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The Value of Side Information in Shortest
Path Optimization

Michael Rinehart and Munther A. Dahleh

Abstract—Consider an agent who seeks to traverse the shortest
path in a graph having random edge weights. If the agent has
no side information about the realizations of the edge weights, it
should simply take the path of least average length. We consider
a generalization of this framework whereby the agent has access
to a limited amount of side information about the edge weights
ahead of choosing a path. We define a measure for information
quantity, provide bounds on the agent’s performance relative to
the amount of side information it receives, and present algorithms
for optimizing side information. The results are based on a new
graph characterization tied to shortest path optimization.

Index Terms—Estimation, optimal control, optimization.

I. INTRODUCTION

C ONSIDER an agent who seeks to traverse the shortest
path in a graph having random edge weights. If the agent

has no information about the realizations of the edge weights,
it should simply take the path of least average length (a simple
optimization problem). In this paper, we consider a generaliza-
tion of this framework whereby the agent can use side infor-
mation about the random edge weights of a graph to determine
the shortest-average path in the graph. Specifically, the agent
can use side information about the edge weights to estimate the
length of each path and can further optimize the side informa-
tion subject to a bound on information quantity.

In our setting, the value of side information is measured by
the average length of the paths the agent chooses, not how often
the agent decodes the optimal path. We define a measure for in-
formation that is compatible with this problem, bound the per-
formance of the agent subject to a bound on information quan-
tity, and present algorithms for information optimization. Mean-
ingful, analytic performance bounds and practical algorithms
for information optimization are based in a new type of graph
characterization tied to shortest path optimization.

Our formulation is a special case of stochastic optimization,
and numerous papers have considered the problem of bounding
the improvement one gets from information in stochastic pro-
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gramming. For instance, [1] studies the value of having full in-
formation by subdividing the domain computing bounds over
each subdomain. [2] takes a different approach by leveraging
a concavity assumption to derive a computational bound for
performance, but the bound is worse than that obtained using
Jensen’s Inequality. In [3] and [4], the impact of partial informa-
tion is considered. In the first, partial information is represented
by a signal that offers information about the underlying distri-
bution of the uncertainty, and it is assumed that there are a finite
number of such distributions. [4] similarly represents partial in-
formation, but the authors seek to determine the worst case per-
formance of the optimization over the unknown distributions.

Because the results from these works are not specific to any
particular application, the bounds tend to be overly conservative
and non-analytic. Because we are considering a specific formu-
lation (shortest path optimization), we seek to provide bounds
tied to the underlying structure of the problem. The performance
of shortest/longest path algorithms on random graphs has been
considered in the literature, but in different contexts than we
seek. For instance, [5] computes the probability density func-
tion of the shortest path length in a complete graph having in-
teger edge weights, and [6] studies the average length of the
shortest path in a complete graph with uniform edge weights.
Both works leverage the significant symmetry of their respec-
tive formulations, so they do not generalize to our framework.
References [7] and [8], on the other hand, compute bounds on
the length of the shortest path on an arbitrary graphs having arbi-
trary edge-weight distributions, but the bounds are independent
of the graph’s topology. In fact, the bound in [8] is equal to a re-
laxation of our bound. [9] also considers arbitrary graphs having
arbitrary distributions, and achieves a topologically dependent
bound by employing dynamic programming and bounding the
lengths of subpaths along the dynamic program. However, the
bound must be computed via an iterative algorithm.

Although not presented in the context of valuing information,
the results in [10] do indirectly address portions of our frame-
work. Specifically, the authors apply mathematical program-
ming techniques to compute lower bounds for stochastic 1-0
optimizations. The results are based in the generalized Cheby-
shev bound [11], which is hard to compute in general, but [10]
is able to reduce the complexity of the computation via a series
of relaxations. However, these relaxations are too conservative
for optimizing information. Furthermore, the computational na-
ture of the technique does not offer insight into how topology or
information quantity impact performance.

