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Abstract—The growing stringency of fuel economy, emissions,
and drivability requirements has led to proliferation of powertrain
systems that have multiple discrete operating modes. Systematic
approaches to the development of optimal and robust control sys-
tems for such powertrains are needed to contain their increased
development times and costs. In this paper, we propose a new ap-
proach for controlling switched systems that is applicable to pow-
ertrain systems with multiple operating modes. Our approach re-
duces the complexity of computing a control law to a linear pro-
gramming problem defined over a finite number of states in each
operating mode. The methodology is designed to be suitable for
practical applications while, under appropriate conditions, pro-
viding near-optimal performance. An application to the direct in-
jection stratified charge engine with two distinct operating modes
is given to illustrate our approach.

Index Terms—Cost, direct injection engines, fuel optimal con-
trol, optimal control, powertrain control, switched systems.

I. INTRODUCTION

THE USE of advanced powertrain systems with multiple
operating modes is growing increasingly widespread as

the demands on fuel economy, emissions, drivability, and safety
of passenger vehicles become more stringent. Examples of ad-
vanced systems of this type include variable displacement en-
gines, direct injection stratified charge (DISC) engines, variable
compression ratio engines, homogeneous charge compression
ignition engines, and hybrid electric vehicles. In each of these
systems, a finite set of operating modes are employed to provide
flexibility in meeting these diverse requirements.

The control systems for such powertrains must determine an
optimal operating mode and transition to that mode without
disturbing the driver, all while accurately delivering requested
torque and air-to-fuel ratio (AFR). Field experience suggests
that fuel economy and drivability can fall short of expectations if
the mode selections or transitions are not optimally performed,
but the general lack of systematic design techniques for this task
often leads to the use of heuristic approaches that may result in
degraded performance. In this paper, we develop a methodology
that attempts to address the above difficulty.
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Abstracting from specific considerations related to individual
powertrain systems, the broader focus of this paper is on the con-
trol of switched systems possessing controllable subsystems.
Existing approaches for the control of switched systems appli-
cable to this class of systems include the use of control Lya-
punov functions [1], control derived through an approximation
of the optimal value function [2], the standard optimal control
framework applied to a reparameterization of the system [3],
and receding horizon control (RHC).

In [1], performance is not a factor in determining when
to switch between modes and, rather, it is determined only
when switching will lead to stability, which is not suitable for
our performance-based setting. Though [2] and [3] present
performance-centric frameworks for switched-system control,
the former does not guarantee the stability of the closed-loop
system, and the latter is not readily applicable to low-resource
embedded hardware.

An application of RHC to the DISC engine is presented in
[4] and [5]. Since the multiparametric optimization technique
used in these studies requires an affine system model, the engine
model is linearized with the engine speed treated as a constant
parameter. A detailed comparison of the approach presented in
this paper with the one in [4] and [5] is reserved for future pub-
lications.

Rather than strive for global optimal control of this class
of systems, we follow the approach taken in [6], where it is
shown that high-performance practical controllers can be con-
structed for a specific class of hybrid systems by parameterizing
the controller actions by a finite set of actions. In this paper,
we extend this approach to the control of controllable switched
systems by constraining the switching portion of the control
input and fixing the feedback controllers for each mode. We
show that, under reasonable assumptions, the resulting system
is guaranteed to converge to a reference signal while providing
meaningful performance. These theoretical developments are
described below, while an application to the DISC engine is pre-
sented in Section VI.

II. BACKGROUND AND ASSUMPTIONS

A. Definitions

Consider a switched system

(1)

where and is a piecewise-
constant function continuous from the right. The set of modes
for the switched system is a finite set . Our
objective will be to control the state of (1) by adjusting
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and so that converges to 0 asymptotically while
becomes equal to the desired mode.

We assume the system state is constrained to a fixed closed
set when the system is in mode ; i.e., if , then
must lie in . may be given as a physical constraint of
the system, or it may be imposed artificially by the designer to
reflect the desired state behavior. We similarly assume that the
control is constrained to a set when , a constraint
that may also be given or artificial.

We define a special subset of modes as the set of modes
where the origin is an admissible state; i.e., is the set of

modes such that . We assume that is not empty.
Finally, we assume that (1) in a fixed operating mode

is a controllable system with respect to any pair of states in .
We now define the following notations used throughout this

paper.
• Let and successively define the th switching in-

stance as the first time changes value since time
, i.e., .

• Define as the th switching state.
• Define as the th operating mode and denote

the mode sequence as the list .
If the mode becomes a constant after some switching time ,
i.e., is constant for , then as there are no more
switches, we define for all integers

.
We treat both and as design parameters in our system, and

we view (1) as a collection of subsystems. The subsystem
control guides the system in a fixed operating mode, and the
mode control determines the operating mode to apply.

B. Assumptions

For certain classes of systems that follow the form of (1) in a
fixed mode , there already exist tools for constructing
stabilizing controllers. The controller architecture in this paper
attempts to leverage these techniques in order to simplify the
overall controller design. Let be such a controller for (1)
under a fixed . For to be applicable to our framework,
it must satisfy the following assumption.

Assumption 1: For any initial state and target state in
, there exists some time such that system

(1) with , and satisfies
the following:

1) admissibility of the state trajectory: ;
2) asymptotic stability: the closed-loop system is locally

asymptotically stable about ;
3) controllability: for all if or

if ;
where we define .

