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Abstract—This paper investigates the impulse response estima-
tion of linear time-invariant (LTI) systems when only noisy finite-
length input-output data of the system is available. The competing
parametric candidates are the least square impulse response esti-
mates of possibly different lengths. It is known that the presence
of noise prohibits using model sets with large number of parame-
ters as the resulting parameter estimation error can be quite large.
Model selection methods acknowledge this problem, hence, they
provide metrics to compare estimates in different model classes.
Such metrics typically involve a combination of the available least-
square output error, which decreases as the number of parame-
ters increases, and a function that penalizes the size of the model.
In this paper, we approach the model class selection problem from
a different perspective that is closely related to the involved de-
noising problem. The method primarily focuses on estimating the
parameter error in a given model class of finite order using the
available least-square output error. We show that such an estimate,
which is provided in terms of upper and lower bounds with certain
level of confidence, contains the appropriate tradeoffs between the
bias and variance of the estimation error. Consequently, these mea-
sures can be used as the basis for model comparison and model se-
lection. Furthermore, we demonstrate how this approach reduces
to the celebrated AIC method for a specific confidence level. The
performance of the method as the noise variance and/or the data
length varies is explored, and consistency of the approach as the
data length grows is analyzed.

Index Terms—Least square estimate, LTI system modeling,
noisy data.

I. INTRODUCTION

A common method of LTI system modeling from data is
to find the least square estimate of the impulse response.

We consider the problem of overparametrization of these esti-
mators in the presence of noisy data. This problem has been
the key motivation of model selection approaches. Essentially,
these approaches point to the fact that lower dimensional models
can produce better parameter estimates by minimizing some risk
assessment criterion. These criteria are generally proposed for
the sole purpose of model set comparison and do not carry any
particular information on the quality of the estimator in any
individual model set. In this paper, we primarily focus on the
problem of estimator quality evaluation in a given model set
and employ the estimation error for this purpose. We denote
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the square of the estimation error in the parameter space and in
the output space as the parameter error and the reconstruction
error, respectively. These errors inherently include bias-vari-
ance tradeoffs and consequently can be used as risk assessments
for the model selection procedure. In the absence of noise, it is
logical to choose the model set with the highest order among a
set of nested model sets, as the error is a decreasing function of
model order. On the other hand, in the presence of the additive
noise, a model set can exist with order in which the error is
smaller than that of the model set with order . This is due
only to the fact that the estimate of order is less noisy than
that of order . Accordingly, minimizing the square error
among the nested model sets results in the choice of the least
noisy estimate among the competing estimates.

The importance of the square of the estimation error and
its mean, denoted by the mean-square error (MSE), has been
acknowledged in most data-based estimation approaches. The
main challenge, however, is in calculating these values by using
only the observed data [10]. We investigate the possibility of
computing an estimate of such errors using the computable
output error. For a finite data set, only probabilistic bounds
of such an error can be derived for every model class. We
explicitly compute such probabilistic bounds. The model se-
lection problem is then formulated as finding the model class
that minimizes the upper bound of this error for a fixed level
of confidence. This approach results in a measure computed
from finite observations that provides the appropriate tradeoff
between bias and variance in a systematic way across all the
competing model sets.

It is important to note that our method is more than an order
selection approach. In cases that the true model has finite-length
impulse response (FIR), we provide conditions for the consis-
tency and can choose the true FIR as the data length grows. Nev-
ertheless, the method also applies to the cases that the true length
is known. In this case, we show that, due to the finiteness of the
data, the least noisy estimate may not be the one with the same
length as the true FIR. Our approach can also be used when
the impulse response is infinite-length impulse response (IIR).
In this case, the competing candidates are the least square esti-
mates of the finite part of the IIR that are provided by the avail-
able data. The method chooses the least noisy one among these
estimates. The provided least noisy estimate can then be utilized
for modeling a rational transfer function in a zero-pole modeling
process [14], [18].

The paper is arranged as follows. Section II contains the pre-
liminaries and Section III includes the notations, motivation,
and the considered problem. Section IV discusses the impor-
tance of the estimation errors. In Section V, the structure and be-
havior of the reconstruction error in subspaces with different or-
ders are investigated, and the connection between the denoising
approach and model selection is shown. Section VI uses the
observed data to estimate the reconstruction error. Section VII
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provides the connection between the reconstruction error and
the criteria in a class of exiting order selection approaches. In
Sections VIII and IX more details about estimating the recon-
struction error are provided, and topics such as consistency and
prior information on the true order are discussed. Application
of the method for two cases with FIR and IIR filters is demon-
strated in Section X. The paper concludes with Section XI.

