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SUMMARY

We consider the design of three different control architectures for a step response tracking problem
within a class of linear time-invariant (LTI) plants. Our goal is to motivate the use of a particular
switching architecture that has been the subject of our prior work. We present the design of the particular
switching architecture that we use and characterize its step response performance (measured in terms of
the percentage overshoot and 1% settling time of the step response). We then compare the response of the
switching controller with two other forms of LTI control in a servo configuration, one in which the order
of the controller is constrained to be first order (which matches the order of the dynamics of the switching
controller) and one in which the order of the controller is unconstrained. We will show that the switching
architecture can outperform first-order LTI control, first in the context of a particular example. We shall
then provide a weak generalization to extend this result to a more general class of plants. We shall also
show that, while the LTI control of unconstrained order can outperform the switching architecture, the
performance improvement is bounded (in a sense to be defined). Moreover, one method of designing
close-to-optimal controllers will be discussed, which yields controllers of very high order. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of switching systems has received a great deal of attention in the systems literature for
over a decade (see, e.g. [1–6]). In particular, the problem of stabilizing a continuous-time system
via hybrid output feedback has received a great amount of attention (see, e.g. [7–17]). Our previous
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186 K. R. SANTARELLI AND M. A. DAHLEH

work has focused on a particular subproblem within this larger domain and is specifically related
to stabilizability of second-order linear systems via switched proportional gain feedback; Santarelli
et al. [12] provide a set of necessary and sufficient conditions for which a given second-order
plant is stabilizable via switched proportional gain feedback, and a specific switching control law
is provided when stability is possible; Santarelli et al. [13] extend the first result by considering an
optimal control problem in which the objective is to stabilize a second-order linear time-invariant
(LTI) system via switched proportional gain feedback in a manner which maximizes the rate of
convergence of the state trajectory to the origin.

The goal of this paper is to apply the control laws that are obtained in our previous results to
a particular application, namely the design of switching controllers to asymptotically track step
inputs for a class of second-order plants. The specific class we consider are those plants that take
the form

P(s)= a

s(s−b)
(1)

where a>0,b∈R, and b2�a. While we defer a formal explanation of the condition b2�a until a
later section, enforcement of this constraint can be viewed as examining a class of plants which
are perturbations of a nominal plant P(s)=1/s2. We shall assess the quality of the step response
in terms of the percentage overshoot and 1% settling time when the input is a step, i.e. for an
exogenous input r(t) of the form

r(t)=
{
0, t<0

r, t�0

with r>0. Under the assumption that the step response s(t) asymptotically tracks the input r(t),
then for a step input of amplitude r>0, we define the percentage overshoot of the zero-state unit
step response s(t) as the smallest value of M>0 such that

s(t)�r(M+1) ∀t>0

and define the 1% settling time as the smallest value of T>0 such that

|s(t)−r |�0.01r ∀t�T

Our objective in this exposition is as follows: we wish to compare the performance that can
be achieved via the particular switching architecture that we shall examine (in terms of the above
performance measures) with the performance that can be achieved via two different forms of LTI
control. Our first comparison will investigate the step response performance on an LTI feedback
controller connected in a servo configuration where the continuous-time LTI controller K (s) is of
first order (which matches the order of the dynamics of the switching controller). We shall first
examine a case study for the case in which the plant is a double integrator (P(s)=1/s2) and shall
show that the switching architecture outperforms the first-order LTI controller in this case. We
shall then provide a weak generalization that will allow us to conclude that similar performance
benefits can be guaranteed for a more general class of second-order plants.

Our second comparison will investigate the step response performance of a rational LTI controller
connected in a servo configuration where the order of the controller K (s) is unconstrained. Such a
comparison will allow us to obtain some information about the relative performance of our switching
architecture to certain fundamental limits of LTI control in a particular feedback configuration.
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COMPARISON OF SWITCHING CONTROLLER AND LTI CONTROLLERS 187

One may naturally expect that the performance of an LTI controller of unconstrained order will
outperform a first-order switching controller, and, indeed, this turns out to be the case here;
however, as we will show, the performance gap between the switching architecture and what is
achievable via LTI control is bounded (in a sense to be defined), and an algorithm for designing
LTI controllers that yield close-to-optimal performance will be shown to produce controllers of
rather high order.

During the preparation of this manuscript, it was pointed out that the result of Santarelli
et al. [12] is similar to the results of [18] and [19], with the exception that the framework of [12]
employs continuous-time nonlinear feedback laws, while [18] and [19] employ hybrid feedback
automata. The reader who is interested in exploring the differences between the switched feedback
approach we take here and the hybrid feedback approach of [18] and [19] is encouraged to explore
these two references.

As a note, all of the material presented here is an expanded version of a conference paper [20].
All of the material present in [20] is present in this exposition and is reproduced with permission.

2. SWITCHING ARCHITECTURE DESIGN

A block diagram of the switching architecture to be designed in this section is depicted in Figure 1.
Several comments are in order. First, the block labeled ‘±1’ switches between proportional gains
of +1 and −1, i.e. u(t)=e(t) or u(t)=−e(t) for all times. It is the function of the two blocks on
the upper level of the block diagram to create an appropriate switching signal �(t) such that the
closed-loop dynamics are stable and the plant output y(t) asymptotically tracks the input r(t) when
r(t) is a step input. The block labeled ‘v(·, ·)’ is a memoryless switching law that takes the form

v(z)=
{−1, z′Mz�0

1, z′Mz>0
(2)

where z=[e x̂2]′ and M is a symmetric matrix. In layman’s terms, the switching law v(z) chooses
one value of gain inside a sector of the e− x̂2 plane and chooses another value of the gain in a
complementary sector. The block labeled ‘Observer’ is a first-order LTI system whose function is
to provide a partial state estimate of the plant P(s).

The motivation for investigating the switching architecture of Figure 1 stems from a general
interest in the design of switching systems in which the analog control input to the plant is

Figure 1. Proposed switching architecture to be used in designing a controller
that asymptotically tracks a step input.
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188 K. R. SANTARELLI AND M. A. DAHLEH

constrained to be simple in some sense. Such problems arise, for instance, in the electronics industry
where the design of feedback compensators for operational amplifier circuits is typically not higher
than first-order feedback compensators [21, 22]. We consider the problem of switching between
proportional gains (the block labeled ‘±1’ in Figure 1) since this is simple from an implementation-
level perspective and because the closed-loop dynamics of the overall feedback interconnection
are often simple enough to analyze via elementary techniques, hence allowing us to make concrete
mathematical statements while gaining some insight into the problem-at-large of switching under
constrained control actions. It is not obvious that the switching architecture of Figure 1 will provide
any performance benefits over a first-order linear controller due to the simplicity of the proportional
gain analog control action, but, as we shall show in our first comparison, this is indeed the case.

The motivation for choosing switching gains of +1 and −1 as indicated in the block diagram of
Figure 1 is due to a constraint that we shall impose on the design of the linear controller structures
in subsequent sections. In order to make sure that the linear controllers that we design provide
‘reasonable’ control inputs, we shall impose the constraint that the control signal u(t) be bounded
for all times. Specifically, we shall impose the constraint that when r(t) is a unit step input, the
control signal u(t) must satisfy |u(t)|�1 for all t�0.

To see how the above constraint affects the choice of switching gains, consider an implementation
where we switch between gains of +K and −K ,K>0. As we will show now, the constraint that
|u(t)|�1 for all t�0 implies that 0<K�1. Indeed, under the assumption of zero initial state,
|u(0)|=K |r(0)|=K when r(t) is a unit step input, and it immediately follows that K must be
less than or equal to 1. We shall show in a later section that the condition 0<K�1 does in fact
guarantee that |u(t)|�1 for all t�0. We choose to study the specific case where K =1 since this
value of K maximizes the rate of convergence of the state trajectories to the origin when the input
r(t)=0 (see [12]). It may be unclear as to why we wish to choose the value of K in this way,
but, as we shall see, the zero-state step response of the switching architecture is closely related to
the transient behavior of an equivalent system with zero input.

We shall now describe the design of both the first-order observer and the memoryless switching
law v(·, ·). In the interest of space, many of the formal details regarding these designs have been
omitted. The document [14] provides a complete description of the ensuing designs, and references
to appropriate chapters in [14] are provided when necessary.

