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Global Stability of Relay Feedback Systems
Jorge M. Gonçalves, Alexandre Megretski, and Munther A. Dahleh

Abstract—For a large class of relay feedback systems (RFS)
there will be limit cycle oscillations. Conditions to check existence
and local stability of limit cycles for these systems are well known.
Global stability conditions, however, are practically nonexistent.
This paper presents conditions in the form of linearmatrix inequal-
ities (LMIs) that, when satisfied, guarantee global asymptotic sta-
bility of limit cycles induced by relays with hysteresis in feedback
with linear time-invariant (LTI) stable systems. The analysis con-
sists in finding quadratic surface Lyapunov functions for Poincaré
maps associatedwithRFS. These results are based on the discovery
that a typical Poincaré map induced by an LTI flow between two
hyperplanes can be represented as a linear transformation analyti-
cally parametrized by a scalar function of the state.Moreover, level
sets of this function are convex subsets of linear manifolds. The
search for quadratic Lyapunov functions on switching surfaces is
done by solving a set of LMIs. Although this analysis methodology
yields only a sufficient criterion of stability, it has proved very suc-
cessful in globally analyzing a large number of examples with a
unique locally stable symmetric unimodal limit cycle. In fact, it is
still an open problem whether there exists an example with a glob-
ally stable symmetric unimodal limit cycle that could not be suc-
cessfully analyzed with this new methodology. Examples analyzed
include minimum-phase systems, systems of relative degree larger
than one, and of high dimension. Such results lead us to believe
that globally stable limit cycles of RFS frequently have quadratic
surface Lyapunov functions.

Index Terms—Global asymptotic stability, limit cycles, piecewise
linear systems, Poincaré maps, relay feedback systems.

I. INTRODUCTION

I T IS OFTEN possible to linearize a system, i.e., to obtaina linear representation of its behavior. That representation
approximates the true dynamics well in a small region. For ex-
ample, the true equations of the pendulum are never linear but,
for very small deviations (a few degrees) they may be satisfacto-
rily replaced by linear equations. In other words, for small devi-
ations, the pendulum may be replaced by a harmonic oscillator.
This ceases to hold, however, for large deviations and, in dealing
with these, one must consider the nonlinear equation itself and
not merely a linear substitute. In this work we are interested in
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a class of nonlinear systems known as piecewise linear systems
(PLS). PLS are characterized by a finite number of linear dy-
namical models together with a set of rules for switching among
these models. Therefore, this model description causes a parti-
tioning of the state space into cells. These cells have distinctive
properties in that the dynamics within each cell are described by
linear dynamic equations. The boundaries of each cell are in ef-
fect switches between different linear systems. Those switches
arise from the breakpoints in the piecewise linear functions of
the model.
The reasonwhywe are interested in studying this class of sys-

tems is to capture discontinuity actions in the dynamics from ei-
ther the controller or system nonlinearities. On one hand, a wide
variety of physical systems are naturally modeled this way due
to real-time changes in the plant dynamics like collisions, fric-
tion, saturation, walking robots, etc. On the other hand, an engi-
neer can introduce intentional nonlinearities to improve system
performance, to effect economy in component selection, or to
simplify the dynamic equations of the system by working with
sets of simpler equations (e.g., linear) and switch among these
simpler models (in order to avoid dealing directly with a set
of nonlinear equations). Examples include control of inverted
pendulums [3], control of antilock brake systems [21], control
of missile autopilots [7], control of autopilot of aircrafts [23],
auto-tuning of PID regulators using relays [4], etc.
Although widely used, very few results are available to

analyze most PLS. More precisely, one typically cannot
guarantee stability, robustness, and performance properties of
PLS designs. Rather, any such properties are inferred from
extensive computer simulations. However, in the absence of
rigorous analysis tools, PLS designs come with no guarantees.
In other words, complete and systematic analysis and design
methodologies have yet to emerge.
This paper introduces a newmethodology to globally analyze

PLS using quadratic surface Lyapunov functions. This method-
ology is based in finding quadratic Lyapunov functions on as-
sociated switching surfaces that can be used to prove that a map
from one switching surface to the next switching surface is con-
tracting in some norm. The novelty of this work is based on ex-
pressing maps induced by an LTI flow between two switching
surfaces as linear transformations analytically parametrized by
a scalar function of the state. Furthermore, level sets of this
function are convex subsets of linear manifolds with dimen-
sion lower than the one of the switching surfaces. The search
for global quadratic Lyapunov functions on switching surfaces
is then done by solving a set of LMIs, which can be efficiently
done using available computational tools.
The main difference between this and previous work [17],

[20], [15], is that we look for quadratic Lyapunov functions on
switching surfaces instead of quadratic Lyapunov functions in