Allowing to be 0 is a technical assumption that will be
made clearer in the case of optimal subsystem controllers. We
term the subsystem controller for mode and term the
tracking time.

Finally, let be the cost of applying according
to

(2)

subject to and . is a positive-definite
monotonically increasing (in the norm of each argument) func-
tion. We only integrate up to because we allow the system
to stop accumulating cost once or 0 are reached (if either is
reached).

C. “Optional” Assumptions

Though need not be an optimal controller, assumptions on
the optimality and continuity of the cost function will be useful
in obtaining some theoretical results.

Assumption 2: and are continuous functions of their
arguments and are finite.

Assumption 3: minimizes (2) over all inputs satisfying
Assumption 1.

Assumptions 2 and 3 lead us to the following results con-
cerning the tracking time .

Proposition 1: Let Assumptions 1–3 hold. If , then
is finite.

Proof: If , then, by the positive-definiteness and
monotonity of and the fact that is closed and does not
include takes a minimum value in so that

for all and all . Therefore, if ,
then , which contradicts Assumption 2.

Corollary 1: Let Assumptions 1–3 hold. If
for some and , then and .

Proof: By Proposition 1, implies . As-
sume . If , then and so there
exists a such that does not intersect a neighbor-
hood of the origin. It can be shown by a proof similar to that of
Proposition 1 that this implies . Therefore, .

III. SUBOPTIMAL CONTROL OF SWITCHED SYSTEMS

WITH BOUNDED SWITCHING REGIONS

In this section, we consider the problem of controlling (1)
subject to the constraint that a switch between two modes must
occur in a bounded region of the state space. Specifically, if
the system is switching from mode to mode at time , then

must lie in the set where , and
is assumed to be bounded. Switched systems with constrained
state spaces, which occur frequently in practice, are an example
of this class of systems.

Using preconstructed subsystem controllers that each
satisfy Assumption 1, we seek to provide a suboptimal solution
for the following problem: given an initial state and
initial operating mode , determine a control function
pair that minimizes

(3)

A. Switching States and the Static Robust Hybrid
Switching Graph (SRHSG)

The basic idea behind the controller architecture we develop
in this section is to limit the system to switching at a finite set of
states using the subsystem controllers to optimally travel
among such states before tracking the origin.
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First, choose a positive constant , termed the switching
radius. Let be a chosen set of target states between
modes and with the property that every two unique target
states are separated by a distance , i.e.,

. The target states in are the only states in at
which we allow the system to switch modes; i.e., if
and , then we must have .1 By the assumption
that is bounded, is finite.

We are also interested in knowing all of the target states in
mode . To this end, we define , which is also
finite.

We limit how the system travels among the target states by
defining a directed graph that defines all of the possible trajec-
tories the system may take.

Definition 1: For a given initial mode and state , the
SRHSG is defined as the graph where the vertices

and edges satisfy the following.
1) Every vertex is a pair where either: 1) is any

mode and in a target state of mode , 2)
and is the origin, or 3) it is the initial pair

.
2) Every edge is a pair

where either: 1) the mode is fixed and we travel between
different target states of that mode: , and

or 2) the state is the same and the mode
changes: and .

An ordered pair indicates a directed edge from
to . Figs. 1 and 2 illustrate how an SRHSG may be constructed
for an example three mode system.

The SRHSG serves to limit the possibilities of control to a
finite set of actions. Nodes represent states at which the system
may decide to switch modes or track another state while in the
same mode. Edges represent: 1) tracking if the state changes and
the mode remains the same or 2) mode transitioning in the form
of switching if the state remains the same and the mode changes.

We note that we added the initial state and the des-
tination state (over all modes ) as nodes in the
SRHSG, but not as target states that the controller can use to
change modes. For example, for a two-mode system, there is no
edge from the origin in mode 1 [vertex ] to the origin in
mode 2 [vertex ].

Of course, from a given node, the choice of the edge to tra-
verse should not be arbitrary, and so we now impart costs on the
edges to resolve this difficulty.

We define a revised cost as the cost of applying
to track from according to

(4)

subject to (1), and . Here, is the ball of
radius about , and is the indicator function of the set

. Basically, the cost ceases to accumulate
once is “close” to in the sense that it is within a distance

of .

1Actually, we will only require that is “close” to a target state.

Fig. 1. Various trajectories originating at state in mode 1 and termi-
nating in mode 3. Solid lines represent the physical transition of the
state, and dotted lines represent a switch to the next mode, with the state fixed at
the time of the switch. The trajectory must pass through one of the target states
(in or ) in order to switch modes. The thick trajectory depicts a
sample trajectory in each representation.

Fig. 2. SRHSG corresponding to the target states and modes of Fig. 1. All target
states of the same mode have edges among them, and an edge exists between
the same state in two different modes. The trajectory of Fig. 1 is highlighted in
this figure, and the weight associated with each edge in this trajectory is labeled.
Note that the edges are only drawn bi-directionally for clarity and, in fact, two
edges, one in each direction, should be substituted for each bi-directional edge
since each of these edges will have a different weight.

We now define a weighting function for the edges
on by

(5)

where is termed the switching penalty. Fig. 2 illustrates
how the edge weights are applied to an example SRHSG.

