer, based on context, to
both the graph node and the associated random variable.

Definition 2 (Causal Bayesian Network): A causal
Bayesian network is a Bayesian network in which a given
edge from node ¢ to node j means that ¢ causally affects j.
Thus in addition to all of the regular probabilistic relations
of BN’s, a causal Bayesian network incorporates causality,
which can be understood by way of possible interventions on
the nodes of the graph. Classically, an intervention at node @
forces node ¢ to a certain value, thus making it independent
of its parents but keeping the dependence between it and
its children. These interventions are interventions on the
abundance of the node, or its amount. Another type of
interventions, which we model differently, is where the
activity of the node is affected. This type of interventions
remove the dependencies between the node and its children,
but still keeps its dependence on its parents.

Both of these types of interventions can be studied in the
probability framework by endowing the a Bayesian Network
with a family of joint distributions, each corresponding to
a different intervention (in addition to a joint for the no-
intervention case.)

Consider a causal Bayesian network and the two joints
corresponding to scenarios that are the same except for
an abundance intervention at node ¢. The only difference
between those joints (described as in equation (2) above)
will be in f;, where f; in the case of the intervention on
1 is independent of ¢’s parents and dictated directly by the
intervention. For the case of activity intervention at 7 being
the difference, f; will chance for all nodes j that are children
of i. So f;(xj;xx;) will be replaced by f;(x;; 2, \is%0),
where i is the value that ¢’s activity is forced to be by the
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intervention. The kernel corresponding to ¢ itself will not
change.

We take a deeper look at the activity interventions, since
they are as studied in the literature. In what follows we use
a partial configuration of the nodes of a Bayesian network
which we represent by a pair (I,£), where I C V and
¢ € XMl is an I-indexed tuple, interpreted as specifying
the values of the nodes of index I.

We think of (I,£) as an activity intervention on nodes
I to the value specified by &. Note that each perturbation
supersedes the node variable itself, and may be interpreted
as what is ’seen’ by all descendants of that node.

We can make this decoupling more explicit in an al-
ternative characterization. Indeed, given a causal Bayesian
network (G, F') describing an M-variable generic problem,
and a specific activity intervention (I, &), we can construct
a regular Bayesian network (G’, F’) which describes a 2M -
variable generic problem, such that the restriction to M of
the variables has a joint distribution evaluating to P(; ¢).

The construction of G’ does not depend on the perturba-
tion. Let G’ = (V', E’), where we duplicate each original
node: V' = {i, : i € V}U{i, : i € V}, and construct
edges E' = {(io, ju) : (4,5) € E} U{(ip,i5) : ¢ € V} that
make G’ bipartite, between the o (seen) and p (measured)
copies. The 0 — p edges preserve the parent-child structure,
and the © — o edges exist to relate the two under different
perturbation settings.

As for F”, we populate it such that for all ¢ € V' we have
fi, (@i, x”m) = fi(zi,; Tr,, ) regardless of the perturbation,

and: () il
) ] My (T,) it
fia (@inii,) = { 77&-(95@) ifiel

We call this characterization the o — p characterization
of a causal Bayesian network.

Definition 3 (Generalized Bayesian Network): A Gener-
alized Bayesian network is a Bayesian network where we
allow G to have directed cycles. A cyclic Bayesian network
induces a probability space, with the same outcome space
as in the Bayesian network, and with a probability measure
which we characterize locally, such that for every A C V it
obeys the following property:

]P)(XAUWA :'TAUWA):]P)(XWA :'Tﬂ'A) H fl(x17x7rl)
1EA\TA
3)

In particular, for every 7 such a probability measure obeys
the following property:

P(X; = 2i, Xn, = ;) = P(Xr, = ) fi(@3327,). ()

Definition 4 (Causal Generalized Bayesian Network):
A causal Generalized Bayesian network is a generalized
Bayesian network with which we associate a collection
of joint probability distributions. These joints relate to
each other as they do in causal Bayesian networks. Thus
for abundance interventions, intervened nodes become
independent of their parents and under activity inhibitions
they become independent of their children.