0018–9286/01$10.00 © 2001 IEEE



GONÇALVES et al.: GLOBAL STABILITY OF RELAY FEEDBACK SYSTEMS 551

the state space. An immediate advantage is that this allows us to
analyze not only equilibrium points (recently, we proved global
asymptotic stability of on/off systems [10] and saturation sys-
tems [11]) but also limit cycles. Another advantage is that, for
a given PLS, complexity of analysis is the same for high-di-
mension or low-dimension systems. In [17], [20], [15], parti-
tioning of the state-space is the key in this approach. For most
PLS, construction of piecewise quadratic Lyapunov functions
is only possible after a more refined partition of the state space,
in addition to the already existent natural state-space partition
of the PLS. As a consequence, the analysis method is efficient
only when the number of partitions required to prove stability
is small. As illustrated in an example in [9], however, even for
second order systems, the method can become computationally
intractable. Also, for high-order systems, it is extremely hard to
obtain a refinement of partitions in the state-space to efficiently
analyze PLS.
To demonstrate the success of this methodology, we apply

it to a simple yet very hard to analyze class of PLS known as
relay feedback systems (RFS). Although the focus of this paper
is on RFS, it is important to point out that most ideas behind the
main results described here can be used in the analysis of more
general PLS.
Analysis of RFS is a classic field. The early work was moti-

vated by relays in electromechanical systems and simple models
of dry friction. Applications of relay feedback range from sta-
tionary control of industrial processes to control of mobile ob-
jects as used, for example, in space research. A vast collection of
applications of relay feedback can be found in the first chapter
of [24]. More recent examples include the delta–sigma modu-
lator (as an alternative to conventional A/D converters) and the
automatic tuning of PID regulators. In the delta–sigma mod-
ulator, a relay produces a bit stream output whose pulse den-
sity depends on the applied input signal amplitude (see, for ex-
ample, [1]). Various methods were applied to the analysis of
delta–sigma modulators. In most situations, however, none al-
lowed to verify global stability of nonlinear oscillations. As for
the automatic tuning of PID regulators, implemented in many
industrial controllers, the idea is to determine some points on
the Nyquist curve of a stable open loop plant by measuring the
frequency of oscillation induced by a relay feedback (see, for
example, [4]). One problem that needs to be solved here is the
characterization of those systems that have unique global attrac-
tive unimodal limit cycles. This problem is important because it
gives the class of systems where relay tuning can be used.
Some important questions can be asked about RFS. Do they

have limit cycles? If so, are they locally stable or unstable? If
there exists a unique locally stable limit cycle, is it also globally
stable? Overmany years, researchers have been trying to answer
these questions. References [5], [24], and [19] survey a number
of analysis methods. Rigorous results on existence and local sta-
bility of limit cycles of RFS can be found in [2], [16], [25], and
[8]. Reference [2] presents necessary and sufficient conditions
for local stability of limit cycles. Reference [16] emphasizes fast
switches and their properties and also proves volume contrac-
tion of RFS. In [12], reasonably large regions of stability around
limit cycles were characterized. For second-order systems, con-
vergence analysis can be done in the phase-plane [22], [14].

Stable second-order nonminimum phase processes can in this
way be shown to have a globally attractive limit cycle. In [18],
it is proved that this also holds for processes having an impulse
response sufficiently close, in a certain sense, to a second-order
nonminimum phase process.Many important RFS, however, are
not covered by this result. It is then clear that the problem of rig-
orous global analysis of relay-induced oscillations is still open.
In this paper, we prove global stability of symmetric uni-

modal1 limit cycles of RFS by finding quadratic surface Lya-
punov functions for associated Poincaré maps. These results are
based on the discovery that typical Poincaré maps associated
with RFS can be represented as linear transformations param-
etrized by a scalar function of the state. Quadratic stability can
then be easily checked by solving a set of LMIs, which can be
efficiently done using available computational tools. Although
this analysis methodology yields only a sufficient criterion of
stability, it has proved very successful in globally analyzing a
large number of examples with a unique locally stable sym-
metric unimodal limit cycle. In fact, it is still an open problem
whether there exists an example with a globally stable sym-
metric unimodal limit cycle that could not be successfully an-
alyzed with this new methodology. Examples analyzed include
minimum-phase systems, systems of relative degree larger than
one, and of high dimension. Such results lead us to believe that
globally stable limit cycles of RFS frequently have quadratic
surface Lyapunov functions.
Note that although the stability analysis in this paper focuses

on symmetric unimodal limit cycles, similar ideas can be ap-
plied to prove stability of other types of limit cycles. As we will
see, analysis of symmetric unimodal limit cycles can be done by
analyzing a single map from one switching surface to the other
switching surface. Other types of limit cycles require a simul-
taneous analysis of several maps from one switching surface to
the other switching surface. Multiple maps, however, have been
shown in [10] and [11] to work as well as the single map de-
scribed in this paper.
This paper is organized as follows. Section II starts by giving

somemathematical preliminaries, including definitions of some
standard concepts. Section III gives some background on RFS
followed by the main results of this paper (Section IV). There,
we first show that Poincaré maps can be represented as linear
transformations, and then use this result to demonstrate that
quadratic stability of Poincaré maps can be easily checked by
solving sets of LMIs. Section V contains some illustrative ex-
amples. Improvements of the stability condition presented in
Section IV are discussed in Section VI. Section VII considers
several computationally issues associated with the stability re-
sults, and, finally, conclusions and future work are discussed in
Section VIII.

