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Abstract— We consider a network of nodes, each having an
initial value or measurement, and seeking to acquire an estimate
of a given function of all the nodes’ values in the network. Each
node may exchange with its neighbors a finite number of bits
every time communication is initiated. In this paper, we present
an algorithm for computation of separable functions, under the
constraint that communicated messages are quantized, so that
with some specified probability, all nodes have an estimate of the
function value within a desired interval of accuracy. We derive
an upper bound on the computation time needed to achieve
this goal, and show that the dependence of the computation
time on the network topology, via the “conductance” of the
graph representing this topology, matches a lower bound derived
from Information Theoretic analysis. Hence, the algorithm’s
running time is optimal with respect to dependence on the graph
structure.

I. INTRODUCTION

We consider a network of nodes, each having an initial value

or measurement, and seeking to acquire an estimate of a given

function of all the nodes’ values in the network. Each node

may exchange with its neighbors a finite number of bits every

time communication is initiated. In this paper, we present an

algorithm for computation of separable functions, under the

constraint that communicated messages are quantized, so that

with some specified probability, all nodes have an estimate of

the function value within a desired interval of accuracy.

Our algorithm is based on a distributed algorithm, for com-

puting separable functions, in [3]. It is a simple randomized

algorithm that is based on each node generating an expo-

nentially distributed random variable with mean equal to the

reciprocal of the node’s initial value. The nodes sample from

their respective distributions and make use of an information

spreading algorithm to make computations and ultimately

obtain an estimate of the desired function.

The advantage of this algorithm is that it is completely dis-

tributed. Nodes need not keep track of the identity of the nodes

from which received information originates. Furthermore, the

algorithm is not sensitive to the order in which information

is received. In terms of its performance, the algorithm’s

computation time is almost optimal in its dependence on the

network topology, as the computation time scales inversely

with conductance of the graph representing the communication

topology. For a large class of graphs, conductance grows

like O(1/diameter). The drawback of the algorithm in [3],

however, is that it requires nodes to exchange real numbers.

As such, the algorithm is not practically implementable.

In this paper, we describe how the algorithm of [3] can

be applied to the scenario where nodes can only exchange a

finite number of bits when they communicate. This involves

truncating the exponential distributions generated at the nodes

and quantizing the messages that the nodes communicate.

The analysis finds the precise scaling of the algorithm’s

computation time in terms of the number of bits required to

maintain the performance guarantees of the original algorithm,

specifically the guarantees on the probability of error in the

nodes’ estimates of the desired function. We find that the effect

of our modification of the algorithm of [3] is to slow it down

by log n.
Thus, the contribution of this paper includes the non-trivial

quantized implementation of the algorithm of [3] and its

analysis. As a consequence, we obtain the fastest, in terms

of dependence on network topology, quantized distributed

algorithm for separable function computation.

II. PROBLEM FORMULATION

Let an arbitrary connected network of n nodes be rep-

resented by the undirected graph G = (V,E). The nodes

are arbitrarily enumerated and are the vertices of the graph,

V = {1, . . . , n}; the enumeration is for the purpose of analysis

only as the computation algorithm does not depend on the

identities of the nodes. If nodes i and j communicate with

each other, then the edge (i, j) belongs to the set E.

Each node i has a measurement or initial value xi ∈ R. We

let the vector x represent all the initial values in the network,

x = (x1 . . . xn). The goal of the nodes is to each acquire an

estimate of a given function,f , of all the initial values. In this

paper, the function f is separable, defined as follows. Here,

2V denotes the power set of V .

Definition II.1. f : R
n × 2V → R is separable if there exist

functions f1, . . . , fn such that for all S ⊆ V,

f(x, S) =
∑
i∈S

fi(xi).

Furthermore, in this paper we assume f ∈ F where F is

the class of all separable functions with fi(xi) ≥ 1 for all

xi ∈ R and i = 1, . . . , n.
The performance of an algorithm, C, used by the nodes to

compute an estimate of f(x, V ) at each node, is measured

by the algorithm’s (ε, δ)-computation time, T cmp
C (ε, δ). It is

the time until the estimates at all nodes are within a factor
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of 1 ± ε of f(x, V ), with probability larger than 1 − δ. The

definition follows, where ŷi(t) denotes the estimate of f(x, V )
at node i at time t.

