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Abstract— In this paper, we study the Stochastic Travelling
Salesperson Problem for a vehicle that is constrained to move
forwards with a bound on the minimum turning radius. For
n uniformly distributed targets, it is known that the expected
length of the optimal tour has a lower bound that is kn2/3

(wherek is a constant that depends on the geometry of the area).
We design a novel algorithm that performs within a constant
factor of that lower bound. This proves that the expected
length of the optimal tour of the Stochastic Dubins Travelling
Salesperson Problem (SDTSP) is of the order of exactlyn2/3.

I. INTRODUCTION

The Travelling Salesperson Problem is defined as follows:
Given a graph ofn < ∞ points , find the Hamiltonian circuit
that incurs the minimum cost. Here, the cost is defined as the
sum of the weights of the individual edges of the circuit. The
weights of the edges can be anything that is non-negative.
They can be symmetric or asymmetric, satisfy the triangular
inequality or not, or they can have special structure that
makes the problem solvable in polynomial time in some
instances [4] [6] [8]. The more structure that is added, the
easier the problem becomes. The Euclidean TSP is widely
studied and has polynomial time algorithms that produce a
tour whose length is within(1 + ε) times the shortest tour
for anyε [8].On the other hand, we know of no way that can
closely approximate TSP problems with little or no structure
in polynomial time.

The Dubins vehicle is a nonholonomic vehicle with a
lower bound on its turn radius, which we will callρ. It is an
appropriate model for many vehicles and robots, especially
aerial and marine vehicles. The name follows the mathemati-
cian who was the first to prove that under average curvature
constraints (or minimum radius constraints), the following is
true: Given any two pointspi and pj , and the headings at
those points, the paths with minimum distance always exist.
He also proved that the optimal path always takes one of two
forms (C,C,C), (C,S,C) or any truncation of those two forms.
Here, C stands for a circular arc (clockwise or anticlockwise)
whose radius is the minimum turning radius (ρ), and S stand
for a straight line segment [3].

In both forms of the Dubins path ((C,C,C) and (C,S,C));
the first (last) curve is a part of the circle of radiusρ that
is tangent to the given heading at the first (last) point. Two
such circles can be constructed for each point, on different
sides of the line indicating the heading. One of these circles
has clockwise orientation and the other has anti-clockwise
orientation so that the orientation of the circle would also
match the orientation of the heading at the point. So, for a
given pair of points and their headings, there are four (C,S,C)
curves that can be constructed to connect the points. Only

two (C,C,C) curves are possible because for a (C,C,C) curve,
since the orientation of the first and last arcs has to be the
same. The optimal path is usually determined by trying all six
configurations and choosing the one that has the least length.
There are some studies that specify which path is optimal for
any configuration of points and headings [9]. It is important
to note that the Dubins metric (not really a metric) becomes
close to the Euclidean metric when the points are very far
away, but it has radically different characteristics as the
Euclidean distance between the points becomes comparable
to ρ.

The TSP problem for the Dubins vehicle (DTSP) is a
TSP problem where the path can be traversed by a Dubins
vehicle. This implies two requirements, the first is that
between any two points, the path taken is a Dubins curve.
The second requirement is that the headings of the two
Dubins curves that meet at the same point are the same.
So for a fixed heading at each point, the DTSP is reduced
to an asymmetric TSP problem where the distances satisfy
the triangular inequality. Finding the optimal headings is
hard, because changing the heading at one point changes
the distance from that point to all other points. This means
that we have two NP problems (TSP and minimizing a non-
convex function) that are interwind. The Stochastic DTSP
problem is the problem in which the points are generated by
a random process, and the cost is the expected value of the
tour length.

The DTSP and the Stochastic DTSP are coming into the
picture because of advances in robotics and the growth of
interest in Unmanned Aerial Vehicles (UAV’s). The possible
use of robots and UAV’s in search and rescue missions,
surveillance and many other applications that require opti-
mized planning of a route make this problem important for
the near future. The Dubins vehicle is the natural simple
model for many of those vehicles and robots, and thus it is
the appropriate model to use for path planning . Studying
the DTSP and the Stochastic DTSP might also offer insight
to the solution of different problems where there are still
constraints on the curvature. This is a more general class of
applications that allows the cost function to be modified to
account for areas of danger, priority between customers and
many other applications that seem to be dawning with the
feasibility of making commercial autonomous vehicles and
robots.