II. PRELIMINARIES

We consider a class of stable, causal, single-input/single-
output, linear time-invariant, discrete-time systems. The system
is at rest and all initial conditions are zero. Input and noiseless
output of the system are related as follows1:

(1)

where are the real-valued coefficients of the system’s im-
pulse response.2 The observed output is the noisy version of the
output

(2)

where is an additive white Gaussian noise (AWGN) with
zero-mean and variance . The additive noise is independent
of the input. Finite-length data, input
and output , are available. The goal is
to provide a good representative of the true parameter

(3)

given the observed noisy and finite-length data. The true param-
eter is a member of a compact set , which is a subset of

. For now it is assumed that , an upperbound for the order
of the true parameter, is available and is less than the data length,

. These assumptions are later relaxed in Section IX.

III. NOTATIONS, MOTIVATION, AND PROBLEM FORMULATION

A. Estimation in

Noiseless Data and True Parameter (Impulse Re-
sponse Coefficients) : The unavailable noiseless output

in (1) is related to the unknown
true parameter as follows:

(4)

where is the Toeplitz matrix generated by the
input and is assumed to have a full rank (input is persistently
exciting of order [12], [19]).

Noisy Data : Noisy data is the corrupted version of the
noiseless data as given in (2).

1For simplicity and without loss of generality we assume that both input and
output are real-valued.

2The use of superscript “*” for the variables is adopted from the system iden-
tification literature such as [12].

Parameter Estimate of Order , : The least square
estimator projects both the noiseless output and the additive
Gaussian noise into the parameter’s space and we have

(5)

(6)

In the absence of the additive noise , this least square
estimate is the true parameter itself

(7)

and therefore, if any element of is zero, or close to zero, it is
captured precisely by using this projection.

However, the noisy term, , may fit too
much of the noise to each component of the parameter estimate.
The noise fitting issue is especially problematic and obvious if
the element of itself is zero or much smaller than the
element of this noisy term. In this case, it is better to set the
estimate of the element to zero instead of using the avail-
able noisy data. Setting the element to zero is equivalent to
searching for an estimate of the true parameter in a subset of

with a lower order. This observation has been the motiva-
tion of subset estimation and order selection approaches. In the
following section, the related subset estimation is formulated.

B. Estimation in Subspaces of Order ,

For possible reduction of the effects of the additive noise,
we consider the parameter estimates in subspaces of . The
subspace, in the following approach, can be any subspace of the

. However, for simplicity and without loss of generality our
competing subspaces are nested subspaces of with different
orders, and the elements of subspace have the following
structure:

(8)

True Parameter: The true parameter in (3) and (7) is

(9)

where is a vector of length , corresponding to the
parameters that are not in the subspace and which represents
the unmodeled coefficients.

Noiseless Data: In each subspace, the noiseless data in (4)
can be represented by

(10)

where is the matrix with the first columns of the Toeplitz
matrix , and includes the rest of columns of
the Toeplitz matrix.

Parameter Estimate of Order , : The least square
estimate of in is

(11)
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(12)

Data Estimate : Using the parameter estimate in sub-
space results in an estimate of the observed data3 [4], [20]

(16)

(17)

Important Notation: In this paper, denotes the
expected value of with pdf and is value
of the function at sample point .

Also, to simplify notations throughout the paper, the param-
eter estimate is also denoted by , i.e., in is
eliminated.

IV. IMPORTANT FACTORS: ERRORS IN SUBSPACE SELECTION

In subset estimation, only the first elements of are esti-
mated and the other elements are set to zero. The additive
noise is now projected into a subspace of order . However, the
tradeoff is in setting the rest of the parameters to zero and pos-
sibly having a larger bias in the error. Is it better to consider the
least square estimate of in a subspace of or in itself?
To answer this question, we concentrate on the estimation error
caused by the noisy data and by the choice of a subspace. In
each subspace, the error caused by the estimation process is

(18)

(19)

which includes both the noise effects (the part with term)
and the effects of the unmodeled coefficients . To compare
the behavior of this error in the subspaces, we can use the
norm of this error and define the parameter error as

(20)

Considering this distance measure for evaluation, the optimum
parameter estimate is the one that minimizes this error. While
the parameter error is an interesting criterion for comparison of
the subspaces, it is not possible to directly calculate this error
by using only the available data. On the other hand, an available
error in each subspace is

(21)

3The maximum likelihood (ML) estimate of � in � is

(13)

where ��� � �� � � is the probability distribution function (pdf) of the output
given that the input is � and parameter � has generated the data. Due to the
structure of the data, the pdf is

� (14)

Therefore, the ML estimate in (13) is also the least square estimate

(15)

which is the distance between the noisy data and its estimate in
the subspaces. This output error is a decreasing function of
and is nonzero in all subspaces except in . Minimizing this
error always leads to choosing the space itself. Therefore,
the data error cannot evaluate and compare the parameter errors
of different subspaces. Data error is a well-known component of
the comparison criteria in existing order selection approaches,
to which a penalty term (an increasing function of ) is usually
added.