Finally, we note that the o — 1 characterization which we
gave for acyclic causal Bayesian networks extends here in a
straightforward fashion. It is easy to see that this description
is compatible with our previous description of GBN’s.

II. STRUCTURE LEARNING FOR CYCLIC
NETWORKS

In [6], we use the formalism presented above to formu-
late a structure learning algorithm for cyclic domains. The
algorithm relies on the ¢ — p characterization, and assumes
that the available interventions affect the activity but not the
quantity of the targeted biomolecule. This is sometimes the
case in biology- for instance, with small molecule kinase
inhibitors- but it is often not the case (e.g. gene knockouts).
Below, we present a structure learning algorithm modified to
enable the use of either activity or abundance perturbations;
perturbations that affect either the activity of a molecule (but
not its quantity), or that affect only its quantity, respectively.
This incremental improvement renders the algorithm applica-
ble to real-life biological datasets including various feasible
forms of perturbations.

Consider a CGBN from which we can sample both obser-
vational and experimental data, from an intervention set [
and its subsets. Assume that [ is ‘rich’, in the sense that it has
at least one representative node with an activity intervention
or two nodes with abundance intervention from every cycle
in the underlying graph. The following algorithm effectively
guides the experimental procedure (or uses previously col-
lected data) and recovers the CGBN’s structure. In what
follows, we elaborate the subroutines that are used, and show
correctness.

Algorithm: Learn CGBN structure

0: Start with a CGBN and an intervention set 1.

1: [Probing experiments] Collect sets of i.i.d. samples under no-
intervention and single-intervention data, i.e. when node i is
intervened at, for each i in I.

2: Call subroutine ‘detect descendants’ to recover descendant in-
formation for all nodes in 1.

3: Identify the subset of all nodes in I which are in cycles, and
denote it by Ic.

4: [Cycle-breaking experiment] Collect i.i.d. samples when all
nodes in I are intervened at.

5: Recover an embedded DAG.

6: [Leave-one-out experiments] Collect sets of i.i.d. samples when
nodes in I¢ \ {i¢} are intervened at, for each i € I¢.

7: Call subroutine ‘detect children’ to recover child information for
all nodes in I¢.

8: Recover all missing edges in the DAG, and complete the DCG
structure of the CGBN.

The following is the subroutine that obtains descendant
information based on no-intervention and single-intervention
ii.d. data. The correctness of the subroutine is similar to
the one in [6]. The choice of distance is not critical, and
thresholding can be automated.

Subroutine: Detect descendants
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0: Start with sets of n i.i.d. samples generated by a CGBN, under
no interventions as well as single-interventions at each ¢ in 1.
Initialize a binary |V'| x |I| descendant information matrix.

: Foreachj e V:

—_

2: Compute P™(X;), the empirical marginal of X; under no
interventions.

3: Foreachi € I

4: Compute P*(X), the empirical marginal of X; under

the single-intervention s. . .
Evaluate some distance between P™ (X ;) and P7*(X).
If the distance exceeds a threshold, mark j as a de-

scendant of 4.

Next i.

Next 5.

Compute the transitive closure of the descendant information

matrix, and return it.

©ox

Ic can then be identified as the set of all self-descendants.
Since the intervention set I has at least one node from
each cycle in the underlying graph, I constitutes a cycle-
breaking intervention set, meaning that if all nodes in I¢
are intervened at, the CGBN behaves like a BN. Thus with
i.i.d. data obtained as such, we can recover the corresponding
embedded DAG using generic BN structure learning, which
we do not elaborate further on. Note that [ itself is a cycle-
breaking intervention set, the merit here being that Io can
be much smaller.

Note that the only edges that are in the underlying graph
but are missing from the embedded DAG are those from
cycle breakers to their children. The following subroutine
obtains a child information matrix, based on I¢-intervention
and leave-one-out from I- intervention i.i.d. data. Once
this information is obtained, all cycles can be closed in a
straightforward fashion, recovering the underlying structure.
Once again, the correctness of the subroutine follows from
our work in [6] and the convergence of empirical distribu-
tions, since only children will exhibit a change in marginal
conditional.