2.1. Design of memoryless switching law

We begin by providing a state-space description of the plant dynamics P(s) of Equation (1). If the
input r(t) in Figure 1 is a constant for positive time (i.e. r(t)=r for all t>0), then at any given
time t>0, the dynamics of the plant P(s) of Equation (1) can be described via‡[

ẋ1

ẋ2

]
=
[
0

√
a

0 b

][
x1

x2

]
±
[

0
√
a

]
(r−x1) (3)

where ‘±’ is determined as either + or − via the output of the memoryless switching law v(·). If
we define the new variables z1(t)= x1(t)−r and z2(t)= x2(t), then it follows that the state-space

‡While the state-space description of this plant is not unique, it can be shown that memoryless switching laws
that are designed for arbitrary minimal state-space realizations of this plant can be related through a coordinate
transformation. See [14, Chapter 3] for details.
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description equation (3) can be rewritten as follows:[
ż1

ż2

]
=
[

0
√
a

∓√
a b

][
z1

z2

]
(4)

From the above, we see that the zero-state response of the plant P(s) to a constant input can be
modeled as the zero-input response of the plant shown in Equation (4) with corresponding initial
conditions z1(0)= x1(0)−r and z2(0)= x2(0), and output y(t)= z1(t)+r . Hence, we may view
the problem of designing a memoryless switching law to track a step input as a problem in which
we design an asymptotically stabilizing controller in the new variables z1 and z2.

As an initial simplifying assumption, we shall design a memoryless switching law that has
access to both states of the plant z1 and z2. Once we have arrived at a memoryless switching law
v(z1, z2) that is stabilizing, we shall discuss how to arrive at a memoryless switching law that
relies, in part, on an estimate of the second state, denoted as ẑ2, that will also achieve stability.
This, in turn, will allow us to arrive at a design for a memoryless switching law in the original
x1−x2 coordinate space.

The design of a memoryless switching law v(z1, z2) that yields an asymptotically stable inter-
connected system draws upon prior work that is presented in [14, Chapter 3]. Although we shall
not describe this work in full detail, we shall highlight the major results that allow us to design
asymptotically stabilizing memoryless switching laws in what follows. The basic problem that is
considered in [14, Chapter 3] is as follows: consider a single-input single-output, second-order
LTI plant of the form

ż = Az+Bu

y =Cz

where the corresponding transfer function P(s)=C(s I −A)−1B is of relative degree 2. We wish
to design a memoryless switching law v(z) that satisfies the following conditions:

1. The range of v(z) is bounded, i.e. v(z)∈[−v0,v0] for some v0>0.
2. The control law u=v(z)y yields an asymptotically stable closed-loop system in the sense

that ż=(A+v(z)BC)z is asymptotically stable.
3. The corresponding rate of convergence R(v0) given by

R(v0)= min‖z(0)‖=1
liminf
T→∞ − 1

2T
ln(‖z(T )‖2)

is as large as possible.

The real parameter v0 in item 1 above plays the role of the symmetric switching gain. In the
problem we are investigating, v0=1 since we are switching between gains of +1 and −1. Under
certain mild assumptions on the value of v0 along with the parameters of the matrices A, B, and
C , we arrive at the following results:

1. The maximum rate of convergence, denoted by R∗(v0), is given by

R∗(v0)=−�min(A+v0BC)>0 (5)

where �min(·) denotes the smallest eigenvalue of a square matrix.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:185–217
DOI: 10.1002/rnc



190 K. R. SANTARELLI AND M. A. DAHLEH

2. Let ws represent the eigenvector corresponding to the minimum eigenvalue of the matrix
A+v0BC and let w̃s be a vector such that w̃′

sws =0. Then there exists a vector q̃ such that
the memoryless switching law

v(z)=
{

v0, z′(w̃s q̃
′)z�0

−v0, z′(w̃s q̃
′)z>0

(6)

makes the dynamical system ż=(A+v(z)BC)z globally exponentially stable with rate R∗(v0).
A graphical illustration of the control law v(z) in item 2 is depicted in Figure 2. Note that if the
initial condition z(0) lies along ws , then, by choosing a control law with v(ws)=v0, the state
trajectory will evolve as

z(t)=e�min(A+v0BC)t z(0)

which converges to the origin exponentially with rate −�min(A+v0BC). The basic principle behind
the design of the overall control law v(z) is, hence, as follows: if the initial condition z(0) does
not initially lie along the manifold spanned by ws , design v(z) such that the state trajectory will
reach this manifold in finite time. By choosing any vector q that lies ‘between’ ws and wu (which
is the eigenvector corresponding to the maximum eigenvalue of A+v0BC), we can find a vector
q̃ that is normal to q such that the control law of Equation (6) achieves this goal. A sample phase
portrait is illustrated in Figure 2. Here, the initial condition z(0) lies in the region where v(z)=v0;
hence, the system dynamics initially evolve according to ż=(A+v0BC)z. In finite time, the state
trajectory is driven onto the manifold spanned by the vector q at which time v(z) switches from v0
to −v0. The eigenvalues of matrix A−v0BC are designed to be complex valued; hence, rotation is
induced, and the state trajectory is driven onto the manifold spanned by ws in finite time. Once the
state trajectory is driven onto this manifold, it remains there forevermore, and a simple calculation
shows that the state trajectory converges to the origin with the rate given in Equation (5).

Note that vector q (and, correspondingly, q̃) is a free parameter. Therefore, the control law of
Equation (6) is not unique (the interested reader is referred to [14, Chapter 3] for a discussion of
ways in which one may choose to select vectors q and q̃). Despite this fact, although the choice
of q may affect the amount of time for which the phase portrait with a given initial condition will
rotate, it does not affect the rate of convergence of the corresponding state trajectory. Regardless
of the choice of q , all state vectors become a multiple of the stable eigenvector ws in finite time

Figure 2. Graphical illustration of the switching law of Equation (6). Vector wu represents the
eigenvector corresponding to the maximum eigenvalue of matrix (A+v0BC) and w̃u is a normal

vector to this eigenvector (w̃′
uwu =0).
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and decay with rate −�min(A+v0BC) in finite time. The choice of q becomes more relevant in
the presence of time delays and, in this case, one must choose q to be not too close in angle to
ws to ensure that a delay in detecting when the state trajectory crosses ws does not cause the state
trajectory to ‘skip over’ the region in the state space where shrinkage in the Euclidean norm of
the state vector occurs (see [14, Chapter 4] for a formal description of this phenomenon).

Before proceeding further, it is important to point out that the aforementioned switching law
was designed only with the goal of asymptotic stability with minimum convergence rate in mind;
the goal of controlling overshoot and 1% settling time for a step input—the ultimate goal of this
section—was never incorporated into the derivation of the above control law. Nevertheless, as we
shall show here, the above controller does possess benefits in terms of settling time and overshoot,
although these goals were not constraints in the original problem. In layman’s terms, we essentially
obtain these benefits for free.

Returning now to the problem at hand, we wish to design a memoryless switching law v(z1, z2)
for the system with dynamics that are described via Equation (4). Matrix A+v0BC corresponds
to matrix [

0
√
a

√
a b

]
(7)

which has eigenvector ws and normal vector w̃s given by

ws =
[ −2

√
a

−b+
√
b2+4a

]
, w̃s =

[
−b+

√
b2+4a

2
√
a

]

where ws represents the eigenvector corresponding to the minimum eigenvalue of A+v0BC .
Vector q=[0 1]′ satisfies all the conditions stated in [14, Chapter 3]; hence, the memoryless
switching law

v(z1, z2)=
⎧⎨
⎩

−1, z1((−b+
√
b2+4a)z1+2

√
az2)�0

1, z1((−b+
√
b2+4a)z1+2

√
az2)>0

(8)

asymptotically stabilizes the closed-loop interconnection of Figure 1 for the plant P(s) of Equation
(1). In terms of the original coordinates of the plant, this can be expressed equivalently as

v(x1−r, x2)=
⎧⎨
⎩

−1, (x1−r)((−b+
√
b2+4a)(x1−r)+2

√
ax2)�0

1, (x1−r)((−b+
√
b2+4a)(x1−r)+2

√
ax2)>0

(9)

Note that the asymptotic stability of the origin in z1−z2 coordinates is equivalent to the asymptotic
stability of the point (r,0) in x1−x2 coordinates.