Our work will mainly build on the work of Savla, Fraz-
zoli and Bullo in [1],[2]. They studied the same problem,
established a tight lower bound and an upper bound, and
provided and algorithm that results in a tour of expected



length O(n2/3 ln((n))1/3)1. So the problem that we are
addressing is the following: Given a rectangle R( of areaA,
heightH and widthW ) andn points randomly distributed in
A (wheren is large), we want to find the expected optimal
length of the Dubins vehicle path through all of the points,
and an algorithm that performs close to the expected optimal
length.

The rest of this paper will be organized in the following
manner: In section 2, we will introduce some of the notation
and prepare the ground for our study by citing some results
that are relevant. We will also provide some points that are
direct extensions to some results, and prove other facts that
we will be needing. In section 3, we will solve an essential
auxiliary problem and introduce the “ Scanning Algorithm”,
which will be an integral element in our constant factor
algorithm. In section 4, we describe the “Iterated Level
Algorithm” and prove that it performs within a constant
factor of the lower bound. Section 5 has the conclusions
and 6 has the future work.

II. BACKGROUND AND NOTATION

In this section we mainly introduce the notation we will
use and provide direct extensions of previous results that
are necessary for our proofs. Most of the results are from
those on the point to point Dubins vehicle problem and some
related problems. Since the Dubins curve, and thus Dubins
distance, depend on the headings at each target; a target
is usually augmented with an angle and is represented in
(R2, S) where S=[0,2π] represents the angle that the heading
vector at the point makes with the x-axis.

A. Optimal tour length lower bound:

From [1], givenn targets that are uniformly distributed
in a region, the expected length of the optimal TSP tour
by a Dubins vehicle over all of the points isΩ(n2/3). For
the same problem, if the vehicle does not have any dynamic
constraints (it can change directions instantaneously); then
the expected length of the optimal TSP tour isΘ(

√
n).

B. Distance between close points for a Dubins vehicle:

Let a straight lineL, and a Dubins vehicle with minimum
turning radiusρ at a point(p, φ) such that the heading atp
is parallel toL (if L is parallel to the x-axis, thenφ = 0) .
Denote the Euclidean distance fromp to L (the length of the
projection ofp on L) by d and the point that is the projection
of p on L by p′. Denote the shortest curve that the vehicle
has to follow to go from(p, φ) to L and keep moving onL
by C.

The requirement that the vehicle has to keep moving on
L means thatC should be tangent toL at the point of their
intersection (pf ). Let |C| be the length ofC from p till pf

and |L| the distance betweenp′ andpf .

1We say a functionf(n) is O(g(n)) if there is a c > 0 such that
limn→∞

f(n)
g(n)

≤ c (the limit could be 0), we sayf(n) is Ω(g(n)) if
g(n) is O(f(n)) and we sayf(n) is Θ(g(n)) if there is ac > 0 such
thatlimn→∞

f(n)
g(n)

= c . We sayf(l) is o(l) if liml→0
f(l)

l
→ 0

Proposition 1:
as d → 0, |C| ≤ |L| + o(|L|).

Figure 1: Optimal path from a point to a straight line

This means that if a Dubins vehicle is moving parallel to
a line and close to it, it can go onto the line and continue
moving on it with almost no loss compared to the case where
the vehicle is on the line from the beginning.

To prove this proposition we will have three steps:

1) Determine C.
2) Prove that|L| = 2

√
ρd − o(d).

3) Prove that|C| ≤ 2
√

ρd + o(d).

The first step is a known result: Ifd < ρ; then the shortest
trajectory of the vehicle is made up of two circular arcs
with radiusρ [5]. The first arc is tangent to the straight line
passing throughp and parallel toL, the second is tangent
to L and both arcs are tangent to each other at the point of
their intersection.