Another important related error is the reconstruction error,
which represents the effect of the estimation error in the output
space [3], [10]

(22)

This error is the result of transforming the parameter error into
the output space

(23)

A novel approach in [3] provides an estimate of this error by
using the available “data error” in a data denoising problem. The
linear relation between the true parameter and the available data
in the data denoising setting is analogous to the linear relation
between the true parameter and the available output in the LTI
system modeling. However, while here the linear transformation
is through the Toeplitz matrix generated by the input, in the
denoising approach the transformation matrix is orthogonal. In
this paper, we focus on estimating the reconstruction error for
a full rank Toeplitz matrix , a transformation matrix that
is not necessarily an orthogonal one. Due to the relationship
between the parameter error and reconstruction error, in (23),
we have

(24)

where and are the available minimum and maximum
singular values of . Therefore, the estimate of the
reconstruction error provides bounds on the parameter error. In
the following sections the structure of the reconstruction error
is studied. We provide probabilistic bounds on this error that
capture the inherent tradeoff between the noise effects and the
unmodeled coefficients effects on this error.

V. STRUCTURE OF THE RECONSTRUCTION ERROR

Using (10) and (16), the reconstruction error in (22) is in the
form of

(25)

where

(26)

(27)

are both projection matrices. While is a projection matrix
of rank , is a projection matrix of order .
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Lemma 1: The reconstruction error is a sample of
random variable and for this random variable we have

(28)

where is a Chi-square random variable of order . The ex-
pected value and the variance of are

(29)

(30)

Proof: In Appendix A.

A. Bias-Variance Tradeoff

The MSE that is the expected value of has two terms.
The first term is the noise dependent part and is a
monotonically increasing function of . This is a direct result
of the projection with which itself has rank . The second
term is a function of the unmodeled
coefficients . The norm of the unmodeled coefficients is
a decreasing function of and since the rank of the projec-
tion matrix is also a decreasing function of , the term

tends to be a decreasing function of
order . This is traditionally called the bias-variance tradeoff
[7], [9].

B. Asymptotic Behavior of

Using (31) and (32), the second-order statistics of are
asymptotically

(31)

(32)

If the true parameter has order , then is zero in sub-
spaces with orders higher than . This will cause the
to be zero in the limit for all and to be nonzero for
all orders smaller than . Fig. 1 shows a typical behavior of

as a function of and as the data length grows.
It is important to mention that while the asymptotic behavior

of a method is usually explored as the data length increases, it
is also critical to show that the method is robust with respect
to the noise variance as well. For a fixed data length, to check
what happens as the noise variance changes, we fix the input
power and increase the signal-to-noise ratio (SNR). In this case
the unmodeled coefficients’ effect is a fixed number and as SNR
grows, only the noise variance goes to zero. Therefore, the be-
havior of in the limit is

(33)

(34)

Fig. 2 shows a typical behavior of as a function of
and as the noise variance changes.

C. Confidence Bounds on

Can knowing the pdf of help us bound the desired
that is a sample of this random variable? This information can

Fig. 1. Typical behavior of the expected value of the reconstruction error as
the data length grows when the true parameter’s order is � � �� and the
maximum subspace order is� � ��� (fixed SNR, fixed signal power).

Fig. 2. Typical behavior of the expected value of the reconstruction error as the
SNR (the noise variance) changes when the true parameter’s order is� � ��

and the maximum subspace order is� � ��� (fixed data length, fixed signal
power).

definitely provide the following confidence region: Using the
pdf of the random variable , for a given confidence proba-
bility , there exists a for which the reconstruction error

is bounded as follows:

(35)

The value of is a function of and , the
variance of , and can be calculated using the Chi-square
CDF table. Therefore, with probability the reconstruction
error is bounded with

(36)

where

(37)

(38)
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(39)

D. Model Comparison

The bounds on not only provide a probabilistic confi-
dence region for , but can also be used for comparison of
the subspaces. In this case, the confidence region represents an
event with probability where the upperbound is the
worst case value of this event. Note that here both mean and
variance of are functions of the order of the competing
model set. Comparing the upperbounds of , in the com-
peting model sets, with the same confidence probability in-
volves not only the mean but also the variance of the random
variable in our decision making. For a fixed , is only
a function of the variance, , and is an increasing
function of . Therefore, the upperbound has one component
(the unmodeled coefficients effect) that tends to be a decreasing
function of and two terms that are increasing
functions of . This is also a manifestation of another form of a
bias-variance tradeoff. In this case the bias term is and
the variance term is which carries the effect of the variance
of .