Definition II.2. For ε > 0 and δ ∈ (0, 1), the (ε, δ)-computing

time of an algorithm, C, denoted as T cmp
C (ε, δ) is defined as

T cmp
C (ε, δ) = sup

f∈F
sup

x∈Rn

inf {t :

P(∪n
i=1{ŷi(t) /∈ [(1 − ε)f(x, V ), (1 + ε)f(x, V )]}) ≤ δ} .

The algorithm described here depends on the nodes’ use

of an information spreading algorithm, D, as a subroutine to

communicate to each other their messages. The performance

of this algorithm is captured by the δ-information-spreading

time, T spr
D (δ), at which with probability larger than 1 − δ all

nodes have all messages. More formally, let Si(t) is the set of

nodes that have node i’s message at time t, and V is the set

of nodes, the definition of T spr
D (δ) is the following.

Definition II.3. For a given δ ∈ (0, 1), the δ-information-

spreading time, of the algorithm D, T spr
D (δ), is

T spr
D (δ) = inf{t : P(∪n

i=1{Si(t) �= V }) ≤ δ}.
A. Main Result

Consider a model where each node may contact one of its

neighbors once in each time slot. If the edge (i, j) belongs

to E, node i sends its messages to node j with probability

pij and with probability pii sends its messages to no other

nodes; if (i, j) /∈ E, pij = 0. So, the matrix P = [pij ] is

a stochastic matrix that describes the information spreading

algorithm. The information spreading time if this algorithm is

derived in terms of the “conductance” of P.

Definition II.4. For a stochastic matrix P , the conductance

of P , denoted Φ(P ), is

Φ(P ) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S pij

|S| .

For this model, the main result of this paper is stated in the

following theorem.

Theorem II.5. Let P be a stochastic and symmetric matrix for
which if (i, j) /∈ E, pij = 0. There exists an algorithm APQ

for computing separable functions f ∈ F via communication
of quantized messages, with quantization error no more than a
given γ = Θ( 1

n ), such that for any ε ∈ (γf(x, V ), γf(x, V )+
1
2 ) and δ ∈ (0, 1),

T cmp
APQ(ε, δ) = O

(
ε−2(1 + log δ−1)

(log n + log δ−1) log n

Φ(P )

)
.

Setting δ = 1
n2 in the above bound, we have

T cmp

APQ

(
ε,

1
n2

)
= O

(
ε−2 log3 n

Φ(P )

)
. (1)

We note here that for this case, by an Information Theoretic

lower bound derived in [2] we have that the computation time

is lower bounded as

T ≥
log 1

Kε2+( 1
K )

1
n

Φ(P )
,

where K is a constant such that for all i, fi(xi) ≤ K. Thus, the

bound in (1) is tight in capturing the scaling of the computation

time with respect to the graph conductance.

III. UNQUANTIZED FUNCTION COMPUTATION

In [3], a randomized algorithm is proposed for distributed

computation of a separable function of the data in the network,

so that with some specified probability, all nodes have an

estimate of the function value within the desired interval of

accuracy. The computation algorithm depends on

• the properties of exponentially distributed random vari-

ables, and,

• an information spreading algorithm used as a subroutine

for the nodes to communicate their messages and deter-

mine the minimum of the messages.

The first of the two main theorems of [3] provides an upper

bound on the computing time of the proposed computation

algorithm and the second provides an upper bound on the

information spreading time of a randomized gossip algorithm.

These theorems are repeated below for convenience as our

results build on those of [3].

Theorem III.1. Given an information spreading algorithm D
with δ-spreading time T spr

D (δ) for δ ∈ (0, 1), there exists an
algorithm A for computing separable functions f ∈ F such
that for any ε ∈ (0, 1) and δ ∈ (0, 1),

T cmp
A (ε, δ) = O

(
ε−2(1 + log δ−1)T spr

D

(
δ

2

))
.

In the next section, we state a theorem analogous to this one,

but for the case where the nodes are required to communicate

a finite number of bits.

Next, the upper bound on the information spreading time

is derived for the communication scheme, or equivalently, the

randomized gossip algorithm, described in section II-A. We

refer the reader to [3] for further details on the information

spreading algorithm, including an analysis of the case of

asynchronous communication. The theorem relevant to this

paper follows.