II. MATHEMATICAL PRELIMINARIES

The purpose of this section is to briefly introduce several
mathematical concepts and tools that will be used throughout
the paper. Mathematical tools like linear matrix inequalities and
a simple version of the -procedure are the engines behind the

1Symmetric unimodal limit cycles are those that are symmetric about the
origin and switch only twice per cycle.
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stability results presented later in the paper. For this reason,
these topics are briefly introduced for completeness.

A. Standard Notation
Let the field of real numbers be denoted by , the set of

vectors with elements in by , and the set of all
matrices with elements in by . Let denote the

identity matrix and superscript denote transpose. A matrix
is called symmetric if and positive definite

(positive semidefinite) if ( ) for all nonzero
. “ on ” stands for for all nonzero

. A matrix is Hurwitz if the real part of each
eigenvalue of is negative.
The 2-norm of is given by . Let denote

the space of all real-valued functions on such that
. A set is convex if

whenever and , and
is a cone if implies for any . A function

is piecewise constant if there exists a sequence of
points with and as ,

as , such that the function is constant in
. Let stand for the and
for the .

B. Linear Matrix Inequalities and the -Procedure
An LMI has the form

(1)

where is the variable and the symmetric matrices
, are given. The LMI (1) is a convex con-

straint on , i.e., the set is convex. Expressing
solutions to problems in terms of LMIs is a common practice
these days. Mathematical and software tools capable of effi-
ciently finding satisfying (1) are available. The strategy in this
paper is to express the problem of global analysis of relay-in-
duced oscillations as LMIs.
One tool that will be useful later in the paper is the -pro-

cedure. Here, we describe a simple version of this tool. Let
and be quadratic forms of the

variable , where and . Assume there
exists an such that . Then, the following condition
on

for all such that

holds if and only if there exists a such that

for all . For more information on LMIs and the -procedure
the reader is referred, for example, to [6].

III. BACKGROUND

In this section, we start by defining RFS and talking about
some of their properties. Then, we present some relevant results
from the literature on existence and local stability of limit cycles
of RFS. Finally, we define Poincaré maps for RFS.

Fig. 1. Relay feedback system.

A. Definitions
Consider a single-input–single-output (SISO) LTI system sat-

isfying the following linear dynamic equations:

(2)

where and is a Hurwitz matrix, in feedback with a
relay (see Fig. 1)

(3)

where is the hysteresis parameter. By a solution of (2)–(3)
we mean functions satisfying (2)–(3), where is
piecewise constant and

if , or
and

if , or
and

if
and
or and

is a switching time of a solution of (2)–(3) if is discontinuous
at . We say a trajectory of (2)–(3) switches at some time if
is a switching time.
In the state space, the switching surfaces and of the

RFS are the surfaces of dimension where is equal to
and , respectively. More precisely

and

Consider a subset of given by

This set is important since it characterizes those points in
that can be reached by any trajectory starting at . We call it
the departure set in (see Fig. 2). Similarly, define as

This is the arrival set in . It is easy to see that and
, where stands for the set .

B. Existence of Solutions
If an initial condition does not belong to a switching surface

then existence of solution is guaranteed at least from the initial
condition to the first intersection with a switching surface. This
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Fig. 2. The departure set .

Fig. 3. Existence of solutions when .

follows since, in that region, the system is affine linear. When
an initial condition belongs to a switching surface, however, de-
pending on the RFS, a solution may or may not exist. If
then existence of solution is always guaranteed since there is a
“gap” between both switching surfaces. This gap allows a tra-
jectory to evolve according to an affine system.
In the case of the ideal relay, i.e., when , for some

RFS there are initial conditions for which no solution exists. In
Fig. 3, we have two examples of ideal RFS. The figure shows
the vector field along both sides of the unique switching sur-
face . Above, the vector field is given by