The second and third steps can be achieved by using
Figure 1 and a bit of basic geometry: Letpm be the point of
intersection of the two arcs inC. By symmetry,pm is the
middle point onC betweenp andpf . Denote the Euclidean
distance betweenp andpm by d1; we have the following:

|L|2 = 4d2
1 − d2

= 4(2ρ2 − 2ρ2 (ρ − d/2)

ρ
) − d2 = 4ρd − d2

Therefore asd → 0,

|L| = 2
√

ρd − o(d)

|C| = 2ρ ∗ arcsin(
|L|/2

ρ
),

so asd → 0, |C| ≤ 2
√

ρd + o(d)
More importantly, asd → 0, |C| ≤ |L| + o(|L|) This

proves the proposition.

III. SCANNING ALGORITHM

In this section, we will try to solve the following auxiliary
problem:

Let R be a rectangular area with height H and Width
W that is covered bym2 congruent “initial“ rectangles (i-
rectangles), each of which has a heightl = H

m and width



w = W
m . Also, leti of them2 i-rectangles have one target in

each of them and(m− i) be empty. For largei and m, and
if the distribution of the non-empty rectangles is uniform,
design an algorithm that determines a tour for a Dubins
vehicle so that it visits at least constant factor of thei targets
and has an expected tour length that isO(i2/3).

We now introduce the Scanning Algorithm, which will
solve the problem above. We begin with some terminology
and definitions that will be needed in the algorithm and
bound proofs.

Figure 2
This figure shows segments of strips. The border lines are

guidance lines. The curves are the shortest paths from the vehicle
to the guidance lines.

1) (Top)p will be retrieved unless the vehicle is in the shaded
area.

2) (Bottom) The Scanning Area of the vehicle at point A.

A. Algorithm Terminology and Definitions:

In the Scanning Algorithm, we will divide the whole
rectangle R into strips. Letk1 > 0 be a parameter of the
algorithm (to be determined later). With no loss of generality,
the strips have been chosen to be parallel to H. It will be
shown that it is optimal that the strips are parallel to the
longer of the sides. After dividing R intoρ

1/3W (k1i)2/3

3
√

(WH)2
strips,

the width of each strip will be:

ws(i) =
3
√

(WH)2

ρ1/3(k1i)2/3
. (1)

We will now define some terms that we will use in the
algorithm:

1) Guidance Lines:
The lines that are between the strips are called guid-
ance lines, since the vehicle will move in between
them.

2) Retrieval Area:

When the vehicle is in stripi, the retrieval area is the
set of points in stripi that the vehicle can reach without
going out of stripi (Figure 2).

B. Algorithm Description:

The scanning Algorithm can be described as follows:
We will assume thatH is horizontal andW is vertical.

We divide the area into strips that have widthws(i), and
number them from the bottom up. The vehicle moves bottom
along the length of the strips, on the same horizontal level
as the closest target in the retrieval area. It moves to that
level using a minimal length curve as in Figure 1. When the
vehicle finishes stripj, it moves to stripj +1 and moves on
it in the opposite direction.

C. Constant factor:

Consider a targetp in any strip, with distancesλws(i)
and (1 − λ)ws(i) from the edges of the strip (Figure 2). If
the shaded region(S) in Figure 2 is empty, the vehicle will
visit p. By symmetry, the areas of theS is

√
ρ(λws(i))

3/2 +
ρ[(1 − λ)ws(i)]

3/2.
To bound the probability thatS is empty, we use the

following lemma:
Lemma 1:For large i and m, the probability thatS is

empty under the given distribution of targets is greater than
the probability thatS is empty if the targets were uniformly
distributed.

Proof: The proof considers the generation of the targets,
conditioned on the fact thatp already exists.

Under the uniform distribution, every target other than

p has a probability of
√

ρ(λws(i))3/2+[(1−λ)ws(i)]3/2)

WH =
λ3/2+(1−λ)3/2

k1i of being inS.
Under the given distribution, the first target has a prob-

ability of
√

ρ(λws(i))3/2+[(1−λ)ws(i)]3/2)−α

WH , where α is the
area of the intersection of thei-rectangle containingp and
S. The consequent targets have less probability than the first,
because of the assumption thati andm are large.

Therefore, the probability thatS containsi0 > 0 targets
(other thanp) is less than the probability thatS containsi0
targets if the targets were uniformly distributed. The result
follows directly.