Theorem III.2. Consider any stochastic and symmetric matrix
P such that if (i, j) /∈ E, pij = 0. There exists an information
spreading algorithm, P, such that for any δ ∈ (0, 1),

T spr
P (δ) = O

(
log n + log δ−1

Φ(P )

)
.
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IV. QUANTIZED FUNCTION COMPUTATION

The nodes need to each acquire an estimate of f(x, V ) =∑n
i=1 fi(xi). For convenience, we denote fi(xi) by θi, and

y = f(x, V ) =
∑n

i=1 θi is the quantity to be estimated by the

nodes. We denote the estimate of y at node i by ŷQ
i . The Q

is added to emphasize that this estimate was obtained using

an algorithm for nodes that can only communicate quantized

values using messages consisting a finite number of bits.

We assume that node i can compute θi without any commu-

nication. Further, we assume that there exists a K for which:

for all i, θi ∈ [1,K].
Recall that the goal is to design an algorithm such that, for

large enough t, P
{
∩n

i=1{|ŷQ
i (t) − y| ≤ εy}

}
≥ 1 − δ, while

communicating only a finite number of bits between the nodes.

Again, we take advantage of the properties of exponentially

distributed random variables, and an information spreading

algorithm used as a subroutine for the nodes to determine the

minimum of their values.

A. Computation of Minima Using Information Spreading

The computation of the minimum using the information

spreading algorithm occurs as follows. Suppose that each node

i has an initial vector W i = (W i
1, . . . ,W

i
r) and needs to

obtain W̄ = (W̄1, . . . , W̄r), where W̄l = mini=1,...,n W i
l .

To compute W̄ , each node maintains an r-dimensional vector,
ˆ̄wi = ( ˆ̄wi

1, . . . , ˆ̄wi
r), which is initially ˆ̄wi(0) = W i, and

evolves such that ˆ̄wi(t) contains node i′s estimate of W̄ at

time t. Node i communicates this vector to its neighbors;

and when it receives a message from a neighbor j at time

t containing ˆ̄wj(t−), node i will update its vector by setting
ˆ̄wi

l(t
+) = min( ˆ̄wi

l(t
−), ˆ̄wj

l (t
−)), for l = 1, . . . , r.

As argued in [3], when an information spreading algorithm

D is used where one real-number is transferred between

two nodes every time there is a communication, then with

probability larger than 1 − δ, for all i, ˆ̄wi(t) = W̄ when

t = rT spr
D (δ), because the nodes propagate in the network an

evolving estimate of the minimum, an r-vector, as opposed to

the n r-vectors W 1, . . . ,Wn.

Now, suppose that node i quantizes a value ˆ̄wi
l that it needs

to communicate to its neighbor, j, where node i maps the value
ˆ̄wi

l to a finite set {1, . . . M} according to some quantization

scheme. Then, log M bits have to be communicated between

the nodes before j can decode the message and update its
ˆ̄wj

l . So, when each communication between nodes is a single

bit, the time until all nodes’ estimates are equal to W̄ with

probability larger than 1−δ will increase by a factor of log M ,

to t = rT spr
D (δ) log M.

B. Summary of Algorithm & Main Theorem

The proposed algorithm, AQ is summarized below.

1) Independently from all other nodes, node i generates

r independent samples from an exponential distribution,

with parameter θi. If a sample is larger than an m (which

we will specify later), the node discards the sample and

regenerates it.

2) The node quantizes each of the samples according to a

scheme we describe in section IV-D. The quantizer maps

points in the interval [0,m] to the set {1, 2, . . . , M}.
3) Each of the nodes performs steps 1 and 2 and com-

municates its messages via the information spreading

algorithm, D, to the nodes with which it is connected.

The nodes use the information spreading algorithm to

determine the minimum of each of the r sets of mes-

sages. After rT spr
D (δ) log M time has elapsed, each node

has obtained the r minima with probability larger than

1 − δ.

4) Node i sets its estimate of y, ŷQ
i , to be the reciprocal

of the average of the r minima that it has computed.

Here, r is a parameter that will be designed so that

P
{
∩n

i=1{|ŷQ
i − y| ≤ εy}

}
≥ 1 − δ is achieved. Determining

how large r and M must be leads to the main theorem of this

paper.

