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Abstract—In this paper, we study the Stochastic Travelling two (C,C,C) curves are possible because for a (C,C,C) curve,
Salesperson Problem for a vehicle that is constrained to move since the orientation of the first and last arcs has to be the
forwards with a bound on the minimum turning radius. For  g5me The optimal path is usually determined by trying all si

(énugqﬁogrplilhglsggﬁrfgfj tgﬁ?eﬁz’s |;|slol;c1;wgobhr$ iﬁiteépszgeg configurations and choosing the one that has the least length

(where k is a constant that depends on the geometry of the area). 1here are some studies that specify which path is optimal for
We design a novel algorithm that performs within a constant any configuration of points and headings [9]. It is important

factor of that lower bound. This proves that the expected to note that the Dubins metric (not really a metric) becomes
length of the optimal tour of the Stochastic Dubins Travelling  ¢jose to the Euclidean metric when the points are very far
Salesperson Problem (SDTSP) is of the order of exactly™'™. away, but it has radically different characteristics as the
| INTRODUCTION tEouclldean distance between the points becomes comparable
p-
The Travelling Salesperson Problem is defined as follows: The TSP problem for the Dubins vehicle (DTSP) is a

Given a graph ofi < oo points , find the Hamiltonian circuit TSP problem where the path can be traversed by a Dubins

that incurs the minimum cost. Here, the cost is defined as tl('/%hicle This implies two requirements, the first is that

sum of the weights of the individual edges of the circuit. Th%etween any two points, the path taken is a Dubins curve
weights of the edges can be anything that is non—negativghe second requiremen,t is that the headings of the two

They can be symmetric or asymmetric, satisfy the triangulgs .-« <\ rves that meet at the same point are the same.

inequality or not, or they can have special structure th%o for a fixed heading at each point, the DTSP is reduced

makes the 4pr%blegn _T_(r)]lvable n polynomﬁll tl_me dl(rj] 30";]‘?0 an asymmetric TSP problem where the distances satisfy
instances [4] [6] [8]. The more structure that is added, t e triangular inequality. Finding the optimal headings is

easigr the problem becomes.. The Euc_lidean TSP is wid rd, because changing the heading at one point changes
studied and has polynomial time algorithms that produce fhe distance from that point to all other points. This means

tour whose length is withir{l + ¢) times the shortest tour y ..\ o have two NP problems (TSP and minimizing a non-
for any e [8].On_ the other hand, we kn_ow Qf no way that Ca%onvex function) that are interwind. The Stochastic DTSP
closely approximate TSP problems with little or no strueturproblem is the problem in which the points are generated by

n polynom|_al tlme.. ) i ) ) a random process, and the cost is the expected value of the
The Dubins vehicle is a nonholonomic vehicle with Aour length

lower bound on its turn radius, which we will call It is an . o
appropriate model for many vehicles and robots, especially Theé DTSP and the Stochastic DTSP are coming into the
aerial and marine vehicles. The name follows the mathemafficture because of advances in robotics and the growth of
cian who was the first to prove that under average curvatufgerest in Unmanned Aerial Vehicles (UAV's). The possible
constraints (or minimum radius constraints), the follyvis ~ US€ ©f robots and UAV's in search and rescue missions,
true: Given any two pointg; and p;, and the headings at sqrveﬂlance .and many other appht_:atlons that. require- opti
those points, the paths with minimum distance always exigflized planning of a route make this problem important for
He also proved that the optimal path always takes one of tw§€ near future. The Dubins vehicle is the natural simple
forms (C,C,C), (C,S,C) or any truncation of those two formgmnodel for many of those vehicles and robots,_ and thus |f[ is
Here, C stands for a circular arc (clockwise or anticlockyis € appropriate model to use for path planning . Studying
whose radius is the minimum turning radiyg,(and S stand the DTSP apd the Stochasnc DTSP might also offer |nS|g_ht
for a straight line segment [3]. to the golutmn of different prob_lems where there are still
In both forms of the Dubins path ((C,C,C) and (C,S'C))'cons_trallnts on the curvature. This is a more general .cllass of
the first (last) curve is a part of the circle of radipghat applications that allows the cost f'unctlon to be modified to
is tangent to the given heading at the first (last) point. Twgccount for areas of danger, priority between customers and
such circles can be constructed for each point, on differefi@ny other applications that seem to be dawning with the
sides of the line indicating the heading. One of these arcld€asibility of making commercial autonomous vehicles and
has clockwise orientation and the other has anti-clockwig@P0ts:
orientation so that the orientation of the circle would also Our work will mainly build on the work of Savla, Fraz-
match the orientation of the heading at the point. So, for 20li and Bullo in [1],[2]. They studied the same problem,
given pair of points and their headings, there are four (©),S, established a tight lower bound and an upper bound, and
curves that can be constructed to connect the points. Ornyovided and algorithm that results in a tour of expected