Essentially, an edge for which cannot be tracked from
(because the origin is tracked instead) is given weight , which
is necessary to prevent the system from attempting to transition
to vertex if it actually tracks vertex instead.

B. Computing the Switching Path

For a given initial state , initial mode , and SRHSG ,
consider the class of control pairs that yield trajectories

and switching sequences having the following
properties.

1) Each switching state is “close” to a target state: if
is a switching state, there is a vertex in such that

.
2) Two consecutive nonzero target states are always unique:

for .
3) always tracks target states of the current mode: for

, we have .
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Since infinite-time tracking is allowed, the first condition yields
switching in finite time by allowing the system to switch when
the state is within the switching radius of a target state in .2
The second condition prevents the system from switching at the
same state consecutively. Finally, the last requirement states that
the controller may only track target states in , even though the
resulting switching state can vary slightly from this state.

Before detailing the computation of an optimal , we as-
certain some useful properties of the established framework.

Proposition 2: Fix the set of target states between all
modes . For all initial pairs and corresponding
SRHSGs , there is a positive time between switches after
the first switch; i.e., for all .

Proof: By the finiteness of the number of modes and target
states, there exists a minimum positive tracking time

Clearly, for , and it is independent
of the initial pair.

The existence of a minimum dwell time (after the first
switch) is interesting because it precludes the possibility of
generating an infinite number of switches in finite time, even if
the switching penalty is set to zero.

Proposition 3: Any control pair resulting in a finite cost
must result in a finite number of switches.

Proof: If there are an infinite number of switches, then
, which is a contradiction.

Lemma 3 is important because it asserts the existence of a
final operating mode. If we constrain the system to terminate in
a final operating mode , then computing an optimal sequence
of vertices to track from to is simply a matter
of applying a shortest path algorithm, which conventionally re-
duces to a linear programming problem [7]. This optimal list
of vertices, termed the switching path, is the acyclic finite path
of least cost between these vertices [7]. We write the switching
path as a tuple of pairs
for some .

We note that by appending the SRHSG with a terminating
node that connects without cost to all nodes of the form ,
the system will always terminate in an optimal final mode. In
this paper, we do not append the SRHSG with a terminating
node because, in some applications, it may be desirable to termi-
nate in a pre-specified operating mode. To this end, we assume
that the final operating mode is specified. If the final mode is
not a constraint, then we assume that is optimal.

C. Computing and Applying the Control Law

Application of the SRHSG methodology in practice is fairly
straightforward, and we give a brief review of the algorithm
here. First, construct a partial SRHSG that contains only
target states and edges that appropriately connect them.
Given an initial mode and state and a final mode
and state , append the with these vertices, com-
pute the edge weights using , and find the optimal switching

2This motivates a choice for that is small enough to allow for accurate
tracking, but not so small that tracking is made unnecessarily difficult by the
effects of noise.

path using a shortest
path algorithm.

After the switching path is known, the control is com-
puted as follows. Apply the subsystem controller to track
the first target state in the switching path. Once is tracked,
switch to the next specified mode and track the subsequent
target state . Repeat this process until the origin is asymptoti-
cally tracked in the final operating mode . An example for com-
puting the SRHSG offline and efficiently storing the switching
path in memory for online reference will be presented later in
the DISC engine application.

D. Stability and Robustness

Though a closed-loop system controlled using the SRHSG
scheme results in the state converging to the origin, it may not
be Lyapunov stable. For example, consider a switched system
with two modes controlled using a single target state. For a mode
switch to occur, the system must track that target state, regard-
less of how close the initial state is to the origin.

An applicable notion of stability in the context of SRHSG can
be given as follows.

Definition 2: System (1) with state and pair is stable
along a switching path if and,
for each , the system given by (1) with state , fixed mode

, and feedback control is
locally asymptotically stable with respect to .

In general, one can prune edges from the SRHSG so as to
only allow transitions that satisfy Definition 2.

Since SRHSG effectively fixes the switching path, the
above definition essentially asserts that the robustness of the
SRHSG methodology is tantamount to the robustness of the
subsystem controllers and the size of the switching regions.
Smaller switching regions allow for more accurate tracking,
which yields higher performance when model uncertainty and
disturbances are negligible. As long as the switching regions
about the target states are tracked, convergence is guaranteed.

E. Convergence With Optimal Subsystem Controllers

In this section, we show how uniformly increasing the density
of the target states impacts the overall control law when the sub-
system controllers are optimal. Though the results of this section
do not impact a practical application of SRHSG, they do justify
its use in an optimal control setting.

Let Assumptions 1–3 hold and set the switching radius
.3 For an initial pair , let be the set of all control

pairs satisfying the following.
1) Switching states are admissible: .
2) No Zeno effects: .
3) Optimal tracking of switching states: for

.
4) Finite cost: .
5) System tracks the origin if that is optimal: if

, then ,
where is the trajectory resulting from applying the control
pair, are the switching instances, are the modes, and
is the cost. The last condition prevents the system from tracking

3We can set because optimality guarantees finite-time tracking be-
tween nonzero target states connected by a finite-weight edge.
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a nonzero state if tracking the origin results in the same or a
better cost. The condition is hardly restrictive as it merely re-
moves some nonoptimal controls. Consequently, if ,
then for all . It is also important to note that no
predefined target states are involved in these control laws.