Theorem IV.1. Given an information spreading algorithm
D with δ-spreading time T spr

D (δ) for δ ∈ (0, 1), there exists
an algorithm AQ for computing separable functions f ∈ F
via communication of quantized messages, with quantization
error no more than a given γ = Θ( 1

n ), such that for any
ε ∈ (γf(x, V ), γf(x, V ) + 1

2 ) and δ ∈ (0, 1),

T cmp
AQ (ε, δ) = O

(
ε−2(1 + log δ−1)(log n)T spr

D

(
δ

2

))
.

Remark Here, we point out that the condition in the theorem

that ε ∈ (yγ, yγ+1/2) reflects the fact that due to quantization,

ŷQ
i can never get arbitrarily close to y, no matter how large r

is chosen.

Before proving this theorem, it is convenient to consider

the algorithm described above, excluding step 2; that is, with

no sample quantization. In section IV-C, the derivation of

the computation time of this modified algorithm will lead to

determining the appropriate truncation parameter, m. In sec-

tion IV-D we introduce a quantization scheme and determine

the number of bits to use in order to guarantee that the node

estimates of y converge with desired probability; we find that

this number of bits is of the order of log n.

C. Determining m

Before we state the lemma of this section, we describe the

modified computation algorithm, AQ
M, which consists of steps

1 to 4 above excluding 2, and we introduce the necessary

variables.

First, node i, independently from all other nodes, generates r
samples drawn independently from an exponential distribution,

with parameter θi. If a sample is larger than m, the node

discards the sample and regenerates it. This is equivalent to

drawing the samples from an exponential distribution truncated

at m.

Let (W i
l )T be the random variable representing the lth

sample at node i, where the subscript “T” emphasizes that the

distribution is truncated. Then, the probability density function
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of (W i
l )T is that of an exponentially distributed random vari-

able, W i
l , with probability density function fW i

l
(w) = θie

−θiw

for w ≥ 0, conditioned on the the event Ai
l = {W i

l ≤ m}.
For w ∈ [0,m],

f(W i
l )T

(w) =
θie

−θiw

1 − eθim
,

and f(W i
l )T

(w) = 0 elsewhere.

Second, the nodes use a spreading algorithm, D, so that each

determines the minimum over all n for each set of samples,

l = 1, . . . , r. Recall that we consider the random variables at

this stage as if there was no quantization. In this case, the

nodes compute an estimate of W̄l = mini=1...n(W i
l )T ; we

denote the estimate of W̄l at node i by ̂̄Wl

i

. Furthermore,

we denote the estimates at node i of the minimum of each of

each of the r set of samples by ̂̄W i

= ( ̂̄W1

i

, . . . , ̂̄Wr

i

), and the

actual minima of the r set of samples by W̄ = (W̄1, . . . , W̄r).
It it is shown in [3] that by the aforementioned spreading

algorithm, with probability at least 1 − δ/2, the estimates of

the r minima, ̂̄W i

, will be be equal to the actual minima, W̄ ,
for all nodes, i = 1, . . . , n, in rT spr

D (δ/2) time slots.

Last, each of the nodes computes its estimate, ŷi, of y by

summing the r minimum values it has computed, inverting the

sum, and multiplying by r:

ŷi =
r∑r

l=1
̂̄Wl

i
.

The following lemma will be needed in the proof of

Theorem IV.1.

Lemma IV.2. Let θ1, . . . , θn be real numbers such that for all

i, θi ≥ 1, y =
∑n

i=1 θi and W̄ = (W̄1, . . . , W̄r). Furthermore,

let ̂̄W i

= ( ̂̄W1

i

, . . . , ̂̄Wr

i

) and let ŷi denote node i’s estimate

of y using the modified algorithm of this section, AQ
M.

For any μ ∈ (0, 1/2), and for I = ((1− μ) 1
y , (1 + μ) 1

y ), if

m ≥ lnn − ln (1 − e−
μ2

6 ),

P
(
∪n

i=1{ŷ−1
i /∈ I}|∀i ∈ V, ̂̄W i

= W̄

)
≤ e−r μ2

6 ,

where, ŷ−1
i = 1

r

∑r
l=1

̂̄Wl

i

.