2.2. Observer-based control and design of first-order observer

We have designed a memoryless switching law that is asymptotically stabilizing when the full state
of the plant is available. How, then, do we design a memoryless switching law that is stabilizing
when only partial state information is available? Specifically, how do we design a control law that
is stabilizing when the memoryless switching law of Equation (9) has access to only an estimate
x̂2 of the true state x2?
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192 K. R. SANTARELLI AND M. A. DAHLEH

The process we use here is similar to the process of designing linear output feedback controllers
for linear systems. We have already designed a ‘full-state’ controller, and we now need to design
only an observer that produces a sufficiently accurate estimate of the plant state. Since Equation (3)
implies a state-space description for P(s) of the form[

ẋ1

ẋ2

]
=
[
0

√
a

0 b

][
x1

x2

]
+
[

0
√
a

]
u (10)

y = x1 (11)

we need to provide only an estimate of the state x2(t). The design of a partial observer is an
exercise in linear systems theory, the details of which can be found in [14, Chapter 4]. One observer
that produces an estimate x̂2(t) of the state x2(t) is given by

ẇ(t) = (b−l
√
a)w+l(b−l

√
a)y+√

au (12)

x̂2(t) = w(t)+ly(t) (13)

where l∈R is a free parameter. It can be shown that the dynamics of the error d(t)= x2(t)− x̂2(t)
evolve according to

ḋ=(b−l
√
a)d

which implies that x̂2(t)→ x2(t) exponentially whenever l>b/
√
a.

Our overall memoryless switching law now takes the following form:

v(x1−r, x̂2)=
⎧⎨
⎩

−1, (x1−r)((−b+
√
b2+4a)(x1−r)+2

√
ax̂2)�0

1, (x1−r)((−b+
√
b2+4a)(x1−r)+2

√
ax̂2)>0

(14)

One can prove that the overall interconnected system consisting of the observer equation (12) and
(13) and memoryless switching law equation (14) is both asymptotically and finite L2 gain stable,
but the proof of these statements is lengthy and is omitted due to space constraints. The interested
reader is referred to [14, Chapter 4] for complete proofs of these statements.

2.3. Step response performance of switching architecture

We are now ready to describe some of the qualitative attributes of the step response of the switching
architecture of Figure 1 for plants P(s) of the form of Equation (1), namely the 1% settling time
and overshoot of the unit step response. To begin, we first note that, under the assumption of zero
initial state, the output of the observer x̂2(t) is perfect, i.e. x̂2(t)= x2(t) for all t�0. Hence, in
computing the step response, we may ignore the observer entirely and treat the problem as if the
switching law has full state access.

We shall first compute an expression for the 1% settling time Ts of the step response. Note that
this can be represented in terms of the variable z1 of Equation (4) as the smallest time Ts>0 such
that

|z1(t)|�0.01 ∀t�Ts
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Figure 3. Example transient response in z coordinates for a plant P(s) of the form of Equation (1)
controlled by the switching architecture of Figure 1.

For a unit step input, the initial condition in z coordinates is z(0)=[−1 0]. Since v(z) is initially
1, a simple calculation shows that the state evolution is initially given via

z(t)=e(b/2)t

⎡
⎢⎢⎢⎣

−cos�t+ b√
4a−b2

sin�t

2
√
a√

4a−b2
sin�t

⎤
⎥⎥⎥⎦ (15)

where �= 1
2

√
4a−b2. The state z(t) evolves in the above manner until a certain time which we

shall denote T1 at which point z(t) crosses the stable eigenvector ws , which can be expressed as
z(T1)=�ws for some �∈R. Simple calculations show that this time T1 is given by

T1= 2√
4a−b2

arccot

(
2b+√

b2+4a√
4a−b2

)
(16)

For times t�T1, the state then evolves according to

z(t)=e�(t−T1)z(T1) (17)

where �= 1
2 (b−√

b2+4a) is the stable eigenvalue of the matrix in Equation (7). We find that, for
t>T1,

z1(t)=− 1√
2
ebT1/2 e�(t−T1) (18)

It, hence, follows that the 1% settling time Ts is the value of t in Equation (18) for which
z1(t)=−0.01, which can be expressed explicitly as

Ts= 1

�
ln

(√
2

100

)
+
(
1− b

2�

)
T1 (19)

A sample phase portrait in z coordinates is depicted in Figure 3. The portion of the phase
portrait which lies along the depicted circular arc represents the initial T1 seconds of evolution
where the state is described by Equation (15), while the portion that lies along the stable manifold
is the portion that is described by Equation (17). The phase portrait indicates that z1(t)<0 for all
t�0. This implies that y(t)= z1(t)+r<r for all t�0, which, in turn, implies that the step response
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194 K. R. SANTARELLI AND M. A. DAHLEH

has no overshoot. Indeed, with the constraint a�b2 in place, this statement is true. Examining the
expression for z2(t) in Equation (15), we see that z2(t)�0 for 0�t��/�. Because ż1=√

az2, it
follows that z1(t) is increasing for 0�t��/�. Now, since z1(T1)=−exp(bT1/2)/

√
2<0, it follows

that z1(t)<0 for 0�t�T1. Moreover, since z1(t) is given by Equation (18) for t�T1, it follows
that z1(t)<0 for all t�0; hence, y(t) exhibits no overshoot.

2.4. Design example: double integrator

For illustrative purposes, we shall now examine the characteristics of the step response when
the switching architecture of Figure 1 is used to control a double integrator (P(s)=1/s2) with
canonical state-space description [

ẋ1

ẋ2

]
=
[
0 1

0 0

][
x1

x2

]
+
[
0

1

]
u

y = x1

In order to specify a controller, we need to supply two objects:

• A first-order observer that provides an estimate x̂2(t) of the state x2(t).
• A memoryless switching law v(·).

2.4.1. Observer design. For the double integrator, the dynamics of w(t) of Equation (12) are given
by

ẇ=−lw−l2y+u

from which it immediately follows that any l>0 will achieve stable error dynamics. For simplicity,
we choose l=1. Our observer is, therefore, given by

ẇ = −w− y+u

x̂2 = w+ y

2.4.2. Supervisor design. Following the recipe of the previous section, for a constant input r , if
we define the variables z1= x1−r, z2= x2, their evolution at any time t can be described via[

ż1

ż2

]
=
[

0 1

±1 0

][
z1

z2

]

where, again, either ‘+’ or ‘−’ is selected via the memoryless switching law. When the lower
left-hand element of the matrix above is +1, the stable eigenvector ws and the corresponding
vector w̃s are given by

ws =
[

1

−1

]
, w̃s =

[
1

1

]
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Figure 4. Step response of double integrator controlled by the switching architecture of Figure 1.

Hence, we choose as our ‘full-state’ supervisor

v(z1, z2)=
{−1, z1(z1+z2)�0

1, z1(z1+z2)>0

The supervisor that assumes access only to e and x̂2 is then given by

v(e, x̂2)=
{
1, e(−e+ x̂2)�0

−1, e(−e+ x̂2)>0

2.4.3. Results. The step response using the above observer and supervisor is depicted in Figure 4.
As proved in the previous section, the step response exhibits no overshoot. The 1% settling time for
the double integrator (corresponding to the values a=1,b=0) is Ts=�/4+ ln(100/

√
2)≈5.04.

3. COMPARISON: FIRST-ORDER LTI CONTROL

The main objective of this exposition is to obtain an understanding of how the switching architecture
discussed in the last section performs compared with other more traditional forms of control. In this
section, we wish to compare the performance of the step response that is achieved via our switching
architecture with the performance of the set of step responses, which are achievable via first-order
LTI control. The specific architecture we will consider is the so-called servo configuration shown
in Figure 5 where, for the present time, we restrict K (s) to be a first-order LTI system:

K (s)=k
s+c

s+d
(20)

with k,c,d∈R.
As a first goal, we shall undergo the process of designing a first-order controller K (s) for the

specific case where the plant is a double integrator P(s)=1/s2. This will allow us to quantitatively
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Figure 5. Servo control architecture.

compare the performance of the switching architecture with the achievable performance of a first-
order LTI controller for a specific case study and, as we shall see, provide some insight into the
performance capabilities of the switching architecture. In a later section, we shall then extend the
results for this specific example to a subclass of the set of plants P(s) of the form

P(s)= a

s(s−b)

for which we shall be able to make a somewhat more general performance statement.
The way in which we shall compare the performance of the two architectures will be to deter-

mine the achievability region of percentage overshoot and 1% settling time that is obtainable via
first-order LTI control. More specifically, if we denote by M and T the percentage overshoot
and 1% settling time, respectively, of a particular stabilizing first-order LTI controller K (s), then
we wish to determine the set of ordered pairs (M,T ), which result as we allow K (s) to range
over an entire class of first-order LTI controllers. The reason as to why we wish to compute such
an achievability region rather than trying to compute the controller that produces the minimal
overshoot and/or the minimal 1% settling time is to gather information about potential trade-offs
between percentage overshoot and settling time.