The outline of this paper is as follows. In Section II, we de-
fine the concepts and notation used in this paper, formally de-
scribe the framework for shortest path optimization under lim-
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ited information, and present the objectives of this paper. In
Section III, we present a graph characterization for shortest path
optimization and use it to derive information optimization al-
gorithms and performance bounds in Sections IV and V. In
Section VI, we apply our results in several examples. Finally,
Section VII, we summarize the results of the paper and remark
on some possible future extensions.

II. DEFINITIONS, NOTATION, AND FORMULATION

A. Random Variables, Sets, and Matrices

We write random variables (RVs) in capital letters (e.g., ),
and we write if has as its probability density function
(pdf). We specifically let be the normal distribution
with mean and variance . and are, respec-
tively, the expected value and variance of , and for a random
vector ,
whereas . For two RVs

, we define as the estimate of given
(which we simplify to if the argument is understood), and we
say if both RVs are drawn from the same distribution.

If is a set, is the number of elements in . For another
set , is the set of elements in but not in . If
and , . We denote the sphere of
radius and center as .

Finally, for a positive semi-definite (PSD) matrix ,
is the unique positive (semi)definite matrix satisfying

, and for two PSD matrices and , the inequality
means that is PSD.

B. Graphs

We define a graph by a pair of vertices and edges
. Because we allow any two vertices to have multiple edges

connect them, we forgo the usual definition and
instead define a head and tail for each edge by
and , respectively.

Each edge in the graph is associated with an edge weight
. The vector of all weights is . Because

we consider edge weights to be random, we write the vector as
, and we assume that the probability distribution is known.

Finally, let , , , and
.

We now define the notion of a path in the graph.
Definition 1 (Path): A sequence with

is a path if , and we say goes from
to .

Definition 2 (Acyclic Path): A path is acyclic if
there are no two indices such that .

Assumption 1: All paths of are acyclic (it is a directed
acyclic graph).

We also assume the existence of two vertices , re-
spectively termed the start and termination vertices, that satisfy
the following assumption.

Assumption 2: There is a path from vertex to each vertex
as well as a path from each vertex to

vertex .

Let be the set of all paths from to in . From
here on, when we refer to a path, it is assumed to come from .

With some abuse of notation, we can write each as a
0–1 vector in , where if and otherwise.
In this case, is also the set of all such vectors in . Let

. An well-known, efficient representation
for is

such that

otherwise.
(1)

Finally, using our vector notation, the length of a path is
simply .

C. Partial Information in Stochastic Optimization

We begin by developing a general formulation for studying
the value of information in stochastic optimization. For the pur-
poses of this section, let be any RV with some known distri-
bution.

Consider the following stochastic optimization:

Clearly, since is a RV, is also a RV, and so the average
performance of the optimization is .

Consider now the task of finding an “optimal” decision
without having the realization of . A reasonable objective is
to select the that minimizes the average of the objective:

Since is a constant, . By Jensen’s Inequality,
.

We call the first case (where the realization of was known)
the full-information case. We call the latter case the zero-infor-
mation case.

We are interested in formulating an in-between partial-infor-
mation case. To this end, we introduce another RV that rep-
resents the agent’s side information about and write the op-
timization as a function of our side information:

could the output of a network of sensors on the graph’s
edges, for instance. Once again, because is a RV, is
also a RV, and so the average performance under is simply

. Clearly, the information contains about is
completely determined by their joint-distribution , so we
define :

(2)

Remark 1: Intuitively, we are “averaging-out” the informa-
tion about that we do not have from , much like in the
zero-information case. The full- and zero-information cases are
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easily obtained by substituting (a constant) and
to, respectively, yield and .

Proposition 1:
Proof: The proof is a simple application of Jensen’s In-

equality:

D. Quantifying Information and Information Optimization

The agent is also given some flexibility in determining the
side information it receives in the form of being able to choose
the joint distribution . Without added constraints, though,
the agent will choose a distribution that yields .
Therefore, we define a “bound” to limit the set of allowable
distributions. In terms of performance, we seek the solution to

(3)

We call (3) the information optimization.
To quantify information, we further generalize the concept

of an information bound to a family of constraint sets
parameterized by a non-negative scalar called the capacity.
For ease, we simplify our notation by writing

and call the optimal performance under capacity . Al-
though not critical to the analysis of this paper, desirable prop-
erties of include the following:

• if ;
• implies for

;
• if , then and are in ;1
• and there exists a such that there exist a

satisfying .