Interestingly, the behavior of the reconstruction error and its
mean shows that while capturing the true model order, as the
data length grows, is important, in the presence of a finite-length
data, the subset with order of the true parameter may not min-
imize the reconstruction error. In this case, the least noisy esti-
mate usually have an order smaller than that of the true order.

VI. PROBABILISTIC BOUNDS ON RECONSTRUCTION AND

PARAMETER ERRORS

In the previous section we provided probabilistic bounds on
the reconstruction error by using the mean and variance of .
The terms of these values are functions of , , , and the
confidence probability, except one term which is a function of
the unmodeled coefficients, .

The structure of the available data error is such
that it can be used to provide probabilistic bounds on

. In Appendix B it is shown that the data
error is a sample of a Chi-square random variable :

(40)

where is a Chi-square random variable of order .
The random variable has the following expected value and
variance:

(41)

(42)

where and are the projection matrices defined in (26)
and (27) (shown in Appendix B).

Given the noisy data , one sample of the random variable
is available. The variance of this random variable is of

order of its expected value. If the data length is long
enough, the variance of this random variable is close to zero.
In this case, one method of estimating is to
assume that the available sample is a good estimate of its
expected value in (41). Therefore, by assuming that

, we have

(43)

However, for a finite-length data, the validity of this estima-
tion depends on the exact behavior of the variance of
which is completely ignored in this estimation. In each ,
as shown in (42), has a variance which is a function of

and . Therefore, the confidence in
the estimate (43) of different subspaces is different. To be able to
compare estimates of the unmodeled coefficients effects in sub-
spaces of different orders, it is important that all the estimates
are equally valid. The following lemma provides probabilistic
bounds on the unavailable unmodeled coefficients effects. The
probabilistic bounds include the effects of both the mean and
the variance of and are valid with the same probability.

Lemma 2: Using the observed data, with validation proba-
bility , we have

(44)

where the lower and upper bounds are functions of only the
observed data and the validation probability.

Proof: In Appendix C, calculation of the bounds is pro-
vided.

Theorem 1: With validation probability and confidence
probability the reconstruction error is bounded as follows:

(45)

where

(46)

(47)

The bounds and on are pro-
vided in Lemma 2 and in (35) is provided in Section V-C.
The bounds on the reconstruction error are only functions of the
Chi-square CDF table, , , , probabilities and , and
the observed data .

Proof: Probabilistic bounds on the reconstruction error
with confidence probability and by using the mean and
variance of are provided in (36). Lemma 1 provides the
values of the mean and variance of . While the variance is
only a function of the noise variance, subspace order, and the
data length, the expected value is a function of the unavailable
unmodeled coefficients. By using the observed data, Lemma
2 provides probabilistic bounds on the unmodeled coefficients
term of the expected value with validation probability .
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A. Bounds on the Parameter Error

Using the relation between the reconstruction and param-
eter errors in (24) and the bounds in (47), (46) the probabilistic
bounds on the parameter error are

(48)

VII. CONNECTION BETWEEN ORDER SELECTION APPROACHES

AND THE RECONSTRUCTION ERROR

Order selection approaches are concerned with a similar
question that which subspace and its estimate can best repre-
sent the true parameter. A wide class of these methods use the
available data error in (21), which is a decreasing function of

, as a part of their criterion in form of [1], [8], [17], [21]

(49)

The extra penalty term in these approaches has been provided
by calculating or estimating a particular criterion. The penalty
term is chosen such that it is an increasing function of . We
can connect this form of a criterion with an estimate of and
show that a class of these approaches behave exactly the same
as a special case of our method. For example, if we set to zero
in Lemma 2, it is as if we estimate the expected value of
with the one available sample , . Using this
assumption the estimate of the unmodeled coefficients effects is
(43). Note that as it was described in Section VI, since in this es-
timation the variance of is ignored, the confidence in this
estimate in subspaces of different orders is different. Neverthe-
less, using this estimate of in (38) we
have

(50)

The last term is a constant and can be ignored in the compar-
ison of the subspaces. However, the second and third terms both
serve as penalty terms and are increasing functions of . Partic-
ular choices of as a function of and leads to particular
values of and can cover a large class of criteria in the form

of (49). For example, setting also to zero causes to be
zero, and the upper and lower bounds of in (36) merge to-
gether

(51)

(52)

and therefore, an estimate of the reconstruction error is

(53)

which is the criterion used in Akaike information crite-
rion (AIC). In the next section we show how connecting these
criteria with the estimate can evaluate the behavior of these
methods, including their consistency or inconsistency, from a
new perspective.