Although we do not make any statements about the existence
of an optimal control law in , we do prove that there exists an
SRHSG that yields a performance that can arbitrarily approxi-
mate or even surpass the quality of any control pair in .

First, we construct a sequence target state sets that become
increasingly dense. Let denote a sequence of target states
between modes and with the following properties.

1) Increasing density: for each , there exists a
such that .

2) Target states are not removed upon refinement:
.

Denote the corresponding SRHSG sequence as .
Theorem 1: Given a control pair that results

in a cost , there exists a sequence of control pairs ,
corresponding to the sequence , yielding costs such
that .

The Proof of Theorem 1 as well as the proof of corollary
below are provided in the Appendix.

Corollary 2: Given a control pair that results
in a cost , there exists a sequence of control pairs ,
corresponding to , yielding costs such that

with strict inequality if is nonoptimal.
Noteworthy in the Proof of Corollary 2 is that by simply in-

creasing the density of the target states, the resulting control law
will eventually satisfy these conditions.

IV. SUBOPTIMAL CONTROL OF HOMOGENEOUS SWITCHED

SYSTEMS WITH UNBOUNDED SWITCHING REGIONS

In this section, we relax the constraint that a switch must
occur in a bounded region of the state space while maintaining
the objective to control mode switching for optimal perfor-
mance. Such a scenario is typical if the individual modes
correspond to multiple fixed structure controllers.

Of course, the application of a finite number of target states in
an unbounded set is not sufficient to cover the set. We mitigate
this issue by imposing the following properties on and .

1) .
2) for some .

Switched linear systems with quadratic performance costs fall
into this class of systems with . We must also apply the
following assumption about the subsystem controllers.

Assumption 4: For all and
.

If the subsystems are homogeneous, then it is fairly natural
to expect the subsystem controllers to be homogeneous as well.
Therefore, we let this assumption hold for the remainder of this
section.

Using such preconstructed controllers, we seek to provide a
suboptimal solution for the following problem: given an initial
state and initial operating mode , find a control pair
that minimizes (3).

A. Switching States and the DRHSG

Though the controller architecture in this section applies the
same idea of allowing switching at only a finite set of states,
we limit our choice of target states to within a bounded set of
the origin. We then leverage homogeneity to scale the states to
provide an infinite set of target states while using a finite amount
of memory.

Let be the unit sphere in and choose a set of distinct
states that satisfy the following.

1) and for .
2) States are separated by a distance for all

.
The ’s are called the base states for the system, and they will
be used to generate an infinite set of target states.

Also, choose a set of positive scalars4

bounded by a constant , and define the set of dynamic target
states (DTSs) for the switched system as

Essentially, the DTSs are positively and negatively scaled copies
of the base states that are contained in the open ball

. The DTSs are the states that will scale to act as target states.
Definition 3: For a given initial mode and state , the

dynamic robust hybrid switching graph (DRHSG) is the graph
where the vertices and edges satisfy the fol-

lowing.
1) Every vertex is a pair where either: 1) is

any mode and is a DTS; 2) is any mode and ; or
3) it is the initial pair .

2) Every edge connects the initial state to a DTS:
for each mode and DTS

.
The DRHSG is far simpler than the SRHSG because, as it will
be shown, homogeneity reduces the problem of computing a
switching path to that of simply mapping a point to the unit
sphere to a DTS in . The DRHSG will scale with each switch.

Finally, define the weighting function on according to
(5) with the following modification: to enforce homogeneity, the
switching penalty is , where . Since and

are homogeneous, is homogeneous.

B. Computing the Switching Path

As with SRHSG, we seek to use a fixed finite set of target
states to reduce the difficulty of computing a suboptimal control
pair to a linear program. To this end, for a given initial
pair , we consider the class of control pairs that
yields trajectories and mode sequences having
the following properties.

1) Each switching state is “close” to a DTS scaled by the
previous switching state: is such that there
exists a DTS with .

2) Two consecutive nonzero switching states are always
unique: for .

3) always tracks DTSs of the current mode: for
.

4In general, we could associate a different set of scalars with each base
state , but for ease, we use the single set of scalars .
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Fig. 3. How the DTSs scale after a switch.

Assuming for a moment, the first requirement means
that, from a switching state , the system may either
track the origin or switch at one of the DTSs scaled by the pre-
vious DTS (since when ). Fig. 3 illustrates
the requirement, which preserves homogeneity at each stage of
the system’s evolution. Since infinite-time tracking is allowed,
switching in finite time is achieved by allowing the system to
switch when the state is within a scaled factor of the switching
radius from a DTS (again, to preserve homogeneity). The final
requirement states that the controller tracks only the DTSs of ,
even though the actual switching state may vary slightly from
this state.

To compute the optimal switching path, we notice that if we
start at a base state , then once we switch modes at a DTS

(or ) and rescale the DTSs by (same as scaling
by ), we are simply at a scaled base state (or )
with the new set of DTSs given by . By homogeneity, in
order to compute an optimal switching path, we need to only
know the optimal DTS to track from each base state.