The number of targets inS under the uniform distribution
is a Poisson variable with parameter:

λ3/2 + (1 − λ)3/2

k1

Therefore, the probability thatS is empty (givenp) is greater
than:

e−
λ3/2+(1−λ)3/2

k1

Since λ is uniformly distributed between 0 and 1, the
probability that any targetp will be visited by is greater
than:

∫ 1

0

e−
λ3/2+(1−λ)3/2

k1 dλ = 2

∫ 1/2

0

e−
λ3/2+(1−λ)3/2

k1 dλ



Now, since−λ3/2 − (1 − λ)3/2 is monotonic increasing
between0 and1/2, and the exponential function is convex,
we can use Jensen’s inequality, and get our bound:

P ≥ e−
4

5k1

This means that the Scanning Algorithm will allow the
vehicle to retrieve at leaste−

4
5k1 i of the i targets.

D. Bound on the length of the SA tour:

Lemma 1:
The maximum distance travelled by the scanning algo-

rithm is less than:
WH + Wc1

ws(i)
+ H + c2 + o(

1
√

ws(i)
)

Proof:
First, we will start by finding the distance travelled when

crossing one guidance line: For a certain pass on one of the
guidance lines in which we retrievek targets, we denote the
retrieval cost (as defined before) of thejth target byLj and
the distance on the guidance line that was skipped by the
retrieval bylj . We have:

k
∑

j=1

lj + lf = H.

Wherelf is the distance travelled on the guidance line. We
also have, because of the assumption thati is large (ws(i) <
ρ):
∀i,

Lj ≤ lj + o(
√

ws(i)).

Therefore
k

∑

j=1

Lj + lf ≤ H + o(
√

ws(i)).

Where the reason the last term iso(
√

ws(i)) can be proved

by proving that the longest pass will be when (
√

H
lc(i)

) points
are retrieved and the distance to each of them from the
guidance line iswc(i). The total length will therefore be
of o(

√

ws(i)).
Therefore the distance travelled in traversing one guidance

line is bounded by

DGL = H + o(
√

ws(i)).

To turn from one guidance line to the other, an additional
distance bounded byDturn = c1 + ws(i) is needed; where
c1 < 2.658πρ [2].

The number of guidance lines is

Ng ≤ W

ws(i)
+ 1

To go back to the beginning of first guidance line, we must
travel at most the diagonal of the square and some distance
for changing direction. This total distance is bounded by

c2 =
√

W 2 + H2 + c1

Thus the total distance travelled in one loop over the whole
square is bounded by:

Ng[DGL + Dturn] + c2

which is equal to:

WH + Wc1

ws(i)
+ H + c2 + o(

1
√

ws(i)
)

Therefore, The length of the distance travelled by the
vehicle following the Scanning Algorithm is bounded by two
times the maximum distance travelled in any certain pass
over the guidance lines.

Therefore for largei and from Lemma 1 and the fact that

ws(i) =
3
√

(WH)2

ρ1/3(k1i)2/3

DSA ≤ WH + Wc1

ws(i)
+ O(

1

ws(i)
)

=
(WH + Wc1)(ρ

1/3)
3
√

(WH)2
(k1i)

2/3

Therefore, the Scanning Algorithm visits a constant factor
of the i targets inO(i2/3).

IV. I TERATED LEVEL ALGORITHM

In this section, we will solve the following problem: Given
n targets that are uniformly distributed in a rectangle R
that had widthW and heightH; design an algorithm for a
Dubins vehicle that will allow it to visit all of then targets
with a tour whose length isO(n2/3).

Here, we will present the Iterated Level Algorithm that
will have a performance within a constant factor of the
established lower bound. To do that, we will create an
O(n2/3) algorithm (the Level Algorithm) that removes a
constant factor of the targets while keeping remaining targets
uniformly distributed. This algorithm can be iterated till
the remaining number of targets is less than

√
n and the

remaining targets can be easily removed by a tour with
length O(

√
n). We will first present the Level Algorithm

and then prove the necessary bound on the produced tour’s
expected length. We will then prove that the distribution of
the remaining targets at the end of the Level Algorithm will
be bounded by a uniform distribution. The bounds on the
Expected length of the Iterated Level Algorithm will follow.

A. Level Algorithm Description

The Level Algorithm has three steps:

1) Initialization step: Divide the whole area intoi-
rectangles (the ones introduced in the Scanning Algo-
rithm). Number the targets in each of thei-rectangles
and create “levels”, which are collections of targets that
have the same number (from differenti-rectangles).