, and below by . and are those
points in such that , respectively. On the left
in Fig. 3, , and on the right . When ,
every point in has at least one solution. For an initial condition
on the left of , the trajectory moves downwards, and on the
right of it moves upwards. In between and , the trajec-
tory can either move upwards or downwards. When ,
however, there is no solution if a trajectory starts between
and . The reason for this is that the vector field on both sides
of the switching surface points toward the switching surface. In
these situations, one of the following two alternatives is typi-
cally used to guarantee existence of solutions: 1) an hysteresis
with is introduced to avoid chattering; or 2) the definition
of relay in (3) is slightly modified to allow trajectories to evolve
in the switching surface, leading to the so-called sliding modes.
Here, we consider the first case. Although sliding modes are not
studied in this paper, we expect that such systems can be ana-
lyzed using the same ideas described here.
Hence, according to the definition of relay in (3), existence

of solutions is guaranteed if , or if and ,
where is the smallest number such that

(see [16] for details).
Note that trajectories of starting at any point

will converge to the equilibrium point . When
connected in feedback with a relay, one of the following two
possible scenarios will occur for a certain trajectory starting at
: this will either cross at some time, or it will never cross
. The last situation is not interesting to us since it does not lead

to limit cycle trajectories. One way to ensure a switch is to have

Fig. 4. Symmetry around the origin.

, although this is not a necessary condition
for the existence of limit cycles. However, if we are looking
for globally stable limit cycles, it is in fact necessary to have

. Otherwise, a trajectory starting at
would not converge to the limit cycle. Throughout the paper, it
is assumed .
As mentioned before, for a large class of processes, there will

be limit cycle oscillations. Let be a nontrivial periodic so-
lution of (2)–(3) with period , and let be the limit cycle
defined by the image set of . The limit cycle is called
symmetric if . It is called unimodal if it
only switches twice per cycle. A class of limit cycles of RFS
we are particularly interested in is the class of symmetric uni-
modal limit cycles.
The next proposition, proven in [2], gives necessary and suf-

ficient conditions for the existence of symmetric unimodal limit
cycles.
Proposition 3.1: Consider the RFS (2)–(3). Assume there

exists a symmetric unimodal limit cycle with period . Then
the following conditions hold

(4)
and

for

Furthermore, the periodic solution is obtained with the initial
condition given by

C. Poincaré Maps of RFS
Before defining Poincaré maps, it is important to notice an

interesting property of linear systems in relay feedback: their
symmetry around the origin (see Fig.4).
Proposition 3.2: Consider a trajectory of

starting at . Then is a trajectory of
starting at .

Proof: Assume . Since

is a trajectory of starting at .
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Fig. 5. Definition of a Poincaré map for a RFS.

This property tells us that, in terms of stability analysis, a
limit cycle only needs to be studied from one switching surface
(say ) to the other switching surface ( ). In other words, for
analysis purposes, it is equivalent to consider the trajectory from

to the next switch , or the trajectory starting
at and switching at . We then focus our
attention on trajectories from to .
Next, we define Poincaré maps for RFS. Typically, such maps

are defined from one switching surface and back to the same
switching surface. In the case of RFS, however, a Poincaré map
only needs to be defined as the map from one switching sur-
face to the other switching surface, due to the symmetry of the
system. Consider a symmetric unimodal limit cycle , with pe-
riod , obtained with the initial condition . This
means that a trajectory starting at crosses the switching
surface at (see Fig. 5).
To study the behavior of the system around the limit cycle we

perturb by such that . Consider a solution of
(2)–(3) with initial condition and let
be its first switch. We are interested in studying the map from
to (see Fig. 5). Note that this map is not continuous and

is multivalued. In general, there exist such that is
not unique. This is illustrated in the next example.
Example 3.1: Consider the RFS (2)–(3) where the LTI

system is given by

and the hysteresis parameter is . Let ,
, , and . The resulting can be
seen in Fig. 6.
When , and . At this point,

the trajectory can return to the region where and
(dash trajectory), or it can move

into the region where with (dash–dot
trajectory). This means that a switch can occur at either
or .
Definition 3.1: Let . Define as the

set of all times such that and on
. Define also the set of expected switching times as

For instance, in the last example, for the
initial condition .

Fig. 6. Existence of multiple solutions.

Fig.7. is a -dimensional map.

Let and . Since
then . Consider the multivalued

Poincaré map defined by .
Since is fixed, the Poincaré map can be redefined as the map

given by , where
. In result, is an equilibrium point of

the discrete-time system

(5)

The following proposition, proven in [2], gives conditions for
local stability of symmetric unimodal limit cycles. This result is
based on the linearization of the Poincaré map around the origin.
Proposition 3.3: Consider the RFS (2)–(3). Assume there

exists a symmetric unimodal limit cycle with period , ob-
tained with the initial condition . Assume also the limit
cycle is transversal2 to at . The Jacobian of the Poincaré
map at is given by

where . The limit cycle is locally stable if
has all its eigenvalues inside the unit disk. It is unstable if at

least one of the eigenvalues of is outside the unit disk.
In this paper, we are interested in systems that have a unique

locally stable unimodal limit cycle. For such systems, the idea
2 is transversal to at if .
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Fig. 8. Third-order nonminimum phase system.