Let be a base state. From , we can track any DTS in any
mode. For now, assume that we always apply an optimal mode

for tracking; i.e., satisfies for
all , and we use the controller for tracking. We can
express optimal cost from as

where denotes the cost-to-go from the DTS .
If the optimal cost of each DTS were known, the optimal cost

from each base state would then be known as well by homo-
geneity . Writing this relationship for
all DTSs, we arrive at the following linear program that yields
the optimal cost from each base state subject to a free initial
mode:

subject to

From any base state, the optimal DTS to track is given by

where , the cost-to-go from the DTS , is known since
it is simply a scaled cost of a base state. We note that it is im-
plicit in the above formulation that we know the optimal mode
to apply.

Now, given any initial state with and an initial
mode , the optimal DTS to track is simply given as

By homogeneity, we can extend both functions to by a
simple scaling

C. Computing and Applying the Control Law

Application of DRHSG in practice is similar to the applica-
tion of SRHSG. From an initial state in mode , track the
DTS . Once is tracked, track the scaled DTS

in the optimal operating mode. Repeat this process.
We apply the notion of stability given in Definition 2 to

DRHSG.

D. Convergence With Optimal Subsystem Controllers

In this section, we show how uniformly increasing the density
of the DTSs impacts the overall control law when the subsystem
controllers are optimal. Though the results of this section do not
impact a practical application of DRHSG, they do justify its use
in an optimal setting.

Let Assumptions 1–3 hold, set , and choose some
(corresponding to the bound on the ’s). For a given pair

, let be the set of control pairs that satisfy
the following.

1) Switching states are bounded in scale from one an-
other: for some such that,

and for
some .

2) No Zeno effects: .
3) Optimal tracking of switching states: for

.
4) Finite cost: .
5) The system tracks the origin if that is optimal: if

, then
where is the trajectory resulting from applying the control
pair, are the switching instances, are the modes, and

is the cost. The first condition bounds the scale between
switching states, which is necessary for approximating the tra-
jectory. The purpose of the final condition is the same as that
given in the SRHSG case. It is also important to note that a con-
trol pair in is not limited to tracking predefined DTSs.

First, we construct a sequence of DRHSGs corresponding to
DTS sets that grow increasingly dense. Construct the sequence

so that it has the following properties.
1) Increasing density: for each , there exists an

so that .
2) Target states are not removed upon refinement:

.
Denote the corresponding DRHSG sequence as .

Theorem 2: Given a control pair that results
in a cost , there exists a sequence of control pairs ,
corresponding to the sequence , yielding costs such
that .

Authorized licensed use limited to: MIT Libraries. Downloaded on March 24,2010 at 17:22:11 EDT from IEEE Xplore.  Restrictions apply. 



RINEHART et al.: SUBOPTIMAL CONTROL OF SWITCHED SYSTEMS WITH AN APPLICATION TO THE DISC ENGINE 195

The Proof of Theorem 2, as well as the corollary below are
provided in Appendix.

Corollary 3: Given a control pair that results
in a cost , there exists a sequence of control pairs ,
corresponding to the sequence , yielding costs such
that with strict inequality if is nonop-
timal.

Once again, by simply increasing the density of the target
states in a uniform manner, the performance of the control law
converges to the optimal law in (if one exists).

V. INDUSTRIAL APPLICATION OF S/DRHSG

Computing the optimal control pair for an SRHSG/DRHSG
requires the computation of the edge weights of , as well as
the switching path, which requires a large amount of computing
effort for most systems. To overcome this hurdle, we leverage
the granularity of the SRHSG/DRHSG construction by using
the fact that small shifts in the initial state should not impact the
switching path.5 For SRHSG, we quantize the state space and
store in each quantization region the target state to track. For
DRHSG, only a quantization of the unit sphere is necessary. In
either case, once a switch occurs, the controller references the
memory to determine the next target state and mode. A concrete
example of storing the switching path in memory is given in the
application of SRHSG to the DISC engine.

An advantage of the SRHSG/DRHSG methodology is the
separation of design between the subsystem controllers and the
switching law. Although the optimal convergence properties
discussed in the previous sections require certain optimality
and continuity conditions, a practical application requires
only that the subsystem controllers satisfy Assumption 1. This
allows for the use of a number of design techniques in the
construction of the subsystem controller. This is in contrast to
the approaches described in [2], [3], and [8] that compute the
subsystem controllers as part of the design process.

Another interesting feature of SRHSG/DRHSG design is that
the system’s model is not required by the design process so long
as the states can be measured because the switching path com-
putation only requires the tracking costs between system states.
These costs may be found analytically, by simulation, or even
by direct experimentation on the system. This property is espe-
cially useful for applications where the subsystem controllers
are highly complex or, perhaps, given by a third party and not
fully modeled.

Finally, the performance of SRHSG/DRHSG may be scaled
according to the resource constraints on the controller hardware.
By simply increasing the number of switching and quantiza-
tion regions, higher performance is achieved at the expense of
memory consumption. Clearly, the reverse holds as well. In fact,
the only design parameters for SRHSG and DRHSG are the lo-
cations of the target states and quantization regions.

VI. APPLICATION OF SRHSG TO THE DISC ENGINE

The DISC engine (see Fig. 4) is an example of a modern com-
plex engine where the complexity in control lies in the inclusion

5This can be formally proven if Assumption 2 holds.

Fig. 4. DISC engine.

of two operating modes (homogeneous and stratified) that ac-
commodate tradeoffs in fuel economy, power output, and emis-
sions.

