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Abstract— In this paper, we revisit the issue of the utility

of the FitzHugh-Nagumo (FHN) model for capturing neuron

firing behaviors. It has been noted (e.g., see [6]) that the

FHN model cannot exhibit certain interesting firing behaviors

such as bursting. We illustrate that, by allowing time-varying

parameters for the FHN model, one could overcome such

limitations while still retaining the low order complexity of

the FHN model. We also highlight the utility of the FHN model

from an estimation perspective by presenting a novel parameter

estimation method that exploits the multiple time scale feature

of the FHN model, and compare the performance of this method

with the Extended Kalman Filter through illustrative examples.

I. INTRODUCTION

Since the seminal work of Hodgkin and Huxley, there has
been a continued interest in the dynamical systems viewpoint
of a neuron. Hodgkin-Huxley (HH), Hindmarsh-Rose (HR),
and FitzHugh-Nagumo (FHN) models are among the most
successful dynamical models in computational neuroscience
for capturing neural firing behaviors. A detailed explanation
of these and several other models can be found in [6]. The
HH model consists of four differential equations with a high
number of coefficients. Although this model is capable of
generating all the behaviors of neuron spiking, it is a highly
nonlinear model. The HR model, on the other hand, consists
of three differential equations, which are highly coupled, and
it can exhibit all the firing modes obtained from the HH
model except for biophysically meaningful behaviors [5].
Finally, the FHN model consists of two differential equations,
and is simpler than the HH and HR models, though it is
unable to exhibit important firing behaviors such as bursting.
In fact, it has been noted [5] that without using a reset
or adding noise, the FHN model can not exhibit bursting.
The focus of this paper is on low complexity dynamical
models that can exhibit most of the neural firing activities of
interest that are possible by well-known dynamical systems
models (such as the HH model) but are nevertheless of low
complexity. Here, we use the term complexity to refer to
the presence of redundancies in the model on top of its
capability to capture neural firing behaviors and difficulty
in parameter estimation. With this in mind, we propose an
extension of the FHN model with time-varying parameters,
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where the hypothesis is that the time variations of these
parameters are either physiologically programmed within a
neuron or are coupled to the output of the typical hormone
generating systems that are triggered by the neural firings,
e.g. the negative feedback effect of cortisol level on the
neurons in the hypothalamus [2]. We also highlight the
utility of the FHN model from an estimation perspective. We
present a novel parameter estimation method that exploits the
multiple time scale feature of the FHN model, and compare
the performance of this method with the Extended Kalman
Filter (EKF) for the fixed parameter case through illustrative
examples. The examples demonstrate that this estimation
method outperforms the EKF when the sensor covariance
is large or when the sampling rate is low. Then, we extend
this method to the case when the spiking threshold is varying
slowly and one has more knowledge about the structure of
the variations of this threshold. For this case, our method
outperforms EKF when the sampling rate is low. Due to
space limitations, we keep our discussions brief; for further
details refer to [4].

II. THE FITZHUGH-NAGUMO MODEL WITH TIME
VARYING THRESHOLD

As mentioned above, a simplified version of the HH model
is the FHN model:

dv

dt
= a(−v(v−1)(v−b)−w+ I),

dw

dt
= v− cw

where v is the membrane potential, w is the recovery
variable, a and c are scaling parameters, and I is the
stimulus current. Moreover, b is an unstable equilibrium that
corresponds to the threshold between electrical silence and
electrical firing [1]. For appropriate constant parameters, it
is possible to generate tonic firing using FHN, where tonic
firing is referred to as a firing behavior in which the neuron
spikes in a periodic manner.
Considering that conventionally the parameters in the FHN
model are kept constant, certain firing behaviors such as
bursting can not be obtained using this model[6]. Since I

is an external input, it can externally control the firing mode
observed in the output (v), and result in firing behaviors such
as bursting [8]; on the other hand, the parameters a, b, and
c are governed by the mechanisms internal to the neuron,
and their variations can be associated to some internal
physiological system.In this paper, we consider variations
in b because b is the threshold between electrical silence
and neural firing, and physiologically, it might be the case
that this threshold is varying throughout the day, causing
the neurons to switch on and off, and generate bursting.



Since b can control the firing frequency, we propose that
by varying b in FHN, it is possible to obtain firing modes
such as bursting. The following is our proposed extension to
FHN model, which includes a time-varying threshold:

dv

dt
= a(−v(v−1)(v−b)−w+ I),

dw

dt
= v− cw,

db

dt
= g(t)

In the following sections, we will show that using this
approach, spiking patterns such as tonic bursting and varying
frequency neural firing can be obtained. In [4], we showed
that other firing patterns such as mixed mode firing and
neural firing with non-increasing frequency could also be
obtained using this model.