E. Partial Information in Shortest Path Optimization

We now specialize our framework to shortest path opti-
mization. We begin by defining the information constraint sets

:

Our choice of is a practical selection motivated by the
analysis that is to follow in this paper. It furthermore obeys our
desired properties for .

Proposition 2 (Projection Theorem):
.

The interpretation of Proposition 2 is that as we add informa-
tion to our estimate in the form of to ,

1Note that is any side information, and so it can be taken as a tuple of side
information as well.

our measure for information increases. The lower bound repre-
sents the case of having zero information, and the upper bound
represents the case of having full information.

Now, given a joint distribution between the edge
weights of the graph and the information that the agent
receives, we can write the agent’s average performance as

(4)

Notice that (4) only depends on .2 We can also equiva-
lently parameterize by

and
(5)

F. Optional: Shortest Path Optimization Under a Mutual
Information Bound

Why do we define a family of abstract sets as our
information bound and not simply use mutual information. In
general, we want to apply bounds that yield a nice rela-
tionship between and . For instance, we will see that our
variance bounds for information relate nicely to shortest path
optimization.

We can relate our information bound to mutual information;
however. Let

where . Then
so that .

In general, computing is difficult, but so may be
computing the performance under mutual information bounds
directly. For instance, it is straightforward to see that the sets

that we are using for shortest path optimization relate
to mutual information via a rate-distortion problem:

In general, it is not trivial to solve this optimization, especially
in the multivariable case.

G. Specializing to Gaussian Edge Weights

A particular subcase of interest to us is that of Gaussian edge
weights. If where and are independent,

with , and , then

Information optimization in this special case is equivalent to
designing the distribution of the noise , or, equivalently, its
covariance matrix . It is straightforward to show that de-
signing a positive semidefinite is equivalent to designing

2This is true for any linear objective, not just shortest path optimization.
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Fig. 1. Graph for Examples 1 and 2.

(which is equal to ) subject to cer-
tain constraints. Denote this new constraint set as :

and (6)

Note that is a convex set. It remains convex if we add
additional convex constraints such as .

Finally, we define .

H. Impact of Information Selection: Comparative Examples

We now briefly highlight the impact that different side infor-
mation can have on performance.

Example 1: Let be the graph in Fig. 1 having disjoint
paths from to with each path having edges
each. Let be the (random) weight of edge on
path and assume the edge weights are independent. Consider a
distribution parameterized by covariance matrix
where , if , and oth-
erwise. Essentially, the estimates only contain information
about the edges in , meaning that for and

for .
Under this side information, the average performance is

where with .
Example 2: Let be the graph in Fig. 1 and take the distri-

bution parameterized by a covariance matrix
where , if is the first edge of any path

, and otherwise. Essentially, the estimates only
contain information about the first edge in each path, meaning
that if is one of these links and otherwise.

Under this side information, the average performance is

Fig. 2. Graph for Example 3.

where the last inequality is obtained by using Lemma 3 in [12].
There is a significant difference between the performances of

the two examples. If we increase , the average performance
yielded from applying outstrips that obtained using quite
substantially. This motivate our desire to optimize the informa-
tion received by the agent.

The next example presents a topology for which the agent’s
performance significantly improves with capacity.

Example 3: Consider the graph in Fig. 2 with
and independent and assume . Choose any

, and denote . We have

where and .
The optimal (there are of them) are given by the

solution to

subject to

yielding . Thus,

Example 4: Finally, we consider a path having a single path
from to . In this case, we get

where is the performance under no information.

I. Objective

The goal of this paper is to develop practical algorithms
for information optimization as well as analytic bounds for

that provide an intuitive relationship between capacity,
topology, and performance.
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III. GRAPH CHARACTERIZATION FOR SHORTEST

PATH OPTIMIZATION

A challenge in information optimization is the evaluation of
the objective , which is known to be #P-hard [13]. To
overcome this difficulty, we will devote our analysis to devel-
oping meaningful upper and lower bounds for that can
be practically evaluated. In this section, we present a graph char-
acterization for shortest path optimization that will allow us to
derive such bounds. The characterization is based on a simpli-
fied description of the path polytope .