length O(n?/31n((n))*/3)!. So the problem that we are Proposition 1:
addressing is the following: Given a rectangle R(of alga  asd — 0, |C| < |L| + o(|L)).
height H and width1/) andn points randomly distributed in
A (wheren is large), we want to find the expected optimal
length of the Dubins vehicle path through all of the points,
and an algorithm that performs close to the expected optimal
length.

The rest of this paper will be organized in the following
manner: In section 2, we will introduce some of the notation
and prepare the ground for our study by citing some results

that are relevant. We will also provide some points that are . L
direct extensions to some results, and prove other facts tha | | -

we will be needing. In section 3, we will solve an essential L]

auxiliary problem and introduce the “ Scanning Algorithm”,

which will be an integral element in our constant factor Figure 1: Optimal path from a point to a straight line

algorithm. In section 4, we describe the “Iterated Level

Algorithm” and prove that it performs within a constant , ) . o )
This means that if a Dubins vehicle is moving parallel to

factor of the lower bound. Section 5 has the conclusions | s ' g
and 6 has the future work. a line and close to it, it can go onto the line and continue

moving on it with almost no loss compared to the case where
[I. BACKGROUND AND NOTATION the vehicle is on the line from the beginning.
To prove this proposition we will have three steps:

In this section we mainly introduce the notation we will )
1) Determine C.

use and provide direct extensions of previous results that
are necessary for our proofs. Most of the results are from 2) Prove thatl| = 2v/pd — o(d).

those on the point to point Dubins vehicle problem and some 3) Prove thaiC’| < 2v/pd + o(d).

related problems. Since the Dubins curve, and thus Dubins The first step is a known result: i < p; then the shortest
distance, depend on the headings at each target; a tarfj@iectory of the vehicle is made up of two circular arcs
is usually augmented with an angle and is represented Yith radiusp [5]. The first arc is tangent to the straight line
(R2, S) where S=[W] represents the angle that the headingassing through and parallel toL, the second is tangent

vector at the point makes with the x-axis. to L and both arcs are tangent to each other at the point of
their intersection.
A. Optimal tour length lower bound: The second and third steps can be achieved by using

From [1], givenn targets that are uniformly distributed Figure 1 and a bit of basic geometry: Ligt, be the point of
in a region, the expected length of the optimal TSP touftersection of the two arcs it. By symmetry,p,, is the
by a Dubins vehicle over all of the points §(n2/3). For rmddle point onC betweernp andp;. Denote the EucI_|dean
the same problem, if the vehicle does not have any dynamfiStance betweep andp,, by d.; we have the following:
constraints (it can change directions instantaneoushen t ) .
the expected length of the optimal TSP toud$,/n). |L|” = 4d;y —d