Fig. 9. Third-order minimum phase system.

Fig. 10. Sixth-order system.

is to construct a quadratic Lyapunov function on the switching
surface to prove that the Poincaré map is globally stable.
This, in turn, shows that the limit cycle is globally asymptoti-
cally stable. The next section shows that a Poincaré map from
one switching surface to the other switching surface can be rep-
resented as a linear transformation analytically parametrized by
the switching time. This representation will then allow us to re-
duce the problem of checking quadratic stability to the solution
of a set of LMIs.

IV. DECOMPOSITION AND STABILITY OF POINCARÉ MAPS

This section contains the main results of this paper. Here, we
show that a typical Poincaré map induced by an LTI flow be-
tween the switching surfaces and can be represented as a
linear transformation analytically parametrized by a scalar func-
tion of the state. This, in turn, allows us to reduce the problem
of checking quadratic stability of Poincaré maps to the solution
of a set of LMIs.
Theorem 4.1: Consider the Poincaré map defined above.

Let

and assume , for some and all .
Define

for all (for , is defined by the limit as ).
Then, for any and there exists a
such that

(6)

Such is the switching time associated with .
This theorem says that most Poincaré maps induced by an

LTI flow between two hyperplanes can be represented as linear
transformations analytically parametrized by a scalar function
of the state. The advantage of expressing such maps this way
is to have all nonlinearities depending only on one parameter
. Although depends on , once is fixed, the map becomes
linear in . Note that defined above is continuous in
.
Before moving to the proof of the above result, it is important

to understand the assumption in theorem 4.1. This is necessary
in order to guarantee that the quotient [and, in turn,

] is well defined for all . However, even if this as-
sumption is not satisfied for some , it is still possible to
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Fig. 11. System with relative degree 7.

obtain a linear representation of the Poincaré map for all .
Such linear transformation would be parametrized by another
variable at , i.e., .

Proof: Let . Integrating the differential
equation (2) gives

If and then , i.e.,

(7)

Now, let and . Let also
be the switching time associated with . Then

Using (7), the last equality can be written as

Since , , or ,
that is

(8)

Therefore, it is also true that . Since, by
assumption, , for some and all

is well defined for (for it is defined via continua-
tion). Replacing above, we get

for all .
This result agrees with proposition 3.3. Via continuation,
at is given by

where . Using equality (7), can be written
as . This means is
exactly the Jacobian of the Poincaré map at .

As we will see next, based on this theorem, it is possible to
reduce the problem of checking quadratic stability of Poincaré
maps to the solution of a set of LMIs. The Poincaré map
defined above is quadratically stable if there exists a symmetric
matrix such that

(9)

Success in finding satisfying (9) is then sufficient to
prove global asymptotic stability of the limit cycle .
A sufficient condition for the quadratic stability of a Poincaré

map can easily be obtained by substituting (6) in (9)

(10)

for some and for all , with associated switching
times .
There are several alternatives to transform (10) into a set of

LMIs. A simple sufficient condition is

on (11)

for some and for all , where “ on ”
stands for for all nonzero . In the next sec-
tion, using some illustrative examples, we will see that although
this condition is more conservative than (10), it can prove global
asymptotic stability of many important RFS. Other less conser-
vative conditions are considered and discussed in Section VI.
These are based on the fact that is a map from to , and
that the set of points in with the same switching time is a
convex subset of a linear manifold of dimension .
Before moving into the examples, it is important to notice that

condition (11) can be relaxed. Since is Hurwitz and is
a bounded input, there is a bounded set such that any trajectory
will eventually enter and stay there. This will lead to bounds on
the difference between any two consecutive switching times. Let
and be bounds on the minimum and maximum switching

times of trajectories in that bounded invariant set. The expected
switching times can, in general, be reduced to a smaller set

. Condition (11) can then be relaxed to be satisfied on
instead of on . See Section VII-A for details.

V. EXAMPLES

The following examples were processed in written
by the authors. The latest version of this software is available
at [13]. Before presenting the examples, it is important to un-
derstand these functions. Overall, the user provides an
LTI system, together with , the hysteresis parameter. If the
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RFS is proven globally asymptotically stable, the func-
tions return a matrix that is guaranteed to satisfy (11)
on , where and , found as explained in Sec-
tion VII-A, are bounds of the expected switching times.
In more detail, after providing the software with an LTI

system and an hysteresis parameter , this confirms that certain
necessary conditions are met. Then, it checks if there exists a
unique locally stable symmetric unimodal limit cycle. This is
done by first finding , the zeros of (4). A symmetric unimodal
limit cycle exists if, for some , for all ,
and is unique if this is true for only one .
Before explaining the remainder of the functions, it

is important to point out that, although the vectors and are
-dimensional, the solution generated by the Poincaré map is
restricted to the -dimensional hyperplane (see Fig. 7).
Therefore, the map is actually a map from to .
Let be a map from to , where are the
orthogonal complements to , i.e., matrices with a maximal
number of column vectors forming an orthonormal set such that