A. Projection Matrix for the Path Polytope

The first property of that we examine will be critical
to the development of our information optimization algo-
rithms. First, define the path of shortest average length as

. Clearly, .
Proposition 3: lies in a strict subspace of .

Proof: Because and is a polytope, we only need
to show that it does not have volume in .

Define the successor edge set for the vertex as
. First, assume that . Define

by

otherwise.

By the virtue of being DAG and being the unique start
vertex, any path in must contain exactly one of the edges
in . Hence, the product is the set

for exactly one , and therefore the product is the set
of the corners of the simplex in .

The simplex (the product ) does not have volume in
. Therefore, does not contain a hypercube of any size

in because if it did, would be a set with volume in the
simplex . Hence, has no volume.

Now, assume that . If its equals zero, the claim is
obviously true. If it equals one, select the first vertex “after”

with and apply the proof above to to show that
has no volume. If for all (the only remaining

case), then one can easily see that there is only one path in ,
the vector [1 1 1], which is a single point in and,
thus, has no volume.

Let be the smallest subspace containing , and let
be the projection matrix for . We can compute in poly-
nomial time, but the details of the computation are not critical
to the developments of this paper, so we save the details for the
Appendix. The following theorem formally states our claim.

Proposition 4: can be computed in polynomial time.

B. Outer Spheric Approximation

Now we provide a simplified description of the boundary for
using a low-complexity outer approximation, specifically a

sphere. In general, finding the minimal-radius sphere containing
a polytope is computationally hard [14], but in the case of the
path polytope, it can be computed quite efficiently.

Proposition 5: The minimal-radius sphere con-
taining is given by the solution to the convex quadratic op-
timization

subject to

(7)

Proof: Because the extreme points of are the paths of
the graph, a necessary and sufficient condition for a sphere with
radius and center to contain is

Since is a 0–1 vector, , so we have the equivalent
inequality

for all

where the last two lines differ in the use of versus its convex
hull (which is possible since it is a linear optimization). The
expression is the length of the longest
path in an acyclic graph when the edge weights are given by

. It is straightforward to see that the optimizing is
this length.

Remark 2: Analytic bounds for can be computed by
first choosing a (possibly non-optimal) center , computing the
length of the longest path using the edge weight vector ,
and then computing a radius bound. We will use this strategy in
some examples later in the paper.

Proposition 6: .
Proof: Suppose the minimum radius ball

has its center not in . Then there is a hyperplane strictly
separating and . This hyperplane also defines a closed half-
space that contains but not . The diameter of ,
since the existence of points with

would imply that is in . Therefore,
can be enclosed in a ball of radius less than , implying

that can be enclosed in a ball with radius less than . This is
a contradiction.

C. Inner Spheric Approximation

Efficient algorithms for generating inner spheric (as well as
ellipsoidal) approximations to a polytope are well-known [14],
and we do not reproduce the results in this paper. We do note,
however, than such algorithms assume that the set to be ap-
proximated has volume, which does not. A way around this
problem is to simply compute the inner approximation strictly
within the affine subspace containing . The details of the com-
putation are not important to the developments of this paper
since we will not leverage inner spheric approximations beyond
some basic statements that are nearly identical to the case of
outer spheric approximations.
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Similar to the case of an outer spheric approximation, we let
and respectively be the radius and center of the maximal

inner sphere contained in .

IV. INFORMATION OPTIMIZATION AND ANALYTIC

PERFORMANCE BOUNDS USING GRAPH REDUCTIONS

In this section, we derive expressions for information opti-
mizations, analytic performance bounds, and a numeric tech-
nique for bounding .

A. Information Optimizations Via Upper and Lower Bound
Optimization

We begin with a derivation of upper and lower bounds for
that can be used for information optimization. While these

bounds are not practical to optimize, they do provide useful
insight into the relationship between information and perfor-
mance.