—d/2
B. Distance between close points for a Dubins vehicle: =4(2p% — 2p2(pp/)) —d? = 4pd — d*
Let a straight linel., and a Dubins vehicle with minimum

turning radiusp at a point(p, ¢) such that the heading at Therefore asi — 0,

is parallel toL (if L is parallel to the x-axis, thep = 0) . IL| = 2¢/pd — o(d)
Denote the Euclidean distance frgmo L (the length of the

projection ofp on L) by d and the point that is the projection _|L|/2
of p on L by pr. Denote the shortest curve that the vehicle |C| = 2p * arcsin( P )
has to follow to go from(p, ¢) to L and keep moving o

by C. so asd — 0, |C] < 2v/pd + o(d)

The requirement that the vehicle has to keep moving on More importantly, asd — 0, |C] < |L| + o(|L|) This
L means that” should be tangent t& at the point of their Proves the proposition.
intersection f). Let |C| be the length ofC from p till ps l1l. SCANNING ALGORITHM

and |L| the distance betweew andp; . . . . . o
12 & s In this section, we will try to solve the following auxiliary

lwe say a functionf(n) is O(g(n)) if there is ac > 0 such that problem: . ) )
limy, oo LZ) < ¢ (the limit could be 0), we sayf(n) is Q(g(n)) if Let R be a rectangular area with height H and Width
g(n) is O(f(n)) and we sayf(n) is ©(g(n)) if there is ac > 0 such W that is covered byn? congruent “initial* rectangles (i-
thatimy— oo % = c¢. We sayf(l) is o(l) if limj_o L2 — 0 rectangles), each of which has a height= £ and width



w = % Also, let; of them? i-rectangles have one target in When the vehicle is in strip, the retrieval area is the
each of them andm — i) be empty. For large andm, and set of points in strip that the vehicle can reach without
if the distribution of the non-empty rectangles is uniform, going out of strip: (Figure 2).
design an algorithm that determines a tour for a Dubins , .
vehicle so that it visits at least constant factor of iitargets B+ Algorithm Description:
and has an expected tour length that(§i%/?). The scanning Algorithm can be described as follows:

We now introduce the Scanning Algorithm, which will We will assume that{ is horizontal andiV is vertical.
solve the problem above. We begin with some terminologWe divide the area into strips that have widih (i), and
and definitions that will be needed in the algorithm andiumber them from the bottom up. The vehicle moves bottom
bound proofs. along the length of the strips, on the same horizontal level
as the closest target in the retrieval area. It moves to that
level using a minimal length curve as in Figure 1. When the
vehicle finishes strig, it moves to stripj + 1 and moves on
it in the opposite direction.

C. Constant factor:

Consider a targep in any strip, with distancesw;(¢)
and (1 — Mws(i) from the edges of the strip (Figure 2). If
the shaded regiofSS) in Figure 2 is empty, the vehicle will
visit p. By symmetry, the areas of ttgis ,/p(Aws(4))/% +
Pl(L = N, ()],

To bound the probability thaf is empty, we use the
following lemma:

A Lemma 1:For largei and m, the probability thatS is
N\ empty under the given distribution of targets is greatentha
the probability thatS is empty if the targets were uniformly
distributed.

Proof: The proof considers the generation of the targets,
conditioned on the fact that already exists.

Under the uniform distribution, every target other than
Aws (1)) 2 [(1=N)w, ()]*/?)
WH

yd

Figure 2 - 5
This figure shows segments of strips. The border lines are p has a probability of ¥2
guidance lines. The curves are the shortest paths from the vehiclé/?+(1-x)%/2 of being inS.

h i lines. ki . S .
, tOt, e guidance lines o Under the given distribution, the first target has a prob-
1) (Top) will be retrieved unless the vehicle is in the shaded