2) Pre-processing step: Remove all targets from levels that
have a few targets (the exact number will be shown
below).



3) Level processing step: Trace the non-empty levels
top-down and at each level, applying the Scanning
Algorithm to each of them.

Initialization:
Here, we will introduce another constantk2 (analogous

to k1). We will study the performance of the algorithm for
any k1 andk2, and in the end we will choosek1 andk2 to
minimize the bound on the expected tour length.

In the initialization step, we first divide the area into the

i-rectangles, each with widthw =
k
2/3
2 (WH)2/3

ρ1/3(2n)2/3 and length

l =
2k

1/3
2 ρ1/3(WH)1/3

(2n)1/3 . We randomly number the targets in
eachi-rectangle. Targets from differenti-rectangles that have
the same number will form a “level”. We think of eachi-
rectangle as a stack, and the targets in it as elements on top
of each other in the stack, ordered by the numbers we gave
them. It is useful to imagine the area A now as a histogram,
where above everyi-rectangle there is a stack that contains
the targets in thati-rectangle. It is obvious that a lower level
cannot contain less targets than any of those above it.

We will study the probability distribution ofX, the random
variable indicating the number of points in any one of the
i-rectangles, asn → ∞. X has a binomial distribution of
n trials and probability of successk2

n . This means that, as
n → ∞ :

p.d.f.(X) → Poisson(n
k2

n
)

= Poisson(k2)

Therefore the probability that the number of points in a
certain i-rectangle isi is given by:

P (X = i) =
e−k2ki

2

i!

Pre-processing:
The reason pre-processing is needed is that in the Scanning

Algorithm, we assumed that the number of targets is large.
If the area of the rectangles is large (their number is small),
the bounds that we have proved will not hold. We therefore
need to clear all levels that have a small number of targets
(less thann1/2).

Doing this is actually not difficult at all, since we know
that the number of levels is less thanln(n) almost surely.
This means that the total number of targets in all levels that
have less thann1/2 is less thann1/2 ln(n). Therefore, they
can all be cleared using a tour that has a tour length that is
O(n1/2 ln(n)).
Level Processing:

The algorithm passes over each of the remaining levels
once . When processing leveli, we only consider the targets
in that level and apply the Scanning Algorithm to them ,with
k1 = ki!. It is obvious that the setting satisfies all of the
assumptions in the auxiliary problem. Applying the Scanning
Algorithm guarantees that we take a constant factor ofc =
e−

4
5ki! of the targets in leveli. We also guarantee that if the

number of targets in theith level is ti, the length of the tour
of the Scanning Algorithm in theith level is O((i!ti)

2/3).

B. Level Algorithm Constant Factor Guarantee:

The Scanning Algorithm guarantees that the vehicle visits
a constant factor of the targets at each level. Here, we will
prove that applying the Scanning Algorithm to all of the
levels will make the vehicle visit a constant factor of the
total number of targets.

Let Y be the random variable representing the number of
targets in ani-rectangle after the Level Algorithm has been
applied. ForY to take a certain valuej, the rectangle should
have containedi ≥ j targets initially, and exactlyi−j targets
were taken in thei passes that this rectangle was involved in.
The scanning algorithm guarantees that the probability that
a target is removed isc(i) = e−

4
5ki! . Thus the probability

that Y takes a certain valuej is given by:

P (Y = j) =
∑

l≥j

P (X = i)
l!

(l − j)!j!
(1 − c(1))jc(1)i−j

≤
∑

l≥j

e−k2kl
2

l!

l!

(l − j)!j!
(1 − c(1))jc(1)l−j

≤ [1 − c(1)]jkj
2e

−k2

j!

∑

l≥j

[c(1)k2]
l−j

(l − j)!

=
e−k2+c(1)k2 [k2(1 − c(1))]j

j!

This is clearly dominated by a Poisson distribution with
parameterk2(1 − c(1)). This also guarantees the remaining
targets to be less than1 − e−

4
5k of the original targets.