Lemma 1:

Proof: We start with the lower bound. Since ,
. Therefore,

The upper bound similarly follows.
An interpretation of Theorem 1 is that we should optimize

side information by concentrating the energy of the estimate to
the subspace . The component of normal to that subspace
(specifically, ) is lost in the projection. To this end,
we term the actionable subspace, and we term the orthog-
onal subspace the inactionable subspace.

What does the inactionable component of the information
represent. It is the amount of length in common to all paths.
Thus, it only aids in estimating the actual length of the paths.
The actionable component contains all of the information
for path selection. We will specialize these bounds in Section III
to the case of Gaussian edge weights to give practical informa-
tion optimization algorithms.

We can derive a different information optimization for
by choosing a simpler strategy: optimize information over only
two paths of a graph. Geometrically, we achieve this by reducing

to a line (i.e., by connecting two points in ) and removing
the remainder of the polytope.

Lemma 2: For any , an upper bound for is

Proof:

Because the bound is true for all , it is true for the mini-
mizing distribution.

Because lies in the actionable subspace , the op-
timizing distribution will concentrate to the actionable
subspace as well. We will see that this strategy will arise again
later in this paper. It is also in qualitative agreement with Exam-
ples 1 and 2 where it was shown that concentrating information
energy along a single path of a graph is superior to spreading it
among many paths.

B. Analytic Performance Lower Bounds

Using Lemma 1, we can derive an analytic performance
bound for that incorporates the capacity and graph
radius . We begin two useful background results.

Proposition 7: For any function and any set

Proof: The proof follows immediately from the fact that
.

Remark 3: Proposition 7 provides a generalization of the
approach taken in [15] to generate a low-complexity optimiza-
tion for bounding the mean of the minimum order statistic.
Let be the simplex in and let be a
random vector in . The minimum order statistic is given by

. We can derive the bound in
[15] by setting for some vector , setting

to the unit cube, and then maximizing over . A similar
approach is taken in [16] for obtaining an analytic lower bound
for .

Proposition 8:

Proof: Applying Proposition 7 with and
yields

We can now apply Lemma 1 using in place of yielding
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We now provide the analytic performance bound.
Theorem 1: .

Proof: By and Jensen’s Inequality

for all distributions . Simply apply this inequality
to Corollary 8.

Finally, the corollary below gives the maximum rate of per-
formance improvement one can get for any graph topology.

Corollary 1: A proportionally tight lower bound for
over all graph topologies is .

Proof: Substituting in the opti-
mization in Proposition 5 yields . Proportional
tightness is proven in Example 3.

Remark 4: The bound in Corollary 1 tells us that there exists
a graph topology (the one in Example 3) such that performance
unboundedly improves as the graph grows, even if is
held fixed.

Remark 5: The bound in Corollary 1 also appears in [16] and
[8] using different methods. In [16], it is obtained by bounding
with the unit cube. In [8], it is obtained using convex majoriza-
tion of RVs. The methods used in these other papers cannot be
improved further to include graph topology information.

C. A Numeric Approach to Computing Performance Bounds

We now present a mathematical programming approach to
computing bounds for . The approach is based on the
results in [10] for bounding general stochastic optimizations.
First, consider the following optimization:

subject to

(8)

Clearly, since the constraint set of the opti-
mization is a superset of .3

We can solve (8) by solving its dual, and there are conditions
under which there is no duality gap [11]. However, the dual will
have a constraint for each path in the graph, and so it may be im-
practical to solve for even a moderately sized graph. An efficient
approach to tackling optimizations similar to (8) is presented in
[10], but it requires that the primal only contains constraints on
the individual edge weight moments, which the capacity con-
straint clearly disobeys. [17] extends [10] to the
case of having constraints on the non-diagonal components of
the covariance matrix, but our constraint is of a different form.
Nonetheless, we can adapt the approach in [10] to handle our
capacity constraint. We present this extension as a corollary to
the main result Corollary 3.2 in [10]. The proof is contained in
the Appendix.