T vs(1))3/ — S(1)]3/2)— .
area. ability of 2w 2+1[4(,1H VO \where o is the
2) (Bottom) The Scanning Area of the vehicle at point A. area of the intersection of therectangle containing and
S. The consequent targets have less probability than the first
A. Algorithm Terminology and Definitions: because of the assumption thizandm are large.
. . N Therefore, the probability thé containsiy > 0 targets
In the Scanning Algorithm, we will divide the whole (e thany) is less than the probability that containsi,
rectapgle R into strlps.. Lek, > 0 b? a parameter of th? targets if the targets were uniformly distributed. The hesu
algorithm (to be determined later). With no loss of gen&yali ¢51ows directly -
the strips h"’_‘V? beep chosen to be parallel to H. It will be The number of targets i under the uniform distribution
shown that it is optimal that the strips are parallel to the; . boisson variable with parameter:

longer of the sides. After dividing R int@)%%?;/g strips,

{/ 3/2 —\)3/2
the width of each strip will be: AT (]j A)
1
Q) $/(WH)? ) Therefore, the probability th&t is empty (giverp) is greater
Ws() = 575 .
s p1/3(ky1)2/3 than: R
e k1
We will now define some terms that we will use in the
algorithm: Since A is uniformly distributed between 0 and 1, the
probability that any targep will be visited by is greater

1) Guidance Lines: han:
The lines that are between the strips are called gui&-an'
ance lines, since the vehicle will move in between

them. L a32p003/2 12 wr2pa-n3z
; . e k1 d\=2 e k1 dA
2) Retrieval Area: 0 0



Now, since—\%/2 — (1 — X\)?/2 is monotonic increasing  Thus the total distance travelled in one loop over the whole
between0 and1/2, and the exponential function is convex,square is bounded by:

we can use Jensen’s inequality, and get our bound:
NQ[DGL + Dturn] + co

__4
P>e which is equal to:
This means that the Scanning Algorithm will allow the WH+Wc 1
. . 4 . ———— + H+ca+of =)
vehicle to retrieve at least %1 of the i targets. ws (%) ws (1)
D. Bound on the length of the SA tour: [ ]

Therefore, The length of the distance travelled by the
Jehicle following the Scanning Algorithm is bounded by two
times the maximum distance travelled in any certain pass
over the guidance lines.

Lemma 1:
The maximum distance travelled by the scanning alg
rithm is less than:

% + H + ¢y + o ! (_)) Therefore for large and from Lemma 1 and the fact that
Ws (2 wg (2
3 H 2

First, we will start by finding the distance travelled when P 1
crossing one guidance line: For a certain pass on one of the WH+We, 1
guidance lines in which we retrievetargets, we denote the Dsa < w5 (7) + O(w (i))
retrieval cost (as defined before) of t}i¢ target byL; and * ’
the_d|stance on the guidance line that was skipped by the _ (WH+ We)(p/3) 12/
retrieval byl;. We have: = S/ (WH)? (K1)

k Therefore, the Scanning Algorithm visits a constant factor
D oli+ly=H. of the i targets inO(i%/?).
j=1
Wherel; is the distance travelled on the guidance line. We V. I TERATED LEVEL ALGORITHM

also have, because of the assumption thatlarge (v, (i) < In this section, we will solve the following problem: Given
p): n targets that are uniformly distributed in a rectangle R

Vi, that had widthi and heightH; design an algorithm for a
L; <l + o(y/ws(i)). Dubins vehicle that will allow it to visit all of the targets
with a tour whose length i€)(n?/3).
Therefore Here, we will present the Iterated Level Algorithm that
k will have a performance within a constant factor of the
ZLJ +1y < H + o(\/ws(i)). established lower bound. To do that, we will create an
7=l O(n?/3) algorithm (the Level Algorithm) that removes a

Where the reason the last ternvis,/w, (1)) can be proved Cconstant factor of the targets while keeping remainingetarg

. . % . uniformly distributed. This algorithm can be iterated till
by proving that the longest pass will be wh W) points the remaining number of targets is less thgh and the