In homogeneous operation, fuel is injected during the intake
stroke, providing an approximately uniform air–fuel mixture
distribution throughout the cylinder. The characteristics of the
engine are similar to that of the typical port-fuel injection (PFI)
engine in terms of performance and emissions, and the AFR is
normally maintained around the stoichiometric value of 14.6 : 1.

In the stratified operation, fuel is injected late into the com-
pression stroke, forcing the fuel, under the influence of a spe-
cialized piston head, to be concentrated about the spark plug
at the time instant coincident with the spark. The typical AFR
for this mode of operation is about 35 : 1, significantly higher
than that of the PFI engine. However, in this operating regime,
oxides of nitrogen (NO ) are not efficiently converted by con-
ventional three-way catalyst (TNC) and must be stored by an
additional specialized catalyst, called the lean NO trap (LNT),
which, over time, becomes saturated and must be regenerated by
temporarily switching the engine into the homogeneous regime
and then operating at a rich AFR.

The combustion mode to use depends on the amount of torque
demanded by the driver, engine speed, and catalyst state. When
torque demands or engine speeds are high, the engine should be
operated in homogeneous mode. When the demanded torque or
engine speed is low to moderate, and the LNT is operating effi-
ciently, stratified operation should be used to improve efficiency.
Ultimately, a high-level controller uses the torque demanded by
the driver and the catalyst’s state to determine the appropriate
AFR to apply. The purpose of the DISC engine controller is to
track the torque and mode reference so as to guarantee conver-
gence to these set points while assuring high transient perfor-
mance.

A. Nonlinear Speed-Dependant DISC Engine Model

In this paper, we treat a slightly simplified version of the non-
linear DISC engine model presented in [9] that ignores external
exhaust-gas recirculation . Since closing the EGR
valve is a practical and often used measure to deal with com-
bustion stability limits during mode transitions, this assumption
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is reasonable. The form of the nonlinear speed-dependent DISC
engine model is

(6)

where the control inputs to the system are the mass flow rate of
air through the throttle , the fueling rate , and the spark
timing .

The system outputs are the intake manifold pressure (IMP) ,
the AFR , and the brake torque .

The following are internal parameters for the model:
1) engine speed that is treated as a known (potentially

varying) parameter;
2) mass flow rate of air into the cylinder that depends on

and ;
3) coefficients and that depend on and ;
4) pumping and frictional torque losses and that depend

on and ;
5) maximum-brake-torque (MBT) spark timing that de-

pends on and ; maximum torque (and, hence, max-
imum fuel efficiency) is achieved when is equal to .

Some of the above parameters also depend on the combustion
mode , which is also a control input. In this paper,

indicates stratified mode, and indicates homoge-
neous mode. The details of this model may be found in [9].

B. Parameter Constraints and Control Objectives

In both operating modes, there exist actuator saturations
and other practical limits that constrain the ranges of to

to , and to ,
which is conventional for . To avoid misfires and excessive
emissions caused by too rich or too lean an air–fuel mixture
is specially bounded to a range that depends on the combustion
mode : .

The goal of DISC engine control is to optimally track a given
output reference according to

(7)

The last reference parameter gives the desired difference
between and to balance fuel efficiency and emissions.
In reality, is not a fed-back quantity and, rather, a model
of it as a function of and [9] is used. Consequently,
we regulate for a given set of these parameters by
setting to the correct timing. In this paper, is fixed to a
small positive constant.

For a fixed engine speed, these three references in combina-
tion yield the unique operating mode reference and IMP
reference required for tracking the triplet. As varies,
varies accordingly. Since is relatively constant over a small
time interval and since enters affinely in (6) for a fixed ,
solving for is straightforward.

C. DISC Engine Subsystem Controllers

As is the key system state in the model, the target states
for the SRHSG are placed at various IMP pressures. In order
to change modes, the subsystem controllers must track one of
these target states . Consequently, while in a mode of oper-
ation , the reference to the subsystem controllers will
take the form where the target state may not
be equal to . For simplicity, we use to denote the pressure
to track, which may be a target state or the reference .

We now consider the construction of the subsystem con-
trollers for each operating mode of the DISC engine. First,
we observe that there is a nice separation in (6) between the
control inputs that impact and those that impact and .
Therefore, we consider the design of controllers for tracking
and separately.

1) IMP Controller: Discretizing and linearizing (6) about a
fixed engine speed, we arrive at the following state equation:

where the dynamics of the throttle do not depend on the com-
bustion mode. Since the range of is bounded,6 it is natural to
consider the application of a discrete-time bang–bang control.
Let be the bang–bang control for throttle flow used
to track a given IMP reference .

Of course, as represents the desired air flow through the
throttle, is actually a reference for another controller. To
provide a reference trajectory that is practical for tracking, a
low-pass filter is applied to as follows:

Let be the filtered version of .
In simulation, we assume that the throttle is able to accurately

track the slowly varying , and to account for modeling er-
rors, we apply a simple antiwindup integrator scheme. Since the
remaining portions of the DISC engine controller only require
that the IMP is tracked reasonably well, any appropriate stock
controller for this portion of the control system may be equally
substituted.