3.1. Preliminaries: controller constraints

Note that in the above description we said that we wish to determine the achievability region for
a class of first-order controllers. Indeed, if we do not impose some limitations on our controller
sets, we may potentially allow ourselves to use controllers that exhibit ‘unreasonable’ behavior.
The first constraint that we shall impose is that the control signal u(t) be bounded for all t�0. The
second constraint that we shall impose is related to the controller’s ability to reject disturbances
present at the input of the plant P(s). Specifically, if one considers the augmented block diagram
of the servo configuration shown in Figure 6 in which an exogenous input w(t) is present at the
input of the plant P(s), we wish to place a bound on the closed-loop L2 gain from the plant input
w(t) to the plant output y(t). That is, for some constant C>0, we wish to search over only those
first-order controllers K (s) for which the corresponding closed-loop transfer function from w to
y Hwy(s) satisfies ‖Hwy‖∞�C , where ‖·‖∞ represents the H -infinity norm of a stable transfer
function.

To understand the origins of the L2 gain constraint, we will consider a simple example.

Example 3.1
For the block diagram of Figure 6 with plant P(s)=1/s2, consider the controller K (s) given by

K (s)= �2s

(s+2�)
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Figure 6. Servo architecture with plant input disturbance w(t).

where �>0 is a parameter. For this choice of K (s), the closed-loop transfer function from r(t) to
y(t), Hry(s), is given by

Hry(s)=
(

�

s+�

)2

It can be shown using standard tools from linear systems theory that the step response of Hry(s)
exhibits no overshoot for any �>0 and has 1% settling time that tends to 0 as �→∞. Although
this may initially indicate that the work of the previous section was for naught, note that this
controller is not a stabilizing controller due to the unstable pole–zero cancellation introduced at
s=0. Indeed, the transfer function from w(t) to y(t), Hwy(s), is given by

Hwy(s)= s+2�

s(s+�)2

which has an unstable pole at s=0. Because the L2 gain of an LTI system is equal to the
H -infinity norm of the corresponding transfer function, we see that the L2 gain from w(t) to y(t)
is infinite for this choice of controller. Furthermore, any effort to remove this effect by perturbing
the controller to be of the form

K (s)= �2(s+�)

(s+2�)

where �>0 is small will lead a closed-loop transfer function Hwy(s), which satisfies the constraint

‖Hwy(s)‖∞�|Hwy(0)|= 2

��

which shows that the L2 gain from w(t) to y(t) for small � can still be very large.

The above example is indicative that there may be a trade-off between step response performance
and disturbance rejection at the input to the plant. Since systems that have low disturbance rejection
properties are undesirable, we wish to search over only those controllers that have sufficiently
low disturbance rejection properties. The L2 gain provides a convenient way to formally quantify
disturbance rejection so that we can make a proper mathematical comparison.

In forming a comparison between the performance we can achieve via first-order LTI control
and the performance of the switching architecture we have constructed, we must take care to ensure
the same set of constraints for both architectures. Because we are considering only a single design
within the framework of the switching architecture, the values of these constraints are determined
de facto. In what follows, we shall first determine the numerical values of these bounds for the
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switching architecture. Once we have done this, we shall then numerically compute the set of
achievable pairs of 1% settling time and overshoot for all first-order controllers K (s) which satisfy
the same numerical bounds on the peak control value and the L2 gain constraint.

3.1.1. Switching architecture: peak control bound. As mentioned in the process of designing the
switching architecture, the choice of switching between gains of +1 and −1 was related to the fact
that, in the end, we desired to constrain the peak control value to be 1, i.e. we wished to impose
the constraint that |u(t)|�1 for all t>0, a fact we now show.

First, note that |u(t)|=|r(t)− y(t)|=|e(t)|; hence, it suffices to show that |e(t)| never exceeds
1 when r(t) is a unit step input. Now, we have already shown that the output y(t) is monotonically
increasing for all t>0 and satisfies the constraints

y(0)=0, lim
t→∞ y(t)=1

It then follows that e(t) is monotonically decreasing for t>0 and satisfies the conditions

e(0)=1, lim
t→∞e(t)=0

Hence, 0�e(t)�1 for all t>0, and it follows that |u(t)|�1 for all t�0.

3.1.2. Switching architecture: L2 gain from w(t) to y(t). Unlike the peak control bound, the L2
gain from w to y is not plant independent. Furthermore, as is the case with most nonlinear systems,
the L2 gain cannot be computed exactly. Nevertheless, one can compute upper bounds on the
L2 gain from w to y by using the S-procedure and searching over piecewise quadratic storage
functions [14]. For the case where the plant is a double integrator, one can numerically show that
8.38 is an upper bound on the L2 gain from w(t) to y(t).

3.2. First-order controller class

Now that we have computed the constraints that we wish to impose on the closed-loop system
of Figure 6, we are in the position of being able to compute the constraints on the associated
first-order controller K (s) of the form

K (s)=k
s+c

s+d

We shall first determine constraints on the value of k that are induced by the peak control bound
and will then determine constraints on the values of c and d imposed by the constraint on the L2
gain from w to y.

3.2.1. Peak control bound. When P(s)=1/s2 and K (s) is as shown above, the closed-loop transfer
function from r(t) to u(t) in the servo configuration of Figure 6 is given by

Hru(s)= ks2(s+c)

s3+ds2+ks+kc
(21)

When the input r(t) is a unit step with Laplace transform R(s)=1/s, the initial value theorem
implies us that u(0)= lims→∞ sU (s)=k. Hence, if we wish to constrain the peak value of the
control to be less than 1 for all t�0, it follows that |k|�1. Moreover, by examining the denominator
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of Equation (21), the Routh criterion constrains k to be positive. Hence, we consider only values
of k for which 0<k�1.

As it turns out, the value of k which yields the ‘best’ performance is the value k=1. We
formalize this in the following statement.

Proposition 3.1
Consider the system of Figure 6 where P(s)=1/s2 and where K (s) is a first-order controller of
the form of Equation (20):

K (s)=k
s+c

s+d

with 0<k<1, and denote by M and T the percentage overshoot and 1% settling time of the unit
step response y(t). Suppose that K (s) satisfies the constraint∥∥∥∥ P(s)

1+P(s)K (s)

∥∥∥∥∞
<�

for some �>0. Then the following statements are true:

1. The peak control value to a unit step input is equal to k.
2. The controller

K̃ (s)= s+c/
√
k

s+d/
√
k

satisfies the constraint ∥∥∥∥ P(s)

1+P(s)K̃ (s)

∥∥∥∥
∞

<�

Moreover, the peak control effort u(t) in response to a unit step input with the controller
K̃ (s) in place of K (s) is equal to 1, and the percentage overshoot and 1% settling time of
the corresponding step response y(t) are given by M and T

√
k, respectively.

The proof of Proposition 3.1 is rather technical and is given in the Appendix. In layman’s terms, the
result of the proposition is as follows: if we can find a controller with peak gain strictly less than
1 for which the closed-loop L2 gain from w(t) to y(t) (characterized by the H∞ norm constraint)
is less than a certain value �, then we can always find another controller for which the peak gain
is exactly equal to 1 and for which the L2 gain constraint is still satisfied. Moreover, this new
controller has a percentage overshoot that is exactly the same as the original controller but with a
1% settling time that is reduced by a factor of

√
k. Hence, it is sufficient to search over the set of

controllers K (s) of the form of Equation (20) with k=1.

3.2.2. L2 gain bound. Based on the results of Proposition 3.1, it is sufficient to limit the set of
controllers over which we search to those which take the form

K (s)= s+c

s+d
(22)
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Hence, the set of controllers that we wish to examine are those for which the closed-loop L2 gain
from w(t) to y(t) in Figure 6 is bounded above by �=8.38. This requirement can be expressed
as searching over the set of (c,d)∈R2 for which

‖Hwy(s)‖∞�
∥∥∥∥ s+d

s3+ds2+s+c

∥∥∥∥∞
�� (23)

As we shall show now, the set of pairs (c,d)∈R2 that satisfy the condition of Equation (23)
for any �>0 lies in a bounded set. Although it is difficult to analytically compute the exact set of
pairs (c,d) that satisfy the above condition, we shall find an outer approximation of this region
which will allow us to be able to estimate the achievability region that we wish to calculate.