3Notice that there are no higher order or cross moment constraints (such as a
covariance constraint) on in terms of in (8). Hence, we cannot guarantee
that there is an RV such that an RV from this constraint set satisfies

.

Corollary 2 (to Corollary 3.2 in [10]):

subject to

(9)

where is the elementary basis vector with the component
equal to 1.

A problem with (8) and (9) for information optimization
is that the optimizing distribution may not be possible to
achieve for a given edge weight distribution . Therefore, it
cannot be used to derive information optimization algorithms
since there may be no side information distribution that
can yield . Also noteworthy is that although (9) can provide
performance bounds that use the graph’s topology, its compu-
tational nature does not provide any intuition for how topology
or capacity impact performance.

V. INFORMATION OPTIMIZATION AND PERFORMANCE BOUNDS

IN THE GAUSSIAN CASE

A. Information Optimizations Via Upper and Lower Bound
Optimization

In the Gaussian case, we can provide very useful upper and
lower bounds for that are amenable to information opti-
mization. We begin with a useful background result.

Lemma 3: Let . The optimization

is equivalent to the convex optimization

where .
Proof: We have

where the equality comes from the fact that .
Since , we have the following

equivalences for the constraint :

Clearly, this constraint is convex over . Therefore, is
convex.
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Now we prove the objective is concave. The function
is linear over .

Therefore, is concave for .
By linearity of the expected value operator, the objective is
concave.

We now present the main information optimization result in
the Gaussian case.

Theorem 2: If the mean lengths of all paths are less than a
constant (formally, for all paths ), then

(10)

where and
.

Proof: We start by proving the lower bound. By Proposi-
tion 8,

By our parameterization , we have the equiv-
alent expression for the maximization term:

The remainder of the proof for the lower bound follows from
Lemma 3.

Now we turn our attention to the upper bound. If ,
then

where the last inequality follows from Lemma 1. The remainder
of the proof is similar to that of the lower bound.

B. Special Case Analytic Solutions for Information
Optimization

Theorem 2 provides convex optimizations for information op-
timization. Under certain conditions, we can derive analytic ex-
pressions for the optimal bounds as well as the optimizing co-
variance matrix . We begin with the following lemma.

Lemma 4: If is sufficiently small, then

where an optimizing is
for two chosen paths .

Proof: By , .

Therefore, must satisfy to maxi-
mize the objective. We can parameterize the set of all feasible

satisfying this constraint as follows. Let

. Set where the unitary matrix has
the form

with and form an orthonormal bases for and
respectively, is a diagonal matrix with for ,

for , and satisfy . Optimizing
is now equivalent to optimizing over the basis and

scalars .
Substituting this parameterization for yields the opti-

mization

where equality follows from the fact that the are an or-
thonormal basis.

By the concavity of and the fact that the vector
is on a simplex, we have

where for any unit vector (by symmetry,
any unit vector yields the same number, and hence it is the
same for each ). If we choose , we get

where has the folded normal distribution. Hence,
.

The upper bound is achieved if we choose any orthonormal
basis and set for some and for all .
Therefore, for some , set since then

, set , and set the remaining ’s to some
orthogonal basis with . Note that we require .
We assume is sufficiently small in the theorem statement so
that this condition is satisfied.

Remark 6: Note that if we were to include additional con-
straints such as , we may not be able to de-
rive an analytic solution for the optimizing . In this case, we
would have to numerically solve the convex optimization.

Theorem 3: Under the assumptions of Lemma 4 and if
for all paths , then

An interesting property of the optimizing in Lemma 4
is that it concentrates the information to two paths of the graph
over the edges for they do not intersect (the expression).
This is in qualitative agreement with Examples 1 and 2 where it
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Fig. 3. (solid line) compared to (dashed line).

was shown that concentrating information energy along a single
path of a graph is superior to spreading it among many paths.
Hence, we can consider deriving a new upper bound for
simply by concentrating information in this fashion.

First, let where . Clearly,
. Essentially, seeks to determine how much is

less than on average (see Fig. 3). One can easily show that
.