. An equivalent condition to (11) is then

(12)

for some symmetric matrix and all
switching times , where .
in (11) can be obtained by letting .
Equation (12) on forms an infinite set of LMIs. Com-

putationally, to overcome this difficulty, we grid this set to ob-
tain a finite subset of expected switching times

. In other words, is found by solving a fi-
nite set of LMIs consisting of (12) on , .
For a large enough , it can be shown that (12) is also satis-
fied for all . The idea here is to find bounds on the
derivative of the minimum eigenvalue of over

, and to use these bounds to show that nothing can go
wrong in the intervals , i.e., that (12) is also satisfied
on each interval .
Solving a set of LMIs allows us to find in (12). In the

examples below, once is found, we confirm (12) is sat-
isfied for all switching times by plotting the minimum
eigenvalue of on , and showing that
this in indeed positive in that interval.
Example 5.1: Consider the RFS on the left of Fig. 8. Since

for this system any state-space realization of the LTI system in
relay feedback results in , it is possible to consider the
ideal relay, i.e., . Although very simple, this system has
never been proved globally stable.
From the center of Fig. 8 it is easy to see the RFS has one uni-

modal symmetric limit cycle with period approximately equal
to . We have analyzed this same RFS in [12]. There,
we characterized a reasonably large region of stability around
the limit cycle. Using the software described above, however,
we were able to find a satisfying (12) for all switching
times , showing, this way, that the RFS is actually glob-
ally asymptotically stable. The right side of Fig. 8 confirms the
result.

Fig. 12. Example of a set (in , both and its image in are segments
of lines).

Example 5.2: Consider the RFS in Fig. 9. Let . As
seen in Fig. 9, the RFS has one unimodal symmetric limit cycle
with period approximately equal to .
Again, a satisfying (12) for all switching times

exists, which means the limit cycle is globally asymp-
totically stable. This is confirmed from the right side of Fig. 9.
Example 5.3: Consider the 6th-order RFS in Fig. 10. In this

case, sliding modes occur if . However, sta-
bility was proven for as low as 0.061. Fig. 10 shows the result
to . Note that, in the figure on the right, the function
depicted is always positive although, due the bad resolution, it
may seem otherwise. This is due to the fact that is
the lowest value for which we can still prove global stability.
It is interesting to notice that more than one limit cycle exists

for . Thus, for this example, condition (11) is not
conservative.
Example 5.4: Consider the RFS in Fig. 11 consisting of an

LTI systemwith relative degree 7 in feedbackwith an hysteresis,
where . As seen in the center of Fig. 11, this RFS has
a symmetric unimodal limit cycle with period , where

. Note how the period of the limit cycle is much larger than
the hysteresis parameter .
Again, from the ride side of Fig. 11, we conclude that the limit

cycle is globally asymptotically stable.

VI. IMPROVEMENT OF STABILITY CONDITION

As mentioned before, there are several alternatives to trans-
form (10) into a set of LMIs. Here, we explore some of these
alternatives to derive less conservative conditions than (11).
The Poincaré map is a map from to and, for each

point in , there is at least one associated switching time .
An interesting property of this map is that the set of points in

with the same switching time forms a convex subset of a
linear manifold of dimension . Let be that set, i.e., let
be the set of points that have as a switching time,
i.e., (see Fig. 12). In other words, a trajectory starting at

satisfies both on , and . Note
that since is a multivalued map, a point in may belong to
more than one set . In fact, in Example 3.1, there existed a
point in that belonged to both and .
Condition (11) can then be improved to

on (13)

for some and for all expected switching times .



558 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001

Fig. 13. On the left: for ; on the right: for .

The problem with condition (13) is that, in general, the sets
are not easily characterized. An alternative is to consider the

sets obtained from (8), given by

To see the difference between and , consider the example
in Fig. 13 where the solution is plotted for two different
initial conditions in .
On the left of Fig. 13, . This means

belongs to both , and . The right side of Fig. 13 shows
what would happen to if the trajectory had not switched at

(dashed curve). In that case, it would have intersected
again at . This means that although is a solution of

(8), it is not a switching time since for . In
other words, the switching time does not satisfy the inequality

on . Although both and satisfy (8), only
is a valid switching time, i.e., . Thus, belongs
to , , and , but it does not belong to .
Since , condition (13) holds if there exist a

such that

on (14)

for all expected switching times .
As seen in Fig. 14, satisfies a conic relation

for some matrix (Section VII-B explains how this matrix is
constructed. Let

It is important to notice that it is equivalent to say that some ma-
trix satisfies on or that on .
This has to do with the fact that quadratic forms are homoge-
neous. To see this, assume for all . Let

where . Then ,
which is to say on . The converse follows since

.
Condition (14) is then equivalent to

on

for some and for all expected switching times . Using
the -procedure, condition (14) is again equivalent to

on (15)

Fig. 14. View of the cone in the plane.