To begin, define

W ={(c,d)∈R2 :c>0,d>0,d>c}
The set W is the set of (c,d)∈R2 for which all the roots of the polynomial s3+ds2+s+c lie
in the open left half-plane [23] and, hence, represents the domain for which the H∞ norm of
Equation (23) is well defined. Let V� be defined by the condition

V� ={(c,d)∈W :‖Hwy(s)‖∞��} (24)

for some �>0. It is precisely the set V� that we wish to show is bounded. To do so, we compute
|Hwy( j	)| of Equation (23) at a few select frequencies. First, note that |Hwy(0)|=d/c. If the
infinity norm of Hwy(s) is to be less than some value �, then |Hwy( j	)| must be less than � for
every frequency 	, which implies that |Hwy(0)|�� or that

d��c (25)

If we now compute |Hwy( j	)| at 	=1, we have

|H( j)|=
∣∣∣∣ j+d

c−d

∣∣∣∣� 1

1− c

d

Recognizing that the rightmost inequality must be less than or equal to � yields the condition

d� �

�−1
c (26)

Further analysis at 	=1 along with analysis at 	=√
c/d yields the following additional bounds:

d � 1

�−1
(27)

d � � (28)

A graphical depiction of the region described by inequalities (25)–(28) is shown in Figure 7. Note
that, in general, the region V� of Equation (24) is not the region that is defined by the inequalities
above. Rather, V� is a subset of this region.
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cmax
c

c=d

d

dmax

dmin

cmin

Figure 7. Region described by inequalities (25)–(28), with cmin=1/(�2−�),
cmax=�−1, dmin=1/(�−1), and dmax=�.

3.3. Computation of achievable percentage overshoot and 1% settling time pairs

We have now limited the process of computing the set of achievable pairs (M,T ) of percentage
overshoot and 1% settling time pairs to a search over a bounded region of R2. Because overshoot
and settling time are not analytically parameterizable, we attempt to compute an approximation of
the achievable set of pairs (M,T ) by finely gridding the bounded region of Figure 7. For each grid
point (ci ,d j ) in this region, we first determine whether (ci ,d j )∈V�, i.e. whether the corresponding
closed-loop transfer function Hwy(s) of Equation (23) satisfies the imposed norm-bound condition.
Once we have found the set of points in the grid which lie in V�, we simulate the corresponding
unit step response in MATLAB and measure the percentage overshoot and 1% settling time for
each grid point in V�.

The results of this gridding process are shown in Figure 8. The overshoot and 1% settling time
pairs that are achievable via first-order LTI control under the given peak control and L2 gain
constraints are depicted by the ‘×’ symbols, whereas the performance of the switching architecture
that we designed in Section 1 is shown via the circle at the bottom of the figure for comparison.
Note that the LTI control does exhibit a trade-off between percentage overshoot and 1% settling
time; the minimal percentage overshoot of 26% has a settling time of 17.5 s, while the minimal
1% settling time of 10.5 s has a corresponding overshoot of 37%. A plot of the step response with
minimal percentage overshoot and a plot of the step response with minimal 1% settling time are
shown in Figure 9.

Although it is impossible to obtain the exact minimal values of percentage overshoot and 1%
settling time via a gridding procedure, Figure 8 is clearly indicative of a finite gap between the
minimal 1% settling time and minimal percentage overshoot that can be achieved via first-order
LTI control vs what can be achieved via the switching algorithm designed in Section 1.

3.4. First-order LTI control for other plants

We can perform similar comparisons between the performance of the switching architecture and
the performance that is achievable via first-order LTI control for plants other than the double
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Figure 9. Step responses of double integrator which achieve minimal overshoot and minimal 1% settling
time subject to the peak control value and L2 gain-bound constraints given in this section: (a) minimal

overshoot and (b) minimal 1% settling time.

integrator, as well. Here, we shall consider two additional plants:

P1(s)= 100

s(s+1)
, P2(s)= 100

s(s−1)

Informally, the above plants are ‘close’ to a double integrator in the sense that the corresponding
values of a and b for each plant satisfy the constraint that a�b2 (in both cases a/b2=100).
In a slightly more formal setting, we can view the transfer function P(s) of Equation (1) as a
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Figure 10. Realization of transfer function P(s) of Equation (1) where �=b/
√
a.

perturbation of a double integrator in the following manner: the transfer function P(s) can be
realized via the block diagram of Figure 10 where �=b/

√
a. The case when a�b2 can, therefore,

be viewed as a case where � is small in Figure 10.
Returning now to our performance comparison, we design switching controllers for the plants

P1(s) and P2(s) using the algorithm presented in Section 1 and then evaluate the performance of
a first-order LTI controller subject to the same peak gain condition |u(t)|�1 for all t�0 and a
similar L2 gain-bound condition (where, obviously, the L2 gain bounds are the bounds that we
numerically compute for the switching architectures that control P1(s) and P2(s), respectively).
The results for P1(s) and P2(s) are shown in Figures 11 and 12, respectively. Part (a) of each
figure shows the step response that is obtained via the switching algorithm presented in Section 1,
whereas parts (b) and (c) of each figure show the step response with a first-order LTI controller
K (s) placed in a servo configuration of Figure 5 that achieves minimal overshoot and minimal
1% settling time, respectively.

It is difficult to make general statements about a class of systems for which the use of the
switching architecture presented in this section has clear benefits over using a first-order LTI
controller. Part of this is simply due to the fact that quantities such as percentage overshoot and 1%
settling time are not quantities that are, in general, easily analytically parameterizable. Nevertheless,
although we cannot currently provide a broad general class, we can offer the following weak
generalization.

Proposition 3.2
Consider a plant P(s) and a controller K (s) of the form

P(s)= a

s(s−b)
, K (s)=k

s+c

s+d

with a>0, k>0, b,c,d∈R, and define

H1(s)= K (s)

1+P(s)K (s)
H2(s)= P(s)K (s)

1+P(s)K (s)

Suppose that the following three properties hold:

1. The step response u(t) of system H1(s) satisfies the condition |u(t)|�1 for all t�0.
2. ‖H2(s)‖∞ is finite and satisfies ‖H2(s)‖∞�� for some �>0.
3. The unit step response s(t) of H2(s) has percentage overshoot M and 1% settling time T .

Then the transfer functions H̃1(s) and H̃2(s) given by

H̃1(s)= K̃ (s)

1+ P̃(s)K̃ (s)
, H̃2(s)= P̃(s)K̃ (s)

1+ P̃(s)K̃ (s)
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with

P̃(s)= a�2

s(s−b�)
, K̃ (s)=k

s+c�

s+d�

for some �>0 satisfy the following conditions.

1. The step response ũ(t) of system H̃1(s) satisfies the condition |ũ(t)|�1 for all t�0.
2. ‖H̃2(s)‖∞ is finite and satisfies ‖H̃2(s)‖∞��.
3. The unit step response s̃(t) of H̃2(s) has percentage overshoot M and 1% settling time T/�.

The proof of this statement is very similar to the second part of the proof of Proposition 3.1 and
is left to the reader.
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Figure 11. Step responses for P1(s)=100/s(s+1): (a) switching algorithm step response (0.485 s
1% settling time); (b) minimum overshoot with first-order LTI control (19% overshoot, 1.16 s
1% settling time); and (c) minimum 1% settling time with first-order LTI control (0.95 s 1%

settling time, 23% overshoot).
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Figure 12. Step responses for P2(s)=100/s(s−1): (a) switching algorithm step response (0.525 s
1% settling time); (b) minimum overshoot with first-order LTI control (38% overshoot, 2.27 s
1% settling time); and (c) minimum 1% settling time with first-order LTI control (1.35 s 1%

settling time, 49% overshoot).