Theorem 4: Assume independent edge weights. For any
, an upper bound for is

where .
Proof: Under independence assumptions, it is easy to

verify that

It is also easy to construct a distribution that corresponds to
a diagonal that achieves this bound. Therefore,

where .
Beginning with (an adaptation of) Lemma 2, we have

Corollary 3: Assume the conditions of Theorem 4 and further
assume that . An upper bound for is

where .

Remark 7: There are two key differences between the upper
bounds in Corollary 3 and Theorem 3. First is the constant. By
restricting the polytope to a line, Corollary 3 only concerns
itself with the average-optimal length rather than an upper
bound for all path lengths. Second is the coefficient in front of
the term: in Corollary 3 and in Theorem
3. The inner radius can actually act as an impediment on the
bound since for certain path polytopes (such as the sim-
plex) as the dimension increases, making the bound potentially
over-conservative.

VI. EXAMPLES

We begin with two analytic examples that bound the value of
side information for certain graph topologies and then conclude
the section with two numeric examples.

Example 5: In this example, we compute an analytic perfor-
mance bound for a binary tree with levels. We first choose a
center for the outer sphere approximation by selecting a center
point for each edge . A binary tree consists of levels of edges,
an edge’s level being defined as its distance from the root vertex.
We select according to the scheme where is the
level of edge . Because level has edges in it, we have
edges with .

We compute a bound for using this center as follows:

Therefore, the average performance under capacity is lower
bounded by .

Example 6: We now compute an analytic performance bound
for a complete graph where the start vertex and terminating
vertex are chosen arbitrarily. Of course, since a complete graph
is undirected, a direct application of (7) is not practical since it
requires the computation the longest path in an undirected graph
with non-negative edge weights. However, we can compute a
suboptimal analytic lower bound fairly easily.

For a selection of and in the complete graph, we divide
the edges of the graph into classes of edges and apply the same
center point to each edge within the same class. The classes are:

• the edge connecting and ;
• edges connecting to vertices ;
• edges connecting to ;
• and edges connecting to .

We can show that , , and
.

We assign the center points as follows:
• ;
• ;
• ;
• and .
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Fig. 4. Analytic bound of Theorem 1 compared to the optimization-based bound of Corollary 2 for a two-path graph. The solid curves are the analytic bound
performances, and the asterisks are the optimization-based bound performances. Each curve represents a graph with an different number of links per path. (a)
case. (b) Random case.

Fig. 5. Analytic bound of Theorem 1 compared to the optimization-based bound of Corollary 2 for random DAGs. The solid curves are the analytic bound
performances, and the asterisks are the optimization-based bound performances. Each curve represents a different random graph topology with the number of
vertices fixed. (a) case. (b) Random case.

We can show that as long :

Note that is the length (using
as the edge weight vector) of the acyclic path having

the most edges.
If we set and , we get

Maximizing over , , and , we get ,
and

where the final approximate equality is specific to the complete
graph. Therefore, the average performance is lower bounded by

.
Finally, we present two examples comparing Theorem 1 to

Corollary 2. In both, we consider two cases for the mean :
1) and 2) a random . Because our analytic bounds
grow unbounded for increasing (even for ),
we compare the bounds only over .
This will allow us to examine the impact of increasing capacity
without saturating information from any one edge.

Example 7: In this example, we consider a graph having two
disjoint paths from to and consisting of the same number of
edges, and where for all edges. We compute
performance bounds over . Fig. 4(a) and (b) shows
the performances of two approaches in each case. For the case

, the performances are identical over capacity and graph
size. In the case of a random (nonzero) , the bound of Corollary
2 has slightly better performance, but it has roughly the same
rate of performance improvement.

Example 8: In this example, we consider random DAGs
consisting of ten vertices and where for all
edges. We compute performance bounds over .
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Fig. 5(a) and (b) shows the performances of two approaches in
each case. For the case , the performances are identical
over capacity and graph topology. In the case of a random
(nonzero) , the bound of Corollary 2 has slightly better
performance, but, once again, has roughly the same rate of
performance improvement.