Fig. 15. System of relative order 7 with .

for some , some scalar function , and for all
expected switching times . Note that, for each , (15) is
an LMI.
Example 6.1: Consider again the systemwith relative degree

7 analyzed in Example 5.4. For small values of there is no
satisfying condition (11). Using condition (15), however,

a and a positive function satisfying (15) are known to
exist for values of as small as 0.00404. Fig. 15 shows the result
to . Again, the function depicted on the right in the
figure is always positive although, due to bad resolution, it may
seem otherwise.
Note that the function on the left of the figure has three

zeros. However, only one corresponds to a limit cycle.
Although condition (11) was not able to prove global stability

of the RFS for small values of , the less conservative condition
(15) proved that the limit cycle is globally asymptotically stable
for small values of . An interesting fact is that, for

, there is more than one limit cycle.
It is possible to improve condition (15) furthermore. This

condition does not take advantage that a trajectory starting at



GONÇALVES et al.: GLOBAL STABILITY OF RELAY FEEDBACK SYSTEMS 559

must satisfy on . This is captured
by condition (13) but not by (15) since . Constraint

on can be expressed as

(16)

for all . However, this last inequality would lead to an infi-
nite dimensional set of LMIs. One way to transform the problem
into a finite set of LMIs is to consider certain samples of time
in . For instance, if , then we would have the fol-
lowing constraint on

This, together with , satisfies a conic relation
in which case (15) could be improved to

on (17)

for some scalar function .
There is an infinite number of constraints that can be added

to condition (17) in order to further reduce the level of conser-
vatism. On one hand, the more constraints, the better chances to
find surface Lyapunov functions. On the other hand, increasing
the number of constraints will eventually make the problem
computationally intractable. In spite of this, it is interesting to
notice that many important RFS were proven globally stable
with just condition (11) (the most conservative of all presented
in this paper).
Wewant to point out that the value of all these results lie in the

fact that they work well. In fact, we have not been able to find
RFS with a globally stable symmetric unimodal limit cycle that
could not be successfully analyzed with this new methodology.
This lead us to believe that globally stable limit cycles of RFS
frequently have quadratic surface Lyapunov functions.

VII. COMPUTATIONAL ISSUES

In this section, we will talk about computational aspects re-
lated to finding in (11) and (15). First, we show that since
is Hurwitz and is a bounded input, there is a bounded

and invariant set such that any trajectory will eventually enter.
This will lead to bounds on the difference between any two con-
secutive switching times. This way, the search for in (11)
and (15) becomes restricted to . Then,
we will talk about the cones used in Section VI. In particular,
we describe how to construct .

A. Bounds on Expected Switching Times
For a fixed , condition (11) is an LMI with respect to ,

while (15) is an LMI with respect to and . In this section,
we want to show that it is sufficient that conditions (11) or (15)
are satisfied in some carefully chosen interval , instead
of requiring them to be satisfied for all expected switching times

. In order to do so, one must guarantee there exists a
such that the difference between any two consecutive switching
times of a trajectory for is higher than but lower
than . Before we find such bounds, we need to show there is
a particular bounded set such that any trajectory will eventually

enter and stay there (i.e., will not leave the set). Remember that,
by definition, is given by

Proposition 7.1: Consider the system ,
, where is Hurwitz, , and is a row vector.

Then, for any fixed

Proof: At time is given by

Therefore

which is equal to .
We now focus our attention in finding an upper bound for .

First, remember from the proof of theorem 4.1 that a trajectory
starting at is given by
. Then, the output is given by

By definition of , at least in some interval ,
where . However, since we are assuming ,
and Hurwitz, it is easy to see that cannot remain larger
than for all . For any initial condition ,

as . Hence, since for sufficiently large time
, is bounded (from the above proposition), an upper bound
on on the expected switching times can be obtained.
Proposition 7.2: Let be the smallest solution of

(18)

If and are sufficiently large consecutive switching times
then .

Proof: Assume that after a sufficiently large time the tra-
jectory is at . Without loss of generality, assume
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. Then will be positive in some interval . We are in-
terested in finding an upper bound on the time it takes to switch.
That is, we would like to find an upper bound of those

such that , i.e.,

Using Proposition 7.1 with and , we can get a
bound on the left side of the inequality

Therefore, must satisfy (18).
Remember that if , will be positive at least in

some interval . The next result shows that in the bounded
invariant set characterized in proposition 7.1, cannot be made
arbitrarily small. Basically, for sufficiently large time is
bounded, and a lower bound on the time it takes between two
consecutive switches can be obtained.
Proposition 7.3: Let ,

, and
and define

Also, let . If and are sufficiently large
consecutive switching times then .