VIII. GAUSSIAN DISTRIBUTION ESTIMATION

If is large enough, we can estimate the Chi-square distribu-
tion of with a Gaussian distribution. In this case, there is no
need to check the Chi-square CDF table and with ,
the probabilistic event in (35) can be written in the form

(54)

where . Estimating this random
variable with a Gaussian implies that in (47) and (46) is
simply

(55)

Note that in statistical approaches, for as small as 10, a Chi-
square distribution is well estimated with a Gaussian distribu-
tion.

On the other hand, if is large enough, we can estimate
the Chi-square distribution of with a Gaussian distribu-
tion. In this case, there is no need to use the Chi-square CDF
table to calculate the bounds of the unmodeled coefficients ef-
fect in Lemma 2. The values of these bounds with validation
probability are provided in Appendix D.

As a result, for a range of values of that both and
are large enough we have (56), shown at the bottom

of the page, where the values of and
are provided in Appendix D.

(56)
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A. Proper Choices of Validation Probability and Confidence
Probability

The higher the probabilities and , the greater is the con-
fidence on the provided bounds. Therefore, it is important to
choose the two probabilities close to one. On the other hand,
the gap between the upper and lower bounds becomes larger
as the probabilities approach one. To observe the behavior of
the bounds as a function of the two probabilities, we can study
the bounds with Gaussian estimation in (57) and (56). In this
case, parameters and can be chosen large enough such that

and are close to one

(57)

Moreover, the gap between the upper and lower bounds becomes
smaller as and become smaller. To guarantee
tight bounds on that converge to each other asymptotically,
the following condition is also necessary

(58)

Under this condition, the upper and lower bounds approach each
other as grows and we have

(59)

B. Consistency

Consider the case that the true parameter has order
. In this case4:

Lemma 3: If the input is such that and
are finite values as grows, then we have

(60)

The convergence is in mean-square sense.
Proof: In Appendix E.

On the other hand, when the conditions in (57) and (58) are
satisfied, is squeezed between the upperbound and
lowerbound of with probabilities that go to one and at
the same time the bounds approach each other. So the bounds
converge to in the limit. Asymptotic behavior of

is discussed in Section V-B. As was shown in that
section, since there is a nonzero unmodeled coefficients effect
for subspaces with order , cannot be zero
for these subspaces in the limit. However, as is shown in (31),

is zero in the limit for all subspaces that include the
true parameter, . As a result, the smallest value of
for which the asymptotic values of the bounds converge to zero
is the true parameter . Therefore, not only the estimate in
the subspace of order approaches the true parameter, but
also we choose the correct order by comparing the provided
probabilistic upperbound of which proves the consistency
of the method.

4In a given model set, consistency is to guarantee that the coefficient estimates
converge to the true coefficients in that model set. This form of consistency for
impulse response estimation, through state space representation, for occasions
when the first� ������ � �� is modeled is discussed in [16]

C. A Note on the Noise Variance

All the order selection approaches are functions of the noise
variance. There are different approaches to estimate the noise
variance for the cases where it is unknown. If it is possible to
access the output for when the system is at rest, the most popular
variance estimation approach is the median approach. In this
method the standard deviation estimate is
where MAD is the median of absolute value of the gathered
noise. If collecting noise only data is not possible, the proposed
method in [3], to our knowledge, is the only method proposed
for such a scenario and can be used to simultaneously choose the
optimum order and estimate the noise variance. Starting with
a range of possible values for the noise variance, the method
suggests estimating the reconstruction error for this range of
noise variances in the competing subspaces. The noise variance
and the subspace for which the probabilistic upperbound is at
its minimum will be chosen.