Proof: First, note that when {∀i ∈ V, ̂̄W i

= W̄}, we

have that for all i, ŷ−1
i = 1

r

∑r
l=1 W̄l. So, it is sufficient to

show that

P

(
1
r

r∑
l=1

W̄l /∈ I

)
≤ e−r μ2

6 .

Let W ∗
l = mini=1,...,n W i

l , the minimum of indepen-

dent exponentially distributed random variables, W i
l , with

parameters θ1, . . . , θn respectively, then W ∗
l will itself be

exponentially distributed with parameter y =
∑

i θi. Observe

that the cumulative distribution function of W̄l, P(W̄l ≤ w),
is identical to that of W ∗

l , conditioned on the event Al =

{∩n
i=1A

i
l}, where Ai

l = {W i
l ≤ m}, P(W ∗

l ≤ w|Al). Hence,

we have that

P

(
1
r

r∑
l=1

W̄l /∈ I

)
= P

(
1
r

r∑
l=1

W ∗
l /∈ I| ∩r

l=1 Al

)
.

Now, because P(A ∩ B) ≤ P(A), it follows that

P

(
1
r

r∑
l=1

W ∗
l /∈ I| ∩r

l=1 Al

)
P (∩r

l=1Al)

≤ P

(
1
r

r∑
l=1

W ∗
l /∈ I

)
.

From Cramer’s Theorem and the properties of exponential

distributions, we have that

P

(
1
r

r∑
l=1

W ∗
l /∈ I

)
≤ e−r(μ−ln(1+μ))

and for μ ∈ (0, 1/2), e−r(μ−ln(1+μ)) ≤ e−r μ2

3 .
Next, we have that P (∩r

l=1Al) = (P (Al))
r
, because the

A1, . . . , Ar are mutually independent. Furthermore, P (Al) ≥
1 − ne−m. To see this, note that the complement of Al is

Ac
l = {∪n

i=1{W i
l > m}}, and P

(
W i

l > m
)

= e−θim. So, by

the union bound, we have

P (Ac
l ) ≤

n∑
i=1

e−θim ≤ ne−m,

where the last inequality follows because ∀i, θi ≥ 1.
Finally, putting all this together, we have that

P

(
1
r

r∑
l=1

W̄l /∈ I

)
≤ (1 − ne−m)−re−r μ2

3 .

Letting 1 − ne−m ≥ e−
μ2

6 completes the proof.

D. Proof of Theorem IV.1

Before we proceed with the proof of the Theorem, we

describe the quantization scheme. In step 2 of the algorithm

AQ, node i quantizes the sample it draws, a realization of

(W i
l )T denoted by wi

l . The quantizer Q maps points in the

interval [0,m] to the set {1, 2, . . . ,M}. Each node also has

a “codebook,” Q−1, a bijection that maps {1, 2, . . . ,M} to

{wq1 , wq2 , . . . , wqM
}, chosen such that for a given γ, |wi

l −
Q−1Q(wi

l)| ≤ γ. We will denote Q−1Q(wi
l) by (wi

l)Q.
While we do not further specify the choice of the quanti-

zation points, wqk
, we will use the fact that the quantization

error criterion can be achieved by a quantizer that divides the

interval [0,m] to no more than M intervals of length γ each.

Then, the number of messages will be M = m/γ, and the

number of bits that the nodes communicate is log M.
Proof: We seek an upper bound on the (ε, δ)-computation

time of the algorithm AQ, the time until, with probability at

least 1 − δ, all nodes i = 1, . . . , n have estimates ŷQ
i that are

within a factor of 1 ± ε of y. That is,

P(∪n
i=1{ŷQ

i /∈ [(1 − ε)y, (1 + ε)y]}) ≤ δ.
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First, suppose that we may communicate real-valued mes-

sages between the nodes. We analyse the effect of quantization

on the convergence of the node estimates to the desired 1± ε
factor of y. For this, we compare the quantized algorithm, AQ,
with the modified algorithm AQ

M.
Note that for the above quantization scheme, for all i, l and

any realization of (W i
l )T denoted by wi

l ,

(wi
l)Q ∈ [

wi
l − γ, wi

l + γ
]
,

hence,

min
i=1,...,n

(wi
l)Q ∈

[
min

i=1,...,n
wi

l − γ, min
i=1,...,n

wi
l + γ

]
,

and,

1
r

r∑
l=1

min
i=1,...,n

(wi
l)Q

∈
[

1
r

r∑
l=1

min
i=1,...,n

wi
l − γ,

1
r

r∑
l=1

min
i=1,...,n

wi
l + γ

]
. (2)

Note that 1
r

∑r
l=1 min(wi

l)Q is a realization of (ŷQ
i )−1.