Proof: There are manyways to find bounds on .Wewill
show two here: and . Since they are found independently of
each other, we are interested in the larger one. We start with .
Assume again that after a sufficiently large time the trajectory

is at . Without loss of generality, assume .
This means that right before the switch (at ), ,
i.e., . Therefore, after the switch at ,

. That
is, .
We also need bounds on the second derivative of for .

From we get , and
. This means that

So, . In order to find a lower bound on
the switching time, we consider the worst case scenario, that is,
we consider the case when and . This
implies that . Integrating once more and
knowing that , yields

We are looking for values of such that and
. has two solutions

However, only one is positive (the one with the sign) since
for all and either (if ) or (if

and ).
To find we find a bound on the first derivative of for

So, . The worst case scenario is the case
when [with ]. Therefore,
. Again, we are looking for values of such that
and , i.e., the solution of .

B. Construction of the Cones
We now describe how to construct the cones introduced in

Section VI. Let denote the boundary of , i.e.,
. Remember that for each , the cone

is defined by two hyperplanes in : one is the hyperplane par-
allel to containing and the other is the hyperplane defined
by the intersection of and , and containing the point (see
Fig. 14). Let and , respectively, be vectors in perpen-
dicular to each hyperplane. Once these vectors are known, the
cone can easily be characterized. This is composed of all the
vectors such that . The
symmetric matrix introduced in the definition of is just

where . Remember that the cone is
centered at and note that after is chosen, must have the
right direction in order to guarantee .
We first find , the vector perpendicular to . Looking

back at the definition of , is given by

The derivation of is not as trivial as . We actually need to
introduce a few extra variables. The first one is , the vector
perpendicular to the set , given by

Proposition 7.4: The hyperplane defined by the intersection
of and , and containing the point is perpendicular to
the vector

Proof: can be parameterize the following way

and
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The intersection of and occurs at points in such that
. Multiplying on the left by we have

or

(19)

We want to show that

Using (19) we have

The characterization of is not complete yet. The orientation
of must be carefully chosen to guarantee that the cone
contains .
Proposition 7.5: If

then the cone contains .
The proof, omitted here, is based on taking a point
and showing that .

VIII. CONCLUSION

This paper introduces an entirely new constructive global
analysis methodology for PLS. This methodology consists
in inferring global properties of PLS solely by studying their
behavior at switching surfaces associated with PLS. The main
idea is to construct quadratic surface Lyapunov functions to
show that maps between switching surfaces are contracting in
some sense. These results are based on the discovery that maps
induced by an LTI flow between two switching surfaces can be
represented as linear transformations analytically parametrized
by a scalar function of the state. Furthermore, level sets of this
function are convex subsets of linear manifolds. This represen-
tation allows the search for quadratic Lyapunov functions on
switching surfaces to be done by simply solving a set of LMIs.
This methodology has proved very successful in analyzing a

simple class of PLS known as RFS. We addressed the problem
of global asymptotic stability of symmetric unimodal limit cy-
cles of RFS with hysteresis. This is a hard problem since global
analysis tools were practically nonexistent. However, with these
new results, a large number of examples with a unique locally
stable symmetric unimodal limit cycle was successfully glob-
ally analyzed. In fact, it is still an open problem whether there
exists an example with a globally stable symmetric unimodal
limit cycle that could not be successfully analyzed with this new
methodology. Examples analyzed include minimum-phase sys-
tems, systems of relative degree larger than one, and of high
dimension. Such results lead us to believe that globally stable

limit cycles of RFS frequently have quadratic surface Lyapunov
functions.
There are still many open problems following this work. It

is currently under investigation how to apply this new method-
ology to globally analyze more general PLS, not only in terms
of stability, but also robustness and performance. Knowing that
quadratic surface Lyapunov functions were so successful in an-
alyzing RFS, we pose the question: can similar ideas be used to
efficiently and systematically globally analyze larger and more
complex classes of PLS? We suspect that the answer to this
question is yes. We are currently working to support our con-
jectures. In fact, we have recently proved global asymptotic sta-
bility of equilibrium points of on/off systems [10] and saturation
systems [11]. We have also been able to check performance of
on/off systems [9, Ch. 8].
Another important topic of research following this work is to

find conditions that do not depend on the parameters of the Lya-
punov functions but guarantees their existence. Such conditions
should depend on the plant or on certain properties of a class of
systems, and should, obviously, be easier to check than the ones
presented here.
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