Subroutine: Detect children

0: Start with the recovered DAG, and sets of n i.i.d. samples
generated by the CGBN, under I-intervention as well as leave-
one-out interventions, i.e. on Ic \ {¢} for each ¢ in I¢. Initialize
a binary |V| x |I¢| child information matrix. Denote by 7; the
parents of node j according to the recovered DAG.

1: Foreachj e V:

2: For each a € X7l

3 Compute the empirical marginal conditional
Py, (Xj|X7; = ), callit Q1.

4: Foreach i € I¢:

5 Compute the empirical marginal conditional
]P?c\{l} (Xj|X7"rj = a), call it QQ.

6: Evaluate some distance between Q1 and Q2.

7: If the distance exceeds a threshold, mark j as a
child of 4.

8: Next i.

9: Next a.

10: Next .

11: Return the completed child information matrix.

III. RESULTS

To illustrate the algorithm, we simulated a GBN that
has fourteen variables,shown in Figure 3, each with three
states X = {0,1,2}, two cycles 5 — 6 — 7 — 5 and
8 -9 — 10 — 11 — 8, and nodes 7, 8 and 10 available
for intervention. The other network has four cycles. The
stochastic kernels were sampled continuously from the 3-
simplex. Up to 4000 data points were sampled for every
required intervention.

(&) (&)

Fig. 1. Test network, recov-
ered exactly by algorithm

Fig. 2. Best network recov-
ered by BN structure learning
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Fig. 3.  Network recovered by Fig. 4. Best network recovered
algorithm by BN structure learning

In the tables of Figure 6, we compare the performance
of our algorithm to a plain BN structure learning algorithm
for the various data sizes. In particular, the tables document
the number of true edges that the algorithms uncover, the
number of reversed edges that they give, and the number
of edges that they add but which are absent in the original
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GBN algorithm
Data Correct Inverted Added

1000 14
2000 15 0 0
4000 16 0 0

BN structure learning
Data Correct Inverted Added

1000 9 3 0
2000 9 7 0
4000 12 4 2

Fig. 5. Performance for 15! Network

GBN algorithm
Data Correct Inverted Added
1000 19 3 2
2000 22 2 0
4000 23 1 0

BN structure learning

Data Correct Inverted Added
1000 19 3 0
2000 20 4 0
4000 20 5 2

Fig. 6. Performance for 2% Network

graph. Observe that the GBN algorithm recovers the network
exactly with 4000 data points. The comparison is inherently
unfair, because BN structure learning does not handle cycles,
but the emphasis here is on illustrating the type of pitfalls
in using BNs to capture data that is generated by a GBN.
Using the best recovered DAG in Figure 4, for instance, will
mistakenly predict that an intervention at node 10 will not
affect node 9.

A. Genetic regulatory networks for Galactose metabolism
genes

Since our ultimate goal is structure learning in the bi-
ological domain, in this section, we test our algorithm on
a small real world dataset from the galactose metabolism
system in the organism Saccharomyces cerevisiae (budding
yeast). In yeast, when the sugar galactose is present, the
enzymes responsible for its metabolism are produced (tran-
scribed). The genetic regulation of these enzymes relies on
the protein products of the genes gal4, gal3 and gal80 (as
is classically known) and on additional genes such as gall0
(as shown in [1]). We use the dataset generated by [1] to
build two small networks from the galactose system. [1] use
abundance perturbations- a standard perturbation in biology
experiments in which a gene or set of genes are knocked out
or eliminated from the system, such that the actual gene
is missing from the perturbed yeast cells. The algorithm
presented above is formulated to enable handling of such
perturbations.

In the galactose system, the sugar galactose, along with
the protein gal4, regulate gal3, gal80 and gallO. These
downstream genes also have a regulatory role- they feedback
upon the downstream genes, such that gal3, 80 and 10 each
regulate gal3, gal80 and gallO (note that gal4 transcription
is not affected by these genes). Therefore, the correct model
should show galactose and gal4 as parents of gal3, 80 and
10, and gal3, 80 and 10 as parents of each other. The dataset
in [1] does not permit us to investigate this entire model,
partly because of the dataset’s relatively small size, and
partly because it lacks the requisite multiple perturbations per
sample (i.e. double knockouts, see II). However, we are able
to investigate smaller models with one cycle each. We ran
standard Bayesian network structure learning on data from
[1] for the nodes galactose, gal4, gal3 and gal80 (network I)
and for the nodes galactose, gal4, gal3 and gal 10 (network
IT). We then applied our algorithm and compared the results.