Proposition 3.2 implies us that, in optimizing for performance in terms of percentage overshoot
and/or 1% settling time for a single plant, we effectively compute the optimal percentage overshoot
and/or 1% settling time for an entire class of plants. For example, consider the plant

P3(s)= 1

s(s−0.1)

which is related to the plant P2(s) above via P3(s)= P2(10s). Using the result of Proposition 3.2
for �=0.1, we conclude that, since the minimum achievable overshoot using first-order control for
P2(s) was measured to be 38%, the minimum achievable overshoot using first-order control for
P3(s) is also 38%. Moreover, since the minimum achievable 1% settling time was measured to be
1.35 s for P2(s), we conclude that the minimum achievable 1% settling time for P3(s) is 13.5 s. In
general, if we know that the minimal percentage overshoot and 1% settling time for a plant P(s)
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are given by M and T , respectively, then the minimal percentage overshoot and settling time of
P(s/�) are given by M and T/�, respectively.
Now, if we denote by Ts(P(s)) the 1% settling time of the plant P(s) that is achieved via

the switching architecture of Figure 1, of Equation (19), then a simple calculation shows that
Ts((P(s/�))=(1/�)Ts(P(s)). Hence, we can conclude that the ratio of the settling time achievable
via first-order LTI control for a plant P(s/�) to that achievable by the switching architecture is
constant for all �>0. Hence, if a given plant P(s) exhibits performance benefits in terms of 1%
settling time and percentage overshoot with the switching controller in place vs that which can be
achieved via first-order control, then the same benefits exist for the entire class of plants P(s/�)

for all �>0.

4. COMPARISON: HIGHER-ORDER LTI CONTROL

In this section, we would like to compare the performance of the switching architecture of Section 1
with certain fundamental performance limits of LTI control. Specifically, we would like to compare
the 1% settling time of the switching controller for a given plant P(s) of Equation (1) with the
1% settling time that can be achieved via a rational LTI controller K (s) connected in the servo
configuration of Figure 5 where K (s) is of unconstrained order.

We shall derive bounds on the ratio of the 1% settling time achievable via the switching
architecture vs that which is achievable via LTI control by first examining two time-optimal control
problems. That is, we shall initially remove the restriction that the control input u(t) must be the
output of an LTI feedback interconnection and derive a lower bound on the 1% settling time that
can be achieved by searching over all control inputs u(t) with |u(t)|�1 for all t�0. We shall first
derive a weak (conservative) lower bound on the 1% settling time achievable via bounded control
to establish a formal bound on the ratio of the two settling times (switching algorithm vs bounded
control input) and then present an approximate lower bound that, in many cases, yields a more
accurate ratio.

Once we have provided the above bounds, we shall examine a method of designing LTI
controllers that minimize 1% settling time with less than 1% overshoot (we shall see that this extra
constraint on overshoot does not affect our ability to obtain close-to-optimal 1% settling times). As
we shall see, this problem can be formulated as an infinite-dimensional linear programming problem
that can be solved numerically using standard software packages. We shall examine the method
for several plants to investigate the order of a controller K (s) which achieves close-to-optimal
performance as a function of the plant parameters a and b.

4.1. Time-optimal control, part I: bounds derived from rise time

We begin with two definitions that we shall encounter frequently in this section:

Definition 4.1
The �-settling time T� of a real-valued signal y(t) is the smallest value of T�>0 such that

|y(t)−1|�� ∀t�T�

If no value of T� exists that satisfies the above constraint, then T� =∞.
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Definition 4.2
The �-rise time Tr of a real-valued signal y(t) is the smallest value of Tr>0 such that

y(Tr)=1−�

If no value of Tr exists that satisfies the above constraint, then Tr=∞.

According to Definition 4.1, the 1% settling time of a signal y(t) is an �-settling time with
�=0.01. It is clear from the above definitions that any real-valued signal y(t) that has finite
�-settling time T� also has finite �-rise time Tr (for the same value of �) and that Tr�T�. Hence,
the �-rise time is always a lower bound for the �-settling time.

The goal of this section is to find an upper bound on the ratio of the 1% settling time of
the switching architecture to the smallest possible 1% settling time that can be achieved via any
bounded control input |u(t)|�1. In order to establish this bound, we shall find a lower bound on
the 1% rise time achievable via bounded control. An upper bound on the ratio will then be the
1% settling time of the switching architecture divided by the lower bound on the 1% rise time
for bounded control inputs. As in previous sections, all results will be derived for the case where
a�b2.

4.1.1. Rise time bound. For the plant of Equation (1)

P(s)= a

s(s−b)

with a>0, b∈R, we are interested in deriving a lower bound on the 1% rise time of the step
response Tr:

Tr=min
T�0

{T : y(T )=0.99}

where y(t) is the step response of the plant P(s) when the peak value of the control input u(t) is
bounded: |u(t)|�1 for all t�0. It is clear that the rise time Tr will be minimized by choosing the
input u(t) that maximizes y(t) at each time t subject to the constraint |u(t)|�1. First, assuming
zero initial conditions y(0)= ẏ(0)=0, note that y(t) can be expressed as the convolution

y(t)=
∫ t

0

a

b
(eb
−1)u(t−
)d


whenever b �=0. Now,

|y(t)|�
∫ t

0

∣∣∣a
b
(eb
−1)u(t−
)

∣∣∣ d
�∫ t

0

∣∣∣a
b
(eb
−1)

∣∣∣ d
=
∫ t

0

a

b
(eb
−1)d


for any values of a>0,b �=0. We conclude from the above inequalities that y(t) is maximized for
each t by picking u(t)=1 for all t�0. Hence, we can develop a lower bound on the 1% rise time
Tr by picking u(t)=1 for all t�0. A similar proof also holds in the case when b=0.

Now, when u(t)=1 for all t�0, y(t) can be expressed explicitly as

y(t)= a

b2
ebt − a

b
t− a

b2
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For an arbitrary �>0, the equation we wish to solve to find a bound on the �-rise time can be
expressed as

ebt −bt=1+ b2

a
(1−�) (29)

Although a simple closed-form expression for the solution to Equation (29) is not obtainable,
using simple inequalities based on the Taylor series expansion of ex (see [14, Chapter 5] for
details), we can arrive at the following lower bound on the �-rise time Tr:

Tr�
1√
a
ln

(
2+�2(1−�)+√(2+�2(1−�))2−4

2

)
(30)

where �=b/
√
a. Note that the constraint b2�a is equivalent to the constraint �∈[−1,1].

4.1.2. Upper bound on settling time ratio. If we, again, let b=�
√
a where �∈[−1,1], then the

1% settling time of the switching architecture Ts of Equation (19) can be reparameterized to be
of the form Ts=h(�)/

√
a, where h(�) is given by

h(�)= �+√�2+4

2

⎛
⎝ln

(
100√
2

)
+
√
4+�2

4−�2
arccot

(
2�+√�2+4√

4−�2

)⎞⎠ (31)

Using the above parameterization, we arrive at the following upper bound:

Ts
Tr

�h(�)

0.95
�h̃(�) (32)

for all a>0,�∈[−1,1]. A plot of h̃(�) is shown in Figure 13. As the figure shows, h̃(�) increases
with �. Intuitively, this is sensible since, for fixed a, larger � corresponds to larger b, and the larger
b, the ‘more unstable’ the plant P(s) of Equation (1). Also, since Figure 13 shows that h̃(�)�10
for all �∈[−1,1], we can conclude that the 1% settling time of the switching architecture is never
more than a factor of 10 larger than the settling time that can be achieved via any control input
that is bounded by 1, |u(t)|�1 for all t�0, for any value of a>0 and any value of b with b2�a.

4.2. Time-optimal control, part II: approximate bound on settling time

Although the previous section does provide us with a bound on the ratio of the settling times,
as desired, the bound is somewhat conservative. A large part of this is due to the fact that the
minimum achievable �-rise time is, in general, a weak lower bound for the minimum achievable
�-settling time. In this section, we investigate an approximate lower bound on the �-settling time.
Although this bound is not exact, this new bound for the �-settling time can be made arbitrarily
close to the true �-settling time for � sufficiently small.

For a given plant P(s) of Equation (1), the task of minimizing the �-settling time of the step
response y(t) for some given ��0 is the task of finding some control input u(t) with |u(t)|�1
so as to minimize the smallest time T� for which |y(t)−1|�� for all t�T�. In general, this is a
difficult problem to solve analytically for an arbitrary �; however, there is one exception for which
an analytic solution can be obtained, namely the case when �=0 exactly. We shall, therefore,
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Figure 13. Plot of h̃(�) of Equation (32) for �∈[−1,1].

compute the minimal settling time as a function of the plant parameters a and b when �=0 and
use this as an approximation to the true 1% settling time.

It is true, in theory, that the minimal 1% settling time could be markedly different from the
settling time in the case when �=0; however, one should naturally expect that when � is small, the
two values should be close. One can show via a continuity argument that when � is sufficiently
small, the minimal �-settling time of the step response over all control inputs that satisfy |u(t)|�1
can be made arbitrarily close to the minimal settling time in the case where �=0. Moreover, as
we shall see when we examine a procedure for designing rational LTI controllers to minimize the
settling time in the absence of overshoot, the 1% settling time that can be achieved through the
design process is often remarkably close to the bound we derive here.