. o . ) r}%maining targets can be easily removed by a tour with

guidance I}ne isw.(7). The total length will therefore be length O(,/n). We will first present the Level Algorithm

of o(y/ws (7). . . . . and then prove the necessary bound on the produced tour's

. Therefore the distance travelled in traversing one gulelan(éxpected length. We will then prove that the distribution of

line is bounded by the remaining targets at the end of the Level Algorithm will
Dgr, = H + o(y/ws(1)). be bounded by a uniform distribution. The bounds on the

) ) .. Expected length of the Iterated Level Algorithm will follow
To turn from one guidance line to the other, an additional

distance bounded by;.,., = ¢1 + ws(i) is needed; where A. Level Algorithm Description
c1 < 2.658mp [2]. ) ) _ The Level Algorithm has three steps:
The number of guidance lines Is 1) Initialization step: Divide the whole area into

N < w 1 rectangles (the ones introduced in the Scanning Algo-
9= ws(i) rithm). Number the targets in each of theectangles

To go back to the beginning of first guidance line, we must and create “levels”, which are collections of targets that

travel at most the diagonal of the square and some distance have the Same numper (from dlllfferentecftanglles).l h
for changing direction. This total distance is bounded by ~ 2) Pré-processing step: Remove all targets from levels that

have a few targets (the exact number will be shown

co=VW2+H?2+ ¢ below).



3) Level processing step: Trace the non-empty levelB. Level Algorithm Constant Factor Guarantee:

top-down and at each level, applying the Scanning The scanning Algorithm guarantees that the vehicle visits
Algorithm to each of them. a constant factor of the targets at each level. Here, we will
Initialization: prove that applying the Scanning Algorithm to all of the
Here, we will introduce another constaki (analogous levels will make the vehicle visit a constant factor of the
to k1). We will study the performance of the algorithm fortotal number of targets.

any k; andk,, and in the end we will choosk, and ks to Let Y be the random variable representing the number of
minimize the bound on the expected tour length. targets in ari-rectangle after the Level Algorithm has been
In the initialization step, we first d|V|de the area into theapplied. ForY to take a certain valug, the rectangle should
i-rectangles, each with widthy = #g;/g and length have contained > j targets initially, and exactly—j targets
2 /3 1153 (W py L/ were taken in the passes that this rectangle was involved in.
I = =Gz — We randomly number the targets intpe scanning algorithm guarantees that the probability tha

eachi-rectangle. Targets from differentectangles that have 3 target is removed ig(i) = e~5#7. Thus the probability
the same number will form a “level”. We think of eath thaty takes a certain valug is given by:

rectangle as a stack, and the targets in it as elements on top

of each other in the stack, ordered by the numbers we gave

them. It is useful to imagine the area A now as a histogram, P(Y/ => P(X lilu(l c(1)) (1)
where above everitrrectangle there is a stack that contains 1> (=)
the targets in thatrectangle. It is obvious that a lower level o—ha
. . k I _ .
cannot contain less targets than any of those above it. < Z 7(1 c(1)) e(1)7
We will study the probability distribution ok, the random 1> b =a)!
variable indicating the number of points in any one of the . .
i-rectangles, as — oo. X has a binomial distribution of c-cd ) kje"2 3 [c(1)ka]' ™7
n trials and probability of succes&. This means that, as - J! = (=
n— oo : )
p.d.f (X) — Poisson(n%) _ e karelDha [y (1 — ¢(1)))
g!
= Poisson(ks) This is clearly dominated by a Poisson distribution with

Therefore the probability that the number of points in %)arameterkz(l —cl)). Th|§flso guarantees the remaining
. o . argets to be less thah— e~ 5% of the original targets.
certaini-rectangle is is given by:

o ko i C. Level Algorithm Expected Length
P(X =1i) = 2

il In each pass in the level algorithm, we are removing a
constant factor of the; targets in thej*" level, and to do

Pre-processing: this, we are travellin
The reason pre-processing is needed is that in the Scanning”’ 9

Algorithm, we assumed that the number of targets is large. (WH + Wey)(p'/?)
If the area of the rectangles is large (their number is small) V)2

the bounds that we have proved will not hold. We therefore
need to clear all levels that have a small number of targets Therefore the total length of the Level algorithibz()can

(k1 (5)t;)%?