IX. PRIOR INFORMATION ON THE ORDER OF THE

TRUE PARAMETER

In order to calculate the least square subset estimate , it is
only sufficient for to be less than or equal to the data length .
Otherwise, if we choose a subset with more parameters than the
data length, the least square estimate cannot be calculated. There-
fore, regardless of the order of the true parameter, the highest
possible order for comparison of the least square estimates is

. This limitation is only due to the finiteness of the data
and is independent from the true order of the impulse response.5

Here we discuss the behavior of the method when no upper-
bound on the true order is available (i.e., the upperbound is un-
known and can be infinity). Therefore, the data length may be
smaller than the unknown true order. In this case is no longer
the upperbound of the true impulse response length. It is only
a chosen highest order for the competing subspaces such that

. The competing nested subspaces of include pa-
rameter estimates of different orders. The goal is to compare
these subspaces and choose the least noisy estimate. In this set-
ting, is not in and we have

(61)

where and captures
the coefficients of outside of . The parameter error can
be rewritten as

(62)

The method proposed in this paper focuses on the first term of
this error and is able to provide bounds on this term. On the
other hand, the second term is a constant term for all the
competing subspaces6 and can be ignored in comparing the sub-
spaces. Therefore, our method is able to compare the parameter
error of the competing subspace regardless of the true order, and
provide the least noisy estimate among the competing estimates.

5Note that our parameters in the least-square estimation are the impulse re-
sponse coefficients and not coefficients of a transfer function.

6There are different deterministic approaches that deal with this type of un-
modeled dynamic. They either consider the noise to belong to a deterministic
set or use a known bound on the unmodeled coefficients [5], [6], [15], [22]–[24].
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How does this approach behave as the data length grows? If
the true parameter has an unknown finite order , then there
exists a data length for which . We can choose ,
the highest order of the competing subspaces, as an increasing
function of . In this case, as grows, there exists
a data length such that . As a result, we are back
to the setting that is an upperbound of the true order and the
consistency argument holds. On the other hand, if the true pa-
rameter has an infinite order, as the data length grows, the length
of the least noisy estimate keeps growing. In this case, the pro-
vided least noisy estimate can be utilized for modeling a rational
transfer function in a zero-pole modeling process [14], [18].

X. MODELING AND ORDER SELECTION FOR

LTI SYSTEMS IN APPLICATION

The following summarizes the steps of the proposed model
selection process.

• Competing subsets are . Each repre-
sents impulse responses with taps in the form of (8). In
each , the estimate of the impulse response, ,
in (11) is calculated.

• Validation and confidence probabilities and are
chosen. In each , the probabilistic bounds on the re-
construction error and the parameter error are calculated
[(46) and (47) or (56) and (57)].

• By comparing the probabilistic worst case, the optimum
subspace is chosen

(63)

The optimum order is and the least noisy impulse re-
sponse estimate is .

The choice of validation and confidence probabilities is dis-
cussed in Section VIII-A. Here, we provide the results for the
following three choices of these probabilities and

:
Case 1) Set which is such that the probabilities

are large, .
Case 2) Set the probabilities to zero, equivalently

. In this case the upper and lower bounds in (48) are
merged as discussed in Section VII and the estimate
of the reconstruction error in (53) is the same as
AIC [1].

Case 3) Set and . In this case
the second probability is a function of the subspace
order.7

A. FIR Models

Consider a class of models in (1) with the following structure:

(64)

where the FIR filter has length 30 and

(65)

7With this choice of probabilities the upper bound � ������ � � � � ��
criterion is identical to Bayesian information criterion (BIC) [17] and two-stage
MDL [2] .

Fig. 3. Parameter error as a function of �, for data of length � � ��� when
��� � 	� dB; bounds for 	 � ��
� and 	 � ��
�; and bounds for
	 � 	 � � (where the upperbound and lowerbound collapse into one).

In this simulation, the input is an independent identically dis-
tributed (i.i.d.) Bernoulli sequence of , the length of data is

, and the SNR is 10 dB. Fig. 3 shows the desired pa-
rameter error as a function of subspace order . As the figure
shows, estimating more than 23 taps of the impulse response in-
creases the error as it starts fitting more of the noise effects. The
figure shows the bounds provided by the observed data for case
1 (where ) and case 2 (where ). As the
figure shows, the nonzero probabilities provide tight bounds in
this case which are valid with the high confidence and valida-
tion probabilities of (condition in (57) is satisfied).
The tightness of the bounds could have been predicted because

is small enough and the conditions in (58) are al-
most satisfied.