2) Torque and AFR Controller: Over a short time period,
and may be considered constants. Now, due to constraints
on and , the reference pair may not be achiev-
able, forcing us to solve the following nonlinear constrained op-
timization problem

(8)

subject to the constraints on the input and output parameters.
In this section, we present a simple approach to solving this
particular problem by means of a fast quantization search that
is intended to be performed online.

We observe that by fixing and is known, and so
the range for the allowable fueling rate can
be computed as follows: and

.

6 is always fixed at 0, and depends on the IMP.
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For in this range, is uniquely defined, and so we can
compute the value of that minimizes the error in using the
following algorithm, which we denote by :

1:

2: if then

3:

4: else if then

5:

6: else set to the lowest extreme

7:

8: end if

Here, and are the minimum and maximum desired spark
timings, respectively. Essentially, tries to reverse solve for
the difference required to optimally match
the reference torque while meeting the constraints on . If the
optimum cannot be obtained due to the condition ,
then depending on the sign of should be set to one of its
extremes.

To compute the optimal , we apply an iterative search that
essentially uses a quantization on the range of to find the
pair that best minimizes (8). Let
be given by the following algorithm:

1: Compute and

2: for all do

3: Choose points , with
, and .

4: for all do

5:

6: end for

7: Let correspond to the pair that best
minimizes the output error (8)

8: and

9: end for

10:

is the number of iterations and is the
number of grid points along the fueling rate to apply during iter-
ation . Essentially, after the first stage of the search completes,
the algorithm refines the search, using the grid points along
adjacent to the optimal value as the new boundaries and
for the next iteration. This smaller region is quantized as before,
and the search proceeds. Fig. 5 illustrates the algorithm.

The number of required searches in is simply
. It is recommended that higher resolutions are ap-

plied first so that “good” center points
are applied to the next stage. In practical tests, the accuracy

Fig. 5. Iterative quantized search for the optimal pair . The range of the
fueling rate is quantized to points at which the optimal is computed. The
best point becomes the center point of the next stage of the search.

Fig. 6. Placing the switching states along the common regions of the IMP pres-
sure of each mode.

achieved by this iterative approach outperformed that of a
single-stage search using significantly more total grid points.

3) Subsystem Control Law: Given a reference
, let

be the subsystem control law that drives the IMP to while
minimizing the AFR and torque tracking errors.

Let be the cost (4) of tracking the refer-
ence in a mode starting with an IMP of . If

, the cost is clearly finite. Otherwise, if is a target
state, the cost is finite since we are able to (closely) track in
finite time before switching.

D. Applying SRHSG to the DISC Engine

Assume for now a fixed engine speed . In the in-
terval of the IMP that is common to both operating
modes, choose a finite set of pressures to act as target states
for the controller, as illustrated in Fig. 6.

Because the DISC engine is a constrained (as well as
nonhomogeneous) system, SRHSG is used. We apply it as
follows: given an initial mode and state , as well
as a reference , compute the corresponding ref-
erence mode and reference IMP and search
for the target state that provides the minimum cost

at which
to switch.

To simplify the online use of this scheme, we first force
to be as high as possible in the stratified mode and as close
to stoichiometry as possible in the homogeneous mode. This
simplification allows us to further reduce the reference to the
pair .

Now, for each mode , let and be finite sets of
quantization points for the IMP and torque. For a given fixed
engine speed and for any two modes and , associate
to each pair the optimal state to track, which may
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be a target state or the reference IMP . We denote this
mapping as and call the switching table. Its use
will be explicitly detailed later.

From a practical standpoint, only one switch is necessary or
desirable while tracking a reference in another mode, and so we
know that is tracked if . Consequently, and are
empty, which lessens the memory requirements of . A simple
compression scheme for reducing the memory requirements of

and is presented in [10]. The compression scheme relies
on the fact that many adjacent quantization points along the IMP
are mapped to the same target state.

Of course, if will change. However, we will
show in simulations that if the target states stored in and

(which are computed using ) are applied, the resulting
system performance is still acceptable.

E. Putting It Together

Algorithm 1 is the full DISC engine controller.

Algorithm 1 Full DISC Engine Controller

1: Read the reference

2: if the reference has changed since the last time step then

3: tracking false

4: Determine from

5: end if

6: Compute from and

7: if then

8:

9: else {a change of modes is required}

10: if tracking AND ( has tracked or overshot ) then

11:

12: tracking false

13:

14: else if NOT tracking then

15:

16: tracking true.

17: end if

18: end if

19:

For a constant reference and an initial , the controller
first determines if it can track the reference or if it must change
modes. If a change of modes is necessary, the controller ref-
erences the table to retrieve a target state. A change of modes
results if the target state is tracked.

In the implementation of the controller, we use a
flag and check for overshooting. These measures ensure that

Fig. 7. Simulation of the engine output. Dashed lines are the references, solid
lines are the responses, and dotted lines represent constraints. The thick portions
of the IMP represent the period over which the IMP is tracking a target state.

the switching table is only applied if the reference changes
or if the mode changes, at which time the next target state in
the switching path is tracked. Overshoot detection is neces-
sary because the system may overshoot the target state within
the sampling period of the discrete-time controller. Since an
overshoot implies the state was tracked within the period, the
system should switch. Waiting for to settle will result in
poorer performance.

F. Simulations

The parameters for the simulation and the controller were as
follows.