A. G gald G gald
| 180 13 180
gal3 =— ga ga ga
x_/
B. G gal4 G gal4
1
-7 ! N :
gal3 = gal10 gal3 gallo
w_/
Fig. 7. Structure learning results for two galactose system networks.

Panel A on the left shows results from standard Bayesian network structure
learning performed on network I, including the nodes galactose, gal4, gal3
and gal80. The network is nearly correct, but misses the cycle between gal3
and gal80. The network on the right is correctly inferred by GBN algorithm.
Panel B shows results from network II, including the nodes galactose, gal4,
gal3 and gall0. The network on the left, from standard structure learning,
incorrectly orients two edges and misses the cycle between gal3 and gall0.
Results from the GBN, shown on the right, orient the edges correctly and
also include the cycle. Undirected edges indicate that the edge direction
could not be determined; dotted edges indicate incorrectly oriented edges.

Figure 7 shows the results of our structure learning efforts.
Panel A shows network I, with the standard Bayesian net-
work structure learning results on the left, and results from
our algorithm on the right. The undirected edge between
gal3 and gal80 indicates that the two models (with the edge
in either orientation) each scored alike. Thus, the Bayesian
network in this case is able to determine the existence of a
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connection between gal3 and gal80, but it (understandably)
cannot assess the correct orientation of this edge. The results
from our algorithm, shown on the right, do include the
correct cycle. The results from network II are shown in
panel B, with the results from standard structure learning on
the left. In this case, along with missing the cycle, standard
structure learning also fails to correctly orient certain edges
(indicated by dotted lines). This can occur when the edge
direction is not clear cut due to constraints of the model
(for instance, the score’s inherent complexity penalty will
encourage a smaller in-degree, in some cases shifting the
preference of the child node to be the node with the smaller
overall number of parents). Because our algorithm puts an
emphasis on node descendants as indicated by perturbation
data, it is able to correctly orient these edges. It is also able
to learn the correct cycle as in network 1.

IV. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the first-ever application of
cyclic-structure learning with score-based Bayesian networks
in a biological context. We present a structure learning
algorithm grounded in the GBN formalism, and capable of
handling biologically relevant perturbations, namely, pertur-
bations affecting molecule activity, perturbations affecting
abundance, or a dataset including a combination of the two.
We test our algorithm on two synthetic networks and two
small real-world networks using expression data. In each
case, our algorithm demonstrates clearly superior perfor-
mance, both in terms of elucidation of cyclic structures, and
in terms of correctly orienting additional model edges.

In the biological domain, we are often interested in a
causal model, partly for the insight and understanding such
a model conveys with respect to the modeled system, and
partly for the possibility for system predictions which it
enables. In disease states for instance, a characterization of
the altered biological network can serve to guide therapeutic
interventions. A truly causal model which includes correctly
oriented edges is crucial- with it, a useful target can be
identified and potentially detrimental effects can be avoided.
Whereas previous attempts at modeling biological pathways
with Bayesian networks have yielded useful results, the
prevalence of cycles have confounded those efforts, com-
promising the causal nature of the learned models. With
this work, by overcoming the acyclicity constraint, we have
brought the structure learning capability incrementally closer
to learning truly causal models.

There remains substantial need for increasing the causal
interpretability of models. Even without the acyclicity con-
straint, the presence of hidden variables- rampant in the bi-
ological domain- can confound causal model interpretations.

In our GBN model presented here, it is necessary to expand it
further to enable handling of other experimental constraints,
for instance, systems in which only one variable can be
perturbed in each experiment (currently not possible with
our algorithm). Future improvements to structure learning
capability will lead us closer to truly causal models, lead-
ing to improved biological understanding and potential for
therapeutic benefits.
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