A. Tonic Bursting

Tonic bursting is a firing behavior in which a neuron fires
a certain number of spikes and is silent for a certain amount
of time. Then, it repeats this pattern in a periodic manner.
To simulate tonic bursting using FHN, we keep a, I, and
c at constant values 105, 1, and 0.2, respectively, and vary
b using a sinusoidal function as observed in Fig. 1. This
is one possible way of varying b in order to obtain tonic
bursting.

Fig. 1. Tonic Bursting

B. Varying Frequency Neural Firing

Neural firing with varying frequency can also be obtained
using FHN. To simulate this firing mode, we keep the
parameters a, I, and c fixed at constant values 105, 1,
and 0.3, respectively, while slowly varying b using a
two-harmonic function as observed in Fig. 2.

III. PARAMETER ESTIMATION

Parameter estimation for the HH, HR and FHN models
is usually done using standard methods such as Simulated
Annealing, Genetic Algorithms, Differential Evolution [3],
Adaptive Observer, or Extended Kalman Filter [7]. However,

Fig. 2. Varying Frequency Neural Firing

in principle, if the model has a known structure, one could
exploit it to formulate a parameter estimation method cus-
tomized to that model and tune it to get better performance
than the standard methods. In the following, we develop one
such method for estimating the parameter b for the FHN
model by exploiting the fast-slow dynamics of FHN. We
will then compare the performance of this method with that
of the EKF.

A. Estimating b Using Fast-Slow Dynamics of the FitzHugh-

Nagumo Model

Fig. 3 is a representation of the slow and fast manifolds
of FHN on the wv-plane and its corresponding behavior
with respect to the time-series plot of v. The phase portrait
shows that, in case of tonic firing mode, the trajectories
switch between slow scale dynamics and fast scale dynamics.
Considering the dynamics of the FHN model, we propose
to develop a novel estimation algorithm that exploits the
multiple time-scale feature of FHN. To do so, we will start
with a time-series plot of membrane potentials v that are
firing in a tonic manner, and develop an algorithm to estimate
b, which we refer to as the Fast-Slow Dynamics (FSD)
estimation algorithm. Since v does not change much when
the system is following the slow time scale dynamics of
FHN, we will approximate its derivative as zero. dv

dt
= 0

⇒ w = −v(v− 1)(v− b)+ I. Then, define f as: f (v,b, I) =
−v(v− 1)(v− b)+ I. Let v2 and v0 be the values of v that
maximize and minimize f:

v0 =
1
3
(b+1−

�
b2 −b+1), v2 =

1
3
(b+1+

�
b2 −b+1)

As observed in Fig. 3, w2 and w0 do not exactly correspond
to maximum and minimum values of f; however, we can
approximate w2 and w0 by plugging in the values of v2 and
v0 in f (v,b, I), as shown below:
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Fig. 3. Phase Portrait (left) and Time-series Plot (right): a=1369, b=0.2,
I=1, c=0.3
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Let h0(b) = w0 − I and h2(b) = w2 − I. From the time series
data of membrane potentials, it is possible to obtain the
maximum and minimum values of v, v1 and v3, respectively.
As observed in Figure 3, f (v1,b, I)≈w0 and f (v3,b, I)≈w2.
Hence, we obtain:

−v1(v1 −1)(v1 −b)≈ h0(b), v3(v3 −1)(v3 −b)≈ h2(b)

Since there are two equations and one unknown, the system
might not have a solution; in cases that the system has a
solution, the solution can be obtained using equation (1):

−v1(v1 −1)(v1 −b)+ v3(v3 −1)(v3 −b) =− 4
27

�
(b2 −b+1)3

(1)
For simplicity in the computation, one can approximate
− 4

27

�
(b2 −b+1)3by − 0.21b

2 + 0.21b − 0.15. Let hb =
−v1(v1 − 1)(v1 − b)+ v3(v3 − 1)(v3 − b)+ 0.21b

2 − 0.21b+
0.15. Setting hb = 0, two values for b are obtained, and
considering that b takes on a value between zero and one, the
value of b that satisfies this bound is the desired solution. In
the cases that both solutions satisfy the bound, we plug both
values of b into equation (1), and the value that minimizes
the absolute value of the difference between the two sides
of equation (1) is the desired value of b. If a b value is not
obtained using this approach, we will find the value of b that
minimizes hb. If this value still does not satisfy the bound,
one could plug in values zero and one into equation (1), and
the value that minimizes the absolute value of the difference
between the two sides of equation (1) is the desired value of
b.
Using parameters a=105, I=1, c=0.3 for the FHN model,
and starting with b=0.05 and increasing the b value in 0.05
increments until the system does not have a tonic behavior
(b=0.75), we estimated b using the method described above,
and the error varied between 0.42% and 5.20%.