Remark 8: There are two interesting observations in the
computational examples. The first is that the bounds from
both Theorem 1 and Corollary 2 seem to be identical in the
regime and , despite applying
different outer-approximations in their respective formulations
(Theorem 1 outer approximates while Corollary 2 outer
approximates ). The second observation is that in the case
of nonzero , the bounds at least seem to possess the same rate
of improvement with increasing capacity.

VII. CONCLUSION AND FUTURE WORK

A general framework for studying stochastic optimizations
under partial information was presented and specialized to
shortest path optimization. As part of this specialization, a
convenient parametrization for information capacity was used
that allowed us to conveniently optimize information. A new
graph characterization for shortest path optimization was used
to provide new algorithms (convex optimizations in the case of
Gaussian edge weights) for information optimization as well as
provide analytic performance bounds.

Future work includes examining other useful approximate ge-
ometries for and examining the relationship between such
geometries with the distributions resulting from Corollary 2.
We also plan to study a generalization of our framework by
which the agent is able to receive information as it traverses
the graph. In this setting, we seek to determine how delayed but
possibly optimized information impacts performance relative to
obtaining all information upfront. Finally, methods for deter-
mining the set of (in)actionable information would be useful in
general. The set of inactionable information in particular can
be explicitly characterized as the set for the perturbation
such that for all and for each

.

APPENDIX

II. PROOFS OF RESULTS

Proof of Theorem 4: We prove the result by providing such
an algorithm. First, define

subject to

for all

with the definition if the optimization
is infeasible.

The algorithm is as follows:

1: ; ; .
2: while do.
3:
4: if then.

5: .
6: .
7: .
8: else.
9: .
10: end if.
11: end while.

It is clear that the above algorithm terminates in a polyno-
mial number of steps, so we only need to prove that it gen-
erates a valid projection matrix . For any orthogonal basis

of , a projection matrix for can be
written as . Therefore, we need to
show that the set generated from the algorithm is such a
basis.

A vector being normal to is equivalent to
for all . There-

fore, a sufficient and necessary condition for to be normal is
that all paths from to have the same length when the edge
weights are .

The longest path in the graph when the edge weights are given
by is the unique function satisfying

. The shortest path is the unique
function satisfying the same equality with .
An equivalent condition to all paths having the same length is

. Therefore, if is feasible, any optimal solution
vector provided by must be normal to , and, further,
it must be nonzero. Therefore, any set of such feasible vectors

must lie in .
By the orthogonality constraint and the con-

straint , any set of vectors yielded by
the algorithm must be nonzero and orthogonal; hence, the set is
a subset of an orthogonal basis for .

Now, suppose the set generated by the algo-
rithm is a strict subset of a basis. Then there is a nonzero vector
that is orthogonal to each and lies in . Let be the smallest
index of the nonzero components of , and assume without loss
of generality that ( can be normalized to produce this).
Finally, let .

By the definition of , is infeasible since,
otherwise, , a contradiction. By the existence of ,
though, we know that is feasible since sat-
isfies all of the constraints of the optimization. The contradic-
tion implies that must be an orthogonal basis
for . Hence, is a projection matrix for .

Proof of Corollary 2: We present a detailed sketch of the
proof. First, if we remove the capacity constraint from (8) and
instead fix the variances , we get

subject to
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For ease, we denote the lower bound for performance in this
case as for the vector . This optimization is
of the form Equation (3.7) in [10]. By Theorem 3.1 in [10], it is
equivalent to Equation (3.8) in [10]. Substituting our constraints
yields a quadratic objective and second-degree polynomial in-
equalities, which we can re-express as operations and inequali-
ties on semi-definite matrices:

subject to

where by our definition of , is simply with
.

Let . is
clearly a convex set. It is also clear that

Taking the dual of the optimization for with respect to
yields a new inner optimization

subject to

Let . Letting and

, the objective in the minimax is

Of interest to us is the minimaximin expression:

If , then this expression must always be nonpositive
since . If , then one can show that the expres-
sion will always be . Therefore, we require . In this
case, is the optimal strategy for since that maximizes
the expression to 0.

The constraint is represented by

The remainder of the claim follows.
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