The formal details of deriving the aforementioned approximate bound are rather lengthy and,
hence, are omitted. The interested reader is referred to [14, Chapter 5] for a full derivation. To
develop an expression for the approximate bound, recall that Ts, the 1% settling time of the
switching architecture, can be parameterized as h(�)/

√
a where h(�) is given as in Equation (31)

where �=b/
√
a. Examine the settling time for the set of a and b such that a�b2 is equivalent to

computing h(�) for �∈[−1,1].
In a similar fashion, we can derive an approximation T0 to the �-settling time T� achievable via

bounded LTI control, which takes the form T0= f (�)/
√
a where

f (�)=
∣∣∣∣∣2� ln

(
1+√1−exp(−�2)

exp(−�2/2)

)∣∣∣∣∣
As mentioned above, the �-settling time can be shown to be continuous at �=0, i.e. T� ≈T0 for �
sufficiently small. We therefore approximate the ratio Ts/T� via Ts/T0. For �∈[−1,1], we have

Ts
T0

= h(�)

f (�)
(33)

A plot of Equation (33) is shown in Figure 14. Comparing this plot with the rise time bound of
Figure 13, the approximate bound predicts roughly a factor of two improvements in the ratio of
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Figure 14. Plot of h(�)/ f (�) for �∈[−1,1].

the 1% settling time of the switching architecture to the achievable 1% settling time of arbitrary
bounded control with |u(t)|�1. For instance, although the weak bound predicts a factor of 8
difference for the case when �=1, the approximate bound predicts roughly a factor of 3.5 when
�=1, down from roughly one order of magnitude difference to roughly half an order of magnitude.
Although again, it must be advised that the approximate bound may actually differ from the true
ratio quite significantly, we shall see in the following section that the bound shown in Figure 14
is often very close to the true ratio.

4.3. Designing LTI controllers with minimum settling time

We now turn to the problem of designing LTI controllers that minimize the 1% settling time of the
step response for a given plant P(s) of the form of Equation (1). Formally, the problem we wish
to investigate is this: for a given plant P(s), we wish to design an LTI controller K (s) connected
in the servo configuration of Figure 5 such that when the input r(t) is a unit step and the plant
and controller are both initially at rest, the following constraints are satisfied:

1. The closed-loop transfer function S(s) from r(t) to y(t) is stable.
2. The control signal u(t) is bounded: |u(t)|�1 for all t�0.
3. The 1% settling time is made as small as possible, i.e. the value of T for which |y(t)−1|�0.01

for all t�T is minimized.
4. The percentage overshoot is less than 1%, i.e. y(t)�1.01 for all t�0.

For a given value of T , note that items 2–4 are linear constraints on the step response of the
control input u(t) and plant output y(t). As we shall see now, the problem we solve here can
be represented as an infinite-dimensional linear programming problem which, upon appropriate
discretization, yields an algorithm that can be implemented in MATLAB for finding K (s) which
satisfies all the above constraints. All the techniques we discuss here are presented in more detail
in [24].
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4.3.1. Characterization of stabilizing controllers. First, we shall recall the classical interpolation
conditions that state the following: for the feedback interconnection of Figure 5, consider the
closed-loop transfer function S(s) given by

S(s)= P(s)K (s)

1+P(s)K (s)

where K (s) is a proper stabilizing controller and P(s) has relative degree r . If we denote by
p1, p2, . . . , pn and z1, z2, . . . , zm the unstable poles and zeros of the plant P(s), respectively (i.e.
those poles and zeros that lie in the closed right half-plane), then the following conditions must
be satisfied:

1. S(s) is stable.
2. S(p1)= S(p2)=·· ·= S(pn)=1.
3. S(z1)= S(z2)=·· ·= S(zm)=0.
4. The relative degree of S(s) is at least r.

Using these conditions, we may express any stable closed-loop transfer function S(s) in terms of
the so-called Q-parameterization [25]:

S(s)=
∞∑
i=r

ai Qi (s) (34)

where {Qi (s)}∞i=1 forms a complete basis for the set of stable transfer functions RH∞ and where
Equation (34) satisfies the interpolation constraints above. One such basis, known as the Ritz
basis [24], is given by

Qi (s)=
(

c

s+c

)i

(35)

for any c∈R, c �=0. We shall use this basis for performing the numerical computations to be
described.

4.3.2. Formulation of linear programming problem. We utilize the results of the previous section
in the following way. For some integer N>0 that is potentially large, we consider the set of
closed-loop transfer functions S(s) from r(t) to y(t) in Figure 5 of the form

S(s)=
N∑
i=2

ai Qi (s)

where ai are the coefficients to be determined. For the plant P(s) of Equation (1), we have the
interpolation condition

N∑
i=2

ai Qi (0)=
N∑
i=2

ai =1

When b>0, we have the additional interpolation condition

N∑
i=2

ai Qi (b)=
N∑
i=2

ai

(
c

c+b

)i

=1
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To represent the conditions imposed on the step response y(t) and the control signal u(t), let si (t)
represent the step response of Qi (s) and ui (t) represent the step response of Qi (s)/P(s). For a
given settling time T , we can represent the control bound, the 1% settling time, and the overshoot
constraint as ∣∣∣∣ N∑

i=2
aiui (t)

∣∣∣∣� 1 ∀t�0

∣∣∣∣1−
N∑
i=2

ai si (t)

∣∣∣∣� 0.01 ∀t�T

N∑
i=2

ai si (t) � 1.01 ∀t�0

respectively. All the above constraints are linear constraints on the coefficients ai and, hence, form
an infinite-dimensional linear program. By finely gridding the time axis, one may approximate
this by a finite-dimensional linear program, which can be solved via existing software packages
such as MATLAB’s sedumi package. If the problem is feasible, the coefficients ai determine for
us a closed-loop transfer function whose output step response y(t) and control step response u(t)
satisfy the desired conditions for some settling time T . A stabilizing controller K (s) may then be
obtained using

K (s)= S(s)

P(s)(1−S(s))

4.3.3. Results. We present the results of using the above algorithm for five different plants in
Table I. The table shows four quantities for each plant: the approximate settling time T0 described
in the last section, the minimum 1% settling time that was achieved using the linear programming
formulation, the smallest order of a controller that could be found, which achieves the minimal
settling time, and the 1% settling time of the switching architecture we derived at the beginning
of the section (for reference). Note that the minimum 1% settling times are not too far from the
approximate bound T0; the largest deviation of the five plants is about 7.5%, and the approximate
bound on the ratio of the settling times that we derived earlier is off by less than 10%.

Table I. Summary of results for five different plants P(s).

Switching
Approximation Measured 1% Controller architecture 1%

P(s) T0 settling time order settling time Ts

1
s2

2 1.85 17 5.08

100
s(s+1) 0.2002 0.185 17 0.4849

1
s(s+1) 2.1701 2.04 15 3.7772

100
s(s−1) 0.2002 0.193 22 0.5253

1
s(s−1) 2.1701 2.08 38 7.7013

The approximation T0 refers to the approximate 1% settling time described in Section 4.2.
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Figure 15. (a) Control signal u(t) and step response y(t) which yield minimal 1% settling time (1.85 s)
for the double integrator P(s)=1/s2 using a 17th-order controller and (b) control signal u(t) and step
response y(t) which yield minimal 1% settling time (1.85 s) for the double integrator P(s)=1/s2 using

a reduced-order controller (12th order).

After the 1% settling time was determined for each plant, the minimal controller order was
determined by reducing the value of N until the program became infeasible. The controller order
for the smallest value of N , which did not make the program become infeasible, is what is listed
in the table. Extrapolating from the examples shown here, we see that the order of the controller
needed to achieve the minimal 1% settling time using this method is, generally, quite high. Using
standard model reduction techniques on the controller can provide some reduction in the order
of the optimal controller. For instance, using Hankel model order reduction techniques, one can
reduce the optimal controller for the double integrator down from a 17th-order controller to a
12th-order controller. The control step response u(t) and the output step response y(t) are shown
for the 17th-order controller in Figure 15(a) and for the 12th-order controller in Figure 15(b).
Similar reductions in order were observed when performing Hankel model order reduction on the
optimal controllers for the other plants.