C. Level Algorithm Expected Length

In each pass in the level algorithm, we are removing a
constant factor of thetj targets in thejth level, and to do
this, we are travelling:

(WH + Wc1)(ρ
1/3)

3
√

(WH)2
(k1(j)tj)

2/3

Therefore the total length of the Level algorithm (LL )can
be bounded by:

LL =
(WH + Wc1)(ρ

1/3)
3
√

(WH)2

∑

j≥1

E[(kj!tj)
2/3]

By Jensen’s inequality:

≤ (WH + Wc1)(ρ
1/3)

3
√

(WH)2
(k)2/3

∑

j≥1

(E[j!tj ])
2/3

Now, the expected number of points in a level is the
number ofi-rectangles that have stacks not lower than that
level. Therefore,

E[j!tj ] =
n

k2
P (X ≥ j)

=
j!n

k2

∑

i≥j

e−k2ki
2

i!



≤ j!nkj
2

k2j!
= nkj−1

2

Therefore,

LL ≤ (WH + Wc1)(ρ
1/3)

3
√

(WH)2
(k)2/3

∑

j≥1

(
nkj

2

k2
)2/3

=
(WH + Wc1)(ρ

1/3)
3
√

(WH)2
(kn)2/3

∑

j≥1

k
2
3 (j−1)
2

=
(WH + Wc1)(ρ

1/3)
3
√

(WH)2
(kn)2/3S(k2)

Where
S(k2) =

∑

j≥1

k
2
3 (j−1)
2

We have the constraintk2 < 1 to guarantee thatS(k2) is
finite.

D. Iterating the Level Algorithm

To iterate the level algorithm, it is necessary to bound the
distribution of the remaining targets by a uniform distribution
of αn targets whereα < 1.

The detailed proof of this bound is long, and will not be
presented here. The fact that the distribution of the targets
is uniform after the Level Algorithm is applied can be seen
because of the following facts:

1) The distribution of remaining targets in leveli + 1 is
”better” than the distribution of a factor of the targets
in level i.

2) If k ≤ 1
4k2(1−e−k2 )

, then the remaining targets in

level 1 can be bounded by[1− e−
4
5k ]t1 independently

distributed targets.

The first fact follows because the number of strips in level
i is decreasing at a much slower rate than the number of
targets in leveli as a function ofi. This is also what causes
the Level Algorithm to removee−

4
5ki! of the targets in level

i. This means that the remaining targets in leveli will be
more sparse than in leveli − 1.

The second fact follows from the geometry of strips in
level 1 and thei-rectangles.

Therefore, with the assumption thatk ≤ 1
4k2(1−e−k2 )

, the
remaining targets after the level algorithm is applied can be
bounded by uniformly distributed[1 − e−

4
5k ]n targets.

E. Total Length:

If we define M by:

M =
(WH + Wc1)(ρ

1/3)
3
√

(WH)2

The total length of iterating the Level Algorithm will be
bounded by:

Lt ≤ MS(k2)(
k

k2
)2/3n2/3

∞
∑

i=0

[1 − e−
4
5k ]

2i
3

= M
S(k2)

k
2/3
2

k
2/3
1

1 − [1 − e−
4
5k ]

2
3

n2/3

Now, k and k2 can be chosen to minimize the constant
factor. If k = 2.13 andk2 = 0.37, we will have :

Lt ≤ 4.9
(WH + Wc1)(ρ

1/3)
3
√

(WH)2
n2/3

V. CONCLUSIONS

In this paper, we studied the Stochastic DTSP, proved
that the expected length of the optimal tour isΘ(n2/3). The
algorithm we provided is novel and achieves a new bound.
Another important property is that it can be generalized to
when the area is not rectangular or the distribution is not
uniform.

VI. FUTURE WORK

We have already generalized the results to the case of
non-uniform distributions (with a finite number of discon-
tinuities), and it will be reported elsewhere. For the non-
uniform distribution scenario, we provided a lower bound
that is Θ(n2/3) (it was different from the uniform case in
that it depended on the probability distribution function of
the targets), and we generalized the Iterated Level Algorithm
so that it provides a tour that has an expected length that
is O(n2/3). These results will also help in the study of
DTRP, where the DTRP is the travelling repairman problem
introduced by Bertsimas and Van Ryzin in 1991 [7]. The
DTSP and DTRP in the non-uniform case were never studied
due to their complexity compared to the uniform case. The
Generalized Iterated Level Algorithm will allow us to study
that problem, and we hope to provide a lower bound and a
constant factor algorithm for it.
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