Now, suppose that the information spreading algorithm, D,

is used so that in O(rT spr
D (δ/2)) time,

P
(
∪n

i=1{̂̄W i

�= W̄}
)

≤ δ

2
. (3)

Consider the case where {∩n
i=1{̂̄W i

= W̄}}, we have from

Lemma IV.2 that, for any μ ∈ (0, 1/2), if m = lnn −
ln (1 − e−

μ2

6 ),

P

(
1
r

r∑
l=1

W̄l /∈
(

(1 − μ)
1
y
, (1 + μ)

1
y

))
≤ e−r μ2

6 .

Combining with (2), we have that

P
(
∪n

i=1

{
(ŷQ

i )−1 /∈
(

(1 − μ)
1
y
− γ, (1 + μ)

1
y

+ γ

)}
| ∩n

i=1 {̂̄W i

= W̄}
)

≤ e−r μ2

6 ,

But the event{
(ŷQ

i )−1 /∈
(

(1 − μ)
1
y
− γ, (1 + μ)

1
y

+ γ

)}
is equivalent to{

(ŷQ
i ) /∈ (

(1 + (μ + yγ))−1y, (1 − (μ + yγ))−1y
)}

.

And, letting ε = μ + yγ,(
(1 + ε)−1, (1 − ε)−1

) ⊂ (1 − 2ε, 1 + 2ε) .

So,

P
(
∪n

i=1

{
|ŷQ

i − y| > 2εy
}
| ∩n

i=1 {̂̄W i

= W̄}
)

≤ e−r μ2

6 .

Letting r ≥ 6μ−2 ln 2δ−1, we have that

e−r μ2

6 ≤ δ

2
.

Combining this with (3) in the Total Probability Theorem, we

have the desired result,

P(∪n
i=1{ŷQ

i /∈ [(1 − 2ε)y, (1 + 2ε)y]}) ≤ δ.

Finally, recall that when the nodes communicate their real-

valued messages, with high probability all nodes have esti-

mates of the minima that they need in the computation of the

estimate of y in O(rT spr
D (δ/2)) time. So, the computation time

is of that order.

Now, when instead the nodes need to communicate log M
bits, as in the quantization algorithm described in this section,

the information-spreading algorithm will be slowed down by

log M. Each bit requires T spr
D (δ) time slots to disseminate

through the network, so (log M)T spr
D (δ) time slots are needed

until the quantized messages are disseminated and the minima

computed. Consequently, the computation time of the quan-

tized algorithm will be O((log M)rT spr
D (δ/2)).

But, M = m/γ, and by design, for a given μ we choose

m = lnn − ln (1 − e−
μ2

6 ); so m = O(log(n)). Furthermore,

we choose γ, such that γ = Θ( 1
n ). Then,

log M ≤ log log n + log n,

so, log M = O(log n) bits are needed.

As we have previously seen, for μ ∈ (0, 1/2), r ≥
6μ−2 ln 2δ−1. But, μ = ε − yγ; and, γ = Θ(1/n) so,

yγ = O(1). We therefore have, for ε ∈ (yγ, yγ + 1/2),

T cmp

AQ (ε, δ) = O
(
(log n)ε−2(1 + log δ−1)T spr

D (δ/2)
)
.

V. DISCUSSION AND CONCLUSIONS

In this paper we have shown how a distributed algorithm for

computing separable functions may be quantized so that the

effect of the quantization scheme will be to slow down the

information spreading by log n, while the remaining perfor-

mance characteristics of the original algorithm will be virtually

unchanged. This result is stated in Theorem IV.1.

Combining the result of Theorem IV.1 with that of Theo-

rem III.2 yields Theorem II.5. Comparison with a lower bound

obtained via Information Theoretic inequalities in [2] reveals

that the reciprocal dependence between computation time

and graph conductance in the upper bound of Theorem II.5

matches the lower bound. Hence the upper bound is tight in

capturing the effect of the graph conductance Φ(P ).
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