B. Comparison of Constant b Estimation Algorithm with

Extended Kalman Filter

In the previous section, a novel approach for estimating
b was proposed. In this section, we compare the b esti-

mates given by the Fast-Slow Dynamics (FSD) estimation
algorithm and EKF. In order to compare our estimation
method with EKF, process noise and sensor noise were
incorporated into the simulations. Let σp and σs represent the
standard deviation in the process noise and the sensor noise,
respectively. In order to implement EKF, we discretized the
system using Euler forward method with a sampling rate
∆. For this comparison, v was simulated using a=105, I=1,
c=0.3, b = 0.5 while adding a zero-mean normal process
noise with a standard deviation of 0.1 (σp=0.1), and the
sampling rate and sensor noise were varied as discussed in
the following three examples. Moreover, we averaged the
data for 24 tonic firings to run FSD and implemented EKF
while using the actual initial condition values as the initial
guess, and an initial covariance estimate of zero.

1) A zero-mean sensor noise with σs=0.001 was added to
the simulated membrane potentials for ∆=10−5. Using
our method, a b estimate of 0.5079 (1.58% error) was
obtained. Then, EKF was implemented on the data,
and the estimated value of b after one limit cycle was
0.5001 (0.02% error). In this simulation, the sampling
rate was very high and the sensor noise was very low,
putting EKF in an advantage. However, by increasing
the sensor noise or decreasing the sampling rate, our
method performed better than EKF.

2) By adding zero-mean sensor noise with σs=0.01 to
the simulated action potentials, and using ∆=10−5, a b

estimate of 0.5253 (5.06% error) was obtained using
our method while b estimates for EKF did not converge
and varied between 0.1358 and 1.47.

3) For ∆=10−3, and a zero-mean sensor noise with
σs=0.001, we implemented both FSD and EKF. Using
FSD a b estimate of 0.5175 (3.5% error) was obtained,
while EKF diverged.

Hence, comparing the two methods, EKF is more sensitive
to sampling rate than our method. Moreover, EKF does not
converge if the sensor noise covariance is large.

C. Comparison of Time-varying b Estimation Algorithm with

Extended Kalman Filter

In this section, using examples, we will illustrate that Fast-
Slow Dynamics (FSD) estimation algorithm for constant b

can be employed on neural firing data that is generated by
time-varying b. We will compare FSD estimation algorithm
with EKF for tonic bursting, which can be obtained using a
sinusoidal b as described in II-A. For this comparison, pro-
cess noise and sensor noise were incorporated into the sim-
ulations. For this comparison, v was simulated using a=105,
I=1, c=0.3, b= 0.5 while adding a zero-mean normal process
noise with σp=0.1, and the sampling rate and sensor noise
were varied as discussed in the following three examples.
We simulated five datasets using this method for each of the
following examples, and used the average of these datasets
in order to estimate the parameters. In order to run FSD
for time-varying b, we found the membrane potential peaks,
and broke the data into smaller data sets, in a way that each
smaller dataset started at one peak and ended at the following
peak (in other words, we break the data points in a way that



each of these smaller datasets goes through the limit cycle
once). Then, using our algorithm for estimating constant b,
we estimated b for each of these smaller datasets. Then,
we associated each of these estimates with the time that the
second peak was observed. Let λ = 2π

T
. Knowing that b was a

sinusoid of the form αsin( 2π
T

t+β )+γ , we found the period
by looking at the time series plot of the b estimates, and then
using the trigonometric identity, we rewrote this problem
as αsin( 2π

T
t)cos(β )+αcos( 2π

T
t)sin(β )+γ , and implemented

multiple regression to find the coefficients α , β , and γ . In
order to implement EKF, we used the actual initial condition
values as the initial guess, and an initial covariance estimate
of zero.

1) After adding a zero-mean sensor noise with σs=0.001
to data with ∆=10−5, we implemented FSD and EKF.
The parameter estimates and the corresponding percent
error for each of the parameters is reported in Table I.
In reporting the EKF estimate, we ignored the esti-
mates for which the error covariance matrix becomes
very high.