(less thann'/?). be bounded by:

Doing this is actually not difficult at all, since we know (WH + Wer)(p/?)
that the number of levels is less thamn) almost surely. L= y ZE (kj't;)2/3]
This means that the total number of targets in all levels that vw j>1

have less tham'/? is less tham'/?In(n). Therefore, they o
can all be cleared using a tour that has a tour length that i
O(n'/?1n(n)). (WH + Wei)( k)?/3 Z )2/3
Level Processing: - (WH)
The algorithm passes over each of the remaining levels

once . When processing levelwe only consider the targets Now, the expected number of points in a level is the
in that level and apply the Scanning Algorithm to them ,witthumber ofi-rectangles that have stacks not lower than that
ki1 = kil. It is obvious that the setting satisfies all of thelevel. Therefore,
assumptions in the auxiliary problem. Applying the Scagnin

Algorithm guarantees that we take a constant factor of

e~stn of the targets in level. We also guarantee that if the ko
number of targets in th&” level ist;, the length of the tour =47 Z € i K
of the Scanning Algorithm in thé?” level is O((it;)?/?). ke = i!

sy Jensen’s inequality:

j>1

. n .
E[j't;] = ,gP(X > )




jink?

_ j—1
il

Therefore,

(WH +We) () 1 asx—, 1k o)
b Y/ (WH)? (k723 k) 3

Jj=1

(WH + Wey)(p'/?) (kn)?/? Z kz-%(j—l)

V(WH)? i1
_wH+ Wer)(p'/?) (k)35 (k)
v (WH)?

Where 2 o)
S(ka) = Zk’fu_
i>1

We have the constraint, < 1 to guarantee thaf(ks) is
finite.

D. Iterating the Level Algorithm

Sk WP
K231 —[1— e 3k)3
Now, £ and k; can be chosen to minimize the constant
factor. If k = 2.13 and k, = 0.37, we will have :

(WH + We)(pM*) s
V(WH)?
V. CONCLUSIONS
In this paper, we studied the Stochastic DTSP, proved
that the expected length of the optimal tould$n?/?). The
algorithm we provided is novel and achieves a new bound.
Another important property is that it can be generalized to

when the area is not rectangular or the distribution is not
uniform.

2/3

L < 4.9

VI. FUTURE WORK

We have already generalized the results to the case of
non-uniform distributions (with a finite number of discon-
tinuities), and it will be reported elsewhere. For the non-
uniform distribution scenario, we provided a lower bound
that is ©(n?/?) (it was different from the uniform case in

To iterate the level algorithm, it is necessary to bound thfﬁa’[ it depended on the probability distribution functich o

distribution of the remaining targets by a uniform disttiba
of an targets wherev < 1.

The detailed proof of this bound is long, and will not be;g O(n2/3)

the targets), and we generalized the Iterated Level Algarit
so that it provides a tour that has an expected length that
. These results will also help in the study of

presented here. The fact that the distribution of the targehTrp, where the DTRP is the travelling repairman problem
is uniform after the Level Algorithm is applied can be seef,iroquced by Bertsimas and Van Ryzin in 1991 [7]. The

because of the following facts:
1) The distribution of remaining targets in level 1 is

DTSP and DTRP in the non-uniform case were never studied
due to their complexity compared to the uniform case. The

"better” than the distribution of a factor of the targetsGeneralized Iterated Level Algorithm will allow us to study

in level 7.

that problem, and we hope to provide a lower bound and a

2) If k& < m then the remaining targets in constant factor algorithm for it.

level 1 can be bounded bt — ¢~ 5% ]¢; independently
distributed targets.
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