1) Target states for are spaced 2 kPa apart.
2) Quantization regions along and are centered 3 kPa

and 2 Nm apart, respectively.
3) A three-stage search is used in with 12, 8, and 5

search points applied at each stage.
4) The switching table was designed using

r/min, and it uses 29.6 kB of memory.
5) The edge weights of the SRHSG were obtained through

simulation of the closed-loop system.
6) and kPa.
7) The controller sampling period is 10 ms.
8) Torque error is penalized 100 times more heavily than AFR

error by a weighting of the norms in (7) and (8).
The last condition indicates that the system always operates in
torque-tracking mode [9]. Convergence to the AFR reference is
guaranteed in steady state. It took less than 1 h to generate the
switching table using a 2.4-GHz PC.

Fig. 7 shows the simulated response of the DISC engine to
a series of reference torques. To illustrate the impact of engine
speed, is varied throughout the simulation.

Suppose and change at some time . The controller
first determines . is repeatedly computed as a func-
tion of the references and . If , then there is no
switching, and the controller simply tracks . If

, then a switch must occur, and the switching state is com-
puted at time does not change with . Once ,
the system switches modes , and is tracked.
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Fig. 8. Simulation of the control inputs. Solid lines are the responses, and the
dotted line is .

In the figure, the is made bolder over time periods where it
is tracking .

In a fixed mode of operation, tracking is fairly accurate.
As varies, varies accordingly so that the triplet

can be tracked. The subsystem controllers
minimize the difference of and from and ,
respectively.

In Fig. 8, it can be seen that does not vary too quickly,
a consequence of applying a low-pass filter on the bang–bang
controller output as a way to account for the throttle actuation
dynamics. is also always contained in its appropriate range
and, in steady state, it is approximately 5 below . There is
some chattering in the signal, which is a consequence of the
quantized search in .

VII. CONCLUSION

In this paper, new methods for controlling classes of switched
systems with controllable subsystems have been presented. It
has been shown that the SRHSG/DRHSG switching schemes
allow for the design of computationally practical switched
system controllers that are both stabilizing and approximately
suboptimal. Several advantages to SRHSG/DRHSG for indus-
trial applications include a modular design that separates the
subsystem controller design from the switching logic, a robust
framework that guarantees convergence and stability along
the switching path, and the ability to scale performance with
resource requirements.

A successful application of SRHSG to the DISC engine has
been presented. Although the memory requirements of the con-
troller were not significant, the system is able to track references
quickly and accurately. This is due in part to the ability to de-
sign complex subsystem controllers separately from the mode
control logic.

APPENDIX

Proof of Theorem 1 and Corollary 2: The Proof of The-
orem 1 is given below. In the proof, denotes the ball of
radius centered at .

Proof: We examine the case only. Choose
. First, we find a neighborhood of the origin so that

the cost of applying any single-mode infinite-horizon law
is less than . For all , the continuity of implies

exists and is finite over any bounded neigh-
borhood of the origin. Let be such that
satisfies for all modes .

Let be a time instant such that remaining given cost at
this time , let be the time instant such that

, and let be the time instant for which
. Define , and let

. Note that satisfies the
three conditions listed above. Also, for , but by
the construction of , if , then for all .

Let

iff

yield the target state in that best approximates , using 0 if
and only if .

By the uniform continuity of over any bounded set, there
exists a such that for all modes and states

for all and
. Choose an integer .

By optimality, for all such
that . By continuity, there are open neighborhoods

and about and , respectively, such that for any
state and (so
that rather than 0 is tracked by the subsystem controllers).
Let be such that and for
all such that , and choose an integer

.
For some , we construct a control pair

that “follows” the given trajectory in the fol-
lowing sense.

1) for .
2) For , and choose a mode that

can be switched to from .
An upper bound for the difference between and is

The proof of Corollary 2 is as follows.
Proof: By Theorem 1, there exists a sequence

whose costs converge to . Let , and
let be the resulting cost sequence. As is a decreasing
positive sequence, it converges. Since , we have

. It is straightforward to prove the remainder of the
claim.

Proof of Theorem 2 and Corollary 3: The Proof of The-
orem 2 is given as follows.
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Proof: We examine the case for only. Choose
. Define and as they are defined in the Proof

of Theorem 1, but noting that and
follows the restrictions defined by the class . Let be
the sequence associated with , and set so that

. Once again, our definition of ensures
for , and if , then for all .

For a given , we attempt to construct a control pair
satisfying the following.

1) for ; is arbitrary.
2) for .

Now we must determine a lower bound such that for all
, such a pair exists.
For , let for a matrix satisfying

. If , then it can be
shown that (see [11] for a proof of this result)

This inequality is important because it means that is close
enough to so as to allow us to make the difference

arbitrarily small by increasing . Let .
Since , for an integer satisfying

gives the following for .
1) .
2) .
By the uniform continuity of over the compact set

, for all modes there exists a such that for all
and for all

and . Let .
By homogeneity and optimality,

for all such that . By continuity, there are
open neighborhoods and about and

, respectively, such that for any state
and (so that rather than
0 is tracked by the subsystem controllers). Let be such that

and for
all such that , and choose an integer

.
For , an upper bound for the differ-

ence between and is

The proof of Corollary 3 is similar to that of Corollary 2.
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