TABLE I
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF

FOR EXAMPLE 1 FOR TIME-VARYING b

FSD estimate FSD error EKF’s estimate EKF’s error
α=0.5 0.4926 1.48% 0.5 0%
T =12 11.933 0.5583% 12 0%

cos(β )=1 0.9804 1.9558% 1 0%
γ=0.5 0.4937 1.26% 0.5 0%

2) By adding a zero-mean sensor noise with σ2
s

=0.1, and
using ∆=10−5, we implemented FSD and EKF. The
EKF parameter estimates became very noisy; however,
the average value of the noisy parameter estimates
obtained by EKF had a small error, and here we are
reporting the average value of the noisy estimates as
the EKF parameter estimate. The parameter estimates
and the corresponding percent error for each of the
parameters is reported in Table II.

TABLE II
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF

FOR EXAMPLE 2 FOR TIME-VARYING b

FSD estimate FSD error EKF’s estimate EKF’s error
α=0.5 0.5708 4.72% 0.5045 0.9%
T =12 11.933 0.5583% 12.1461 1.2176%

cos(β )=1 0.9944 0.56% 1 0%
γ=0.5 0.5602 12.04% 0.5062 1.24%

3) For ∆=10−3, and a zero-mean sensor noise with
σs=0.001, using our method parameter estimates re-
ported in Table III were obtained, while EKF diverged.

Our proposed method could be implemented on other firing
patterns such as the varying frequency neural firing pattern
by again fitting the estimated values of b using multiple
regression. In the cases that b follows two or more different
functions as a function of time, one could break the data
into two parts at the point that the variations in the function

TABLE III
COMPARISON OF PARAMETER ESTIMATES OBTAINED BY FSD AND EKF

FOR EXAMPLE 3 FOR TIME-VARYING b

FSD estimate FSD error EKF’s estimate EKF’s error
α=0.5 0.4638 7.24% Diverged NA
T=12 12.029 0.2417% Diverged NA

cos(β )=1 0.9215 7.8511% Diverged NA
γ=0.5 0.4996 0.08% Diverged NA

occurs, and depending on the kind of function b is following
linear or multiple regression could be used to fit the b

estimates. In [4], we provided illustrative examples of such
cases.

IV. CONCLUSION AND FUTURE WORK

The proposed approach in extending the FHN model by
varying the parameters of FHN allows for simulating more
complex behaviors than the ones that were possible by
keeping the parameters constant. In this paper, variations in
the threshold between electrical silence and electrical firing
were investigated. Then, an estimation algorithm that exploits
the fast-slow dynamics of FHN was proposed. For constant
b, the proposed parameter estimation algorithm performed
better than the EKF when the sampling rate was not very
high or when the sensor noise covariance was not very
low. For time-varying b, this parameter estimation method
performed better than EKF when the sampling rate was low.
Another advantage of this estimation method over EKF is
that for cases that the structure of b is unknown, discrete b

estimates can be obtained using our method to add insight
to the underlying structure. On the other hand, EKF can not
estimate the coefficients if the underlying structure of b is
not known. In our future work, we will extend our model
and estimation method to other parameters, and explore the
physiological factors determining the parameter variations
that lead to variations in neural firing patterns.

REFERENCES

[1] Brown D, Herbison A.E., Robinson J.E., Marrs R.W., Leng G. “Mod-
eling the lueinizing hormone-releasing hormone pulse generator.”
Journal of Neuroenocrinology, Vol. 63(3):869-879,1994.

[2] Brown E.N., Meehan P.M., Dempster A.P. “A stochastic differential
equation model of diurnal cortisol patterns.” American Journal of

Physiology Endocrinology and Metabolism, Vol. 280:E450E461, 2001.
[3] Buhry L, Saighi A, Giremus E, Renaud S, “Parameter estimation

of the Hodgkin-Huxley model using metaheuristics: applications to
neuromimetic analog integrated circuits.” IEEE Biomedical Circuits

and Systems, 173176, 2008.
[4] Faghih R.T., Savla K., Dahleh M.A., Brown E.N.“The FitzHugh-

Nagumo Model: Firing Modes with Time-varying Parameters and
Parameter Estimation.” LIDS Report, 2842, 2010.

[5] Izhikevich E.M. “Which Model to Use for Cortical Spiking Neurons?”
IEEE Trans. on Neural Networks (Special Issue on Temporal Coding),
2004.

[6] Izhikevich E.M., Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting, MIT Press,2007.

[7] Tokuda I, Parlitz U, Illing L, Kennel M, Abarbanel H. “Parameter
Estimation for Neuron Models.” San Diego: 2002.

[8] Tsuji Sh, Ueta T, Kawakami H, Aihara K. “A Advanced Design
Method of Bursting In FitzHugh-Nagumo Model.”IEEE International

Symposium on Circuits and Systems, Vol. 1:I-389-I392, 2002.