The mean and variance of the optimum for each of the
three choices of and are provided in Figs. 4 and 5. The fig-
ures show the result for the data length of and ,
and as a function of data SNR for ranges from 0 to 40 dB. The re-
sults are provided by averaging 100 trials. The two figures con-
firm some interesting facts. As the figures show, the higher the
SNR, the more likely is the choice of the correct order. Both
higher SNR and larger data length guarantee convergence to the
true impulse response length. As these figures show, when the
data length is 60, the true impulse response length is chosen after
SNR of 33, and when the data length is 200, it starts choosing
the correct order at a lower SNR of 25. This confirms that the
asymptotic convergence to the true parameter is a function of
both the SNR and the data length. Fig. 4 shows that, for ex-
ample, with 10 dB and data length of , on
average case 1 chooses with variance of order 6.
However, with the same SNR, if the data length is increased to

, as shown in Fig. 5, the method on average chooses
with a smaller variance of 4. For a given SNR, as the

data length increases, the variance of becomes smaller and
its mean becomes larger. Therefore, in case 1 since the confi-
dence and validation probabilities are close to one, with longer
data of length 200, we achieve the correct choice of the impulse
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Fig. 4. FIR Filter: Expected values and variance of optimum impulse response
length� with data length � � �� for SNR between 0 and 40 dB. Solid line
with star “*” is the results of case 1; dashed line “- -” is the results of case 2;
solid line is the results of case 3. Three top lines are the expected values, and
lower lines are the variances.

Fig. 5. Fig. 4 repeated for increased data length from� � �� to� � ���.

response length of 30 at a lower SNR of 25 dB (when ,
this SNR is higher and at 34 dB).

On the other hand, the proper choice of probabilities in case
1 results in a better choice of order selection, and the method
reaches the true impulse response length, 30, faster than the
other two cases as the SNR grows. Case 2 has a tendency to
over model as the SNR grows, and it has the highest uncertainty
and variance in the choice of the optimum subspace compared
to the other cases. This confirms the inconsistency of AIC as
the variance of this order selection method is significant even
for . Case 3 performs much the same as case 1. How-
ever, compared to case 1, it has a tendency of under modeling
for lower SNRs.

The proposed method provides the least noisy estimate
among the competing estimates. Nevertheless, in applications
that there is a penalty for the length of the chosen parameter, we

can also choose orders less than the optimum depending on
our error tolerance [11]. For example in the case presented in
Fig. 3, the optimum order that minimizes the criterion in case
1 is with error bounded between 2.5 and 4. On the
other hand, if in this case we can tolerate parameter errors up to
10, then, as the figure shows, we can reduce the order to as low
as . This capability of our quality evaluation method is
an important strength of the proposed approach that is missing
in the existing model selection approaches.

It is important to mention that the figures illustrate that even
if it was known a priori that the length of the true FIR is 30, the
least noisy estimate may still have length of less than 30. For
example, as Fig. 4 shows, this estimate has a length less than 30
for the data length of 60 and the SNR is less than 33.

B. IIR Models

Consider a class of models in (1) with the following structure:

(66)

The true order of this system is not finite and the true order
is larger than the data length. This case was discussed in
Section IX. In this case, the proposed method can provide the
least noisy estimate among the possible least square impulse
response estimates with length one to the largest possible length
of .

In the following simulation, the impulse response is

(67)

This is a stable system with two poles.
The mean and variance of the optimum for each of the

three choices of and are provided in Fig. 6. As the figure
shows, case 2 still has the highest variance due to setting both
probabilities to zero. Since the true order is not finite, with con-
fidence probabilities close to one, the method chooses larger and
larger orders, as the data length grows.

XI. CONCLUSION

We studied the parameter error resulting in least-square im-
pulse response estimation from noisy data. It was shown that
the additive noise affects both mean and variance of the error
and the tradeoff between the noise fitting and the unmodeled
coefficients points to an optimum model set for the estimate
of the true unknown impulse response. We derived probabilis-
tically-validated bounds on this error that incorporate the ef-
fects of both mean and variance of the estimates. Such bounds
were achieved by using only the observed finite data and are ex-
pressed as a function of a probabilistic confidence. The bounds
were proposed as the basis for model quality assessment of an
estimate as well as for model selection among competing model
sets through the minimization of the upper bound with a fixed
level of confidence. The optimum estimate is the least noisy
one among the competing estimates. Moreover, if an accept-
able error range is satisfied with an estimate in a subset of the
optimum model set, as it was illustrated through simulation re-
sults, the estimate with a smaller length than the optimum one
can be chosen and the procedure will provide a more parsimo-
nious model estimate. We also demonstrated that the criteria
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Fig. 6. IIR Filter: Expected values and variance of optimum order � with
data length� � ��� for SNR between 0 and 40 dB. Solid line with star “*” is
the results of case 1; dashed line “- -” is the results of case 2; solid line with “o”
is the results of case 3; solid line is the results for � � � � �. Four top lines
are the expected values and lower lines are the variances.

used in several model selection approaches coincide with the
provided bounds for particular choices of the confidence level.
For example, AIC is a special case of the upperbound where
the confidence and validation probabilities are set to zero. This
can easily explain the inconsistency of AIC. It was illustrated
that the proper choice of confidence and validation probabili-
ties guarantees the consistency of the method as the data length
grows. Furthermore, we showed the consistency of the method
as a function of the SNR.