A natural question to ask at this point is as follows: how does the controller order change with
the settling time? Can we increase the settling time and dramatically decrease the order of the
optimal controller using this method? The answer to this question is, in general, no. By increasing
the settling time, it is possible to decrease the order of the required controller, but the order of
the resulting controller is still generally fairly high using the method shown here. For instance,
in the case of the double integrator, by increasing the 1% settling time to 2.53 s, we were able
to design a 10th-order controller (which could be reduced to a ninth-order controller via Hankel
model reduction), but an attempt to increase the settling time beyond that point did not reduce the
order of the optimal controller at all.

5. CONCLUSION AND FUTURE WORK

To briefly summarize the findings we have presented here, we studied a control design problem
for three different classes of controllers in which we compared the performance of a particular
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switching architecture with the performance that can be achieved via two other forms of LTI
control. We showed that, for a class of plants, the first-order switching architecture we presented
here outperforms what can be achieved by first-order LTI control, hence showing that the addition
of switching can provide performance benefits. We also showed that while, in general, bounded
LTI control of unconstrained order can outperform the first-order switching architecture, the perfor-
mance increase is bounded. Moreover, we investigated a method of designing close-to-optimal
controllers which, as we showed through the context of several examples, yields controllers of
rather high order.

One question that the interested reader may be wondering about in regard to the switching
system of Section 2 is whether it suffers from the phenomenon of chatter when time delays are
present. Such behavior is typically observed in sliding mode control systems when the control
law creates a vector field, which geometrically points at the stable manifold from either side
of the manifold (see [26] for a discussion and illustrations of chatter). It can be shown for the
switching law of Equation (6), however, that the composite vector field composed of (A+v0BC)z
in the region z′(w̃s q̃ ′)z�0 and (A−v0BC)z in the region z′(w̃s q̃ ′)z>0 always points in either a
clockwise orientation or a counterclockwise orientation throughout the entire state space. Hence,
one may expect that the control law equation (6) will not be chatter sensitive. Although a formal
comparison/proof of this statement has not yet been constructed, several numerical simulations
indicate strongly that Equation (6) is very insensitive to chatter. This result is a great contrast
to many existing results on the design of switched static gain controllers for second-order linear
systems (see, e.g. [16, 17] and the figures therein) in which chatter is a fundamental characteristic
of the control law rather than simply an artifact of time delays. A formal study of this switching
architecture’s sensitivity to chatter is an important area of future research.

Also, to briefly return to the issue of non-uniqueness of the vector q̃ in Equation (6), note that
although the exact choice of q̃ (and, hence, q) does not affect the 1% settling time or overshoot of
the corresponding step response, the choice of q does affect the value of the L2 gain computed in
Section 3. Numerical simulation currently indicates that, if one takes the vector q to lie very close
in angle to either ws or wu , the L2 gain becomes very large. Hence, one could attempt to find q
which minimizes the L2 gain calculation of Section 3 to increase the performance gap between
the switching architecture and the achievable performance of first-order servo control. The choice
of q used in this exposition was not optimized (it was based on a simple angle bisector heuristic;
see [14, Chapter 3]), but it is clear that characterizing the L2 gain as a function of the parameter
q has important ramifications.

It should be noted that, although the work we present here was derived for a simple class of
second-order LTI plants, it is possible to extend the results shown here to a broader class of systems.
Indeed, using the L2 gain tools for the class of switching controllers shown here as developed
in [14, Chapter 4], one can apply the standard tools of perturbation theory via the Small Gain
Theorem to extend to a class of systems that are well approximated by a second-order LTI model.
Chapter 6 of [14] presents an example in which a switching architecture of the form shown here is
used to robustly stabilize a class of fourth-order LTI plants. Complete formal studies/comparisons
for wider sets of plants is a task that is yet to be completed and is a direction that should be taken.

Although the comparison here demonstrates promise for the switching architecture that we show
here in the context of both a particular plant set and a particular performance objective, the general
utility of this structure and/or similar architectures for a wider range of performance problems
is still very much an open area of research. Much of the work developed here was inspired by
applications for the electronics industry, and, as such, one of the future goals is to examine other
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application areas that have the potential to benefit from switching structures similar to the one we
showed here.

APPENDIX A

A.1. Proof of Proposition 3.1

To prove item 1, we shall prove the following equivalent fact: that the peak control value occurs at
time 0, i.e. |u(t)|<k for all t>0 (note the strict inequality). To begin, note again that the transfer
function from r(t) to u(t) in Figure 6 is given by

Hru(s)= ks2(s+c)

s3+ds2+ks+kc

In order for the above transfer function to represent an asymptotically stable system, we can deduce
from the Routh criterion that c>0,d>0,k>0, and d>c. The zero-state unit step response of the
above transfer function can be characterized via the dynamics of the autonomous system

ż1 = (c−d)z1−z2−c(c−d)z3

ż2 = kz1

ż3 = z1−cz3

u = kz1

with initial condition z1(0)=1, z2(0)= z3(0)=0.
We shall use the above state-space description in z coordinates to argue that |u(t)|<k for all

t>0. Assume that the constraint does not hold, i.e. that there exists some time t0>0 for which
u(t0)=k or u(t0)=−k. Suppose for the moment that z2(t0)= z3(t0)=0. Then the state of the
system z=[z1 z2 z3]′ would satisfy the relationship z(t0)=±z(0). Moreover, the time invariance
of this system would imply that z(mt0)=±z(0) �=0 for all m∈Z+, which would contradict the
assumed asymptotic stability of the original system.

As it turns out, if u(t0)=±k, then the remaining states z2(t0) and z3(t0) must be 0, as we now
show. Consider the quadratic Lyapunov function

V (z)= z21+ 1

k
z22+c(d−c)z23

which, along the system trajectories, satisfies

V̇ (z)=2(c−d)(z1−cz3)
2�0

for all z∈R3. Note that V (z) satisfies the property that

V (z1, z2, z3)>V (z1,0,0) ∀(z2, z3)∈R2\{0}
Now, suppose that u(t0)=k or, correspondingly, that z1(t0)=1, and that either or both of z2(t0)
and z3(t0) are non-zero. Then we have that

V (1, z2(t0), z3(t0))>V (1,0,0)
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which contradicts the fact that V (z) is non-increasing along the system trajectories. By noting that
V (z)=V (−z), a similar proof holds to show that if u(t0)=−k then a similar contradiction holds.
Hence, it follows that if u(t0)=±k, then z2(t0)= z3(t0)=0, and we conclude that u(t0) cannot
equal either k or −k for any t0>0. By the continuity of the state trajectories, we further conclude
that |u(t)|<k for all t>0 and that the peak control value (which occurs at time 0) is equal to k.

To prove the second item, let H1(s)= P(s)/(1+P(s)K (s)) and define G1(s)=H1(
√
ks). It is

clear that ‖G1(s)‖∞ =‖H1(s)‖∞. Note that G1(s) can be expressed in the form

G1(s)= s+d/
√
k

s3+(d/
√
k)s2+s+c/

√
k

= P(s)

1+P(s)K̃ (s)

from which the norm-bound constraint in item 2 immediately follows. Note also that K̃ (s) is a
special form of Equation (20) with k=1; hence, by the result of item 1, the peak control value is
equal to 1. Hence, K̃ (s) satisfies both constraints that we are imposing on the closed-loop system
of Figure 6.

Now, if we define the transfer functions

H2(s)= P(s)K (s)

1+P(s)K (s)
, G2(s)= P(s)K̃ (s)

1+P(s)K̃ (s)

which represent the closed-loop transfer functions from r(t) to y(t) in Figure 6 for the controllers
K (s) and K̃ (s), respectively, then a simple calculation shows that G2(s)=H2(

√
ks). Let s(t) be

the unit step response of the system with transfer function H(s) and s̃(t) be the unit step response
of the system with transfer function G(s), i.e.

s(t)=
∫ t

0
h2(
)d
, s̃(t)=

∫ t

0
g2(
)d


where h2(t) and g2(t) are the impulse responses corresponding to the transfer functions H2(s) and
G2(s), respectively. Because the impulse responses satisfy the relationship

g2(t)= 1√
k
h2

(
t√
k

)

we have

s̃(t)=
∫ t

0
g2(
)d
=

∫ t

0

1√
k
h2

(

√
k

)
d
=

∫ t/
√
k

0
h2(�)d�=s

(
t√
k

)

The above relationship makes clear that if the step response s(t) has percentage overshoot M and
1% settling time T , then the step response s̃(t) also has percentage overshoot M and 1% settling
time T

√
k.
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