APPENDIX A
PROOF OF LEMMA 1

From (25), we have

(68)

Since the projection matrices in (26) and in (27) are
orthogonal, the inner product of the two vectors
and is zero and therefore

(69)

While the first term is a constant term which will be part of the
mean of , the second term is a Chi-square random variable
of order , that is the order of the projection matrix . To
elaborate this fact, consider an unitary matrix that
spans the subspace generated by . We have

(70)

where is the full rank matrix that generates
by the unitary matrix. In this case, the projection matrix is

(71)

(72)

(73)

(74)

Therefore,

(75)

(76)

(77)

(78)

This is a sample of a Chi-square random variable that is gener-
ated by independent Gaussian random variable with zero
mean and variance

... (79)

This completes the proof of Lemma 1.

APPENDIX B
STRUCTURE OF

Similar to the argument for the projection matrix in
proof of Lemma 1, there exists a full rank
unitary matrix that spans the column space of the projection ma-
trix and just as what is shown in (74), we have

(80)

Therefore, from (21) we have

(81)

(82)

(83)

(84)

Similar to what is shown in (78), (84) is obtained from (83) since
for any unitary matrix such as and any matrix we have

. Also, we have

... (85)

Each element has a zero mean with variance and
are independent. Therefore, we have

(86)
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where the sum of means of the Chi-square random variable is

(87)

Consequently, the data error is a Chi-square random variable of
order and the expected value and variance of the data
error are [13]

(88)

(89)

By using (87) and , the mean and variance of
this random variable are (41) and (42).

APPENDIX C
PROOF OF LEMMA 2

The following method provides bounds on the desired
through probabilistic validation.

Validation of is such that is in the
neighborhood of its mean with probability . The procedure is
as follows: Given a validation probability , for each possible
value of we have

(90)

where the bound is a function of , , ,
and . The value of is calculated by using the Chi-square
CDF table and therefore for any given with
probability samples of the random variable are bounded
as follows:

(91)

Therefore, for each possible , samples of
are bounded between with probability

, where both and are functions of the unmod-
eled coefficients. Given the available sample , we validate
those for which is inside the bounds

. Due to the Chi-square structure of , this
validation provides and ,
upper and lower bounds on as a func-
tion of and in (44).

Note that setting in (90) to zero is the same as ignoring
the variance of . In this case for all the subspaces
and instead of the probabilistic bounds on ,
we have the estimate in (43).

APPENDIX D
BOUNDS ON WITH GAUSSIAN

DISTRIBUTION ESTIMATION

Using a Gaussian distribution estimate for the Chi-Square
distribution of , the in (90) is where
is and the variance of is provided in (42). Therefore,

the validation step is simply validating
for which the observed is bounded with

(92)

where both the expected value and variance of are pro-
vided in (41) and (42).

Using (92), to find the upperbound for
we should solve the fol-

lowing inequality:

(93)

This inequality provides the upperbound as long as , or equiv-
alently , has been chosen sufficiently large such that

(94)

In this case, with validation probability , the upperbound
is

(95)

and

(96)

(97)

Solving for the lower bound using the fol-
lowing inequality:

(98)

the lower bound is zero if

(99)

where

(100)

Otherwise, the lower bound is

(101)

APPENDIX E
PROOF OF LEMMA 3

In Section V-B it was shown that as grows, con-
verges to zero for all subspaces with . At the same time,
since both and are positive random variables from (24),
we have

(102)

Authorized licensed use limited to: MIT Libraries. Downloaded on February 25,2010 at 18:13:19 EST from IEEE Xplore.  Restrictions apply. 



BEHESHTI AND DAHLEH: NOISY DATA AND IMPULSE RESPONSE ESTIMATION 521

If the input is such that both and
are finite values in limit, then we have

in the subspaces that is zero
in the limit. Therefore, with the expected value of the parameter
error ( ) converging to zero, the estimate
converges in mean square to the true parameter.
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