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Abstract—In this paper, we analyze and derive conditions for
stability of a feedback system in which the plant and feedback
controller are separated by a noiseless finite-rate communication
channel. We allow for two deterministic classes of reference
inputs to excite the system, and derive sufficient conditions for
input–output (IO) stability as a function of the encoding strategy
and controller. We first construct an encoder as a quantizer that
can have infinite memory and can be time-varying, in that the
strategy it follows to allocate a total of bits to its inputs, is a
function of time. This construction of the quantizer leads to the
result that the set of allocation strategies that maintains stability
for each class of reference signals is convex, allowing the search
for the most efficient strategy to ensure stability to be formulated
as a convex optimization problem. We then synthesize quantizers
and time-varying controllers to minimize the rate required for
stability and to track commands. Examples presented in this
paper demonstrate how this framework enables computationally
efficient methods for simultaneously designing quantizers and
controllers for given plants. Furthermore, we observe that our
finite memory quantizers that minimize the rate required for sta-
bility do not reduce to trivial memoryless bit-allocation strategies.

Index Terms—Bit-allocation strategy, input–output (IO) sta-
bility, quantized control, transmission rate.

I. INTRODUCTION

T HE classical control paradigm addresses problems where
communication between the plant and the controller is es-

sentially perfect. Recently, problems in control over networked
systems, whose components are connected via noisy communi-
cation links that may also induce delays and have finite rate con-
straints, are emerging. Applications include remote navigation
systems (deep-space and sea exploration) and multirobot con-
trol systems (aircraft and spacecraft formation flying control,
coordinated control of land robots, control of multiple surface,
and underwater vehicles), where robots exchange data through
communication channels that impose constraints on the design
of coordination strategies.
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Fig. 1. Simple feedback network.

We consider the control system shown in Fig. 1. In this
system, the output of the plant is separated from the con-
troller by a finite-rate noiseless channel. We assume that the
plant output is encoded by some operator before entering
the channel, and decoded by another operator after exiting
the channel. and work together to reduce the deleterious
effects of the channel. The system shown in Fig. 1 has the
following model:

(1)

where , and .
Previous works mainly focus on some notion of state sta-

bility under finite-rate (or countable) feedback control, where
the only excitation to the system is an unknown bounded initial
state condition [1], [3]–[5], [7]–[9], [11], [12], [14],
[15], [19], [20], [22]–[24]. This research aims at finding con-
ditions on the channel rate that will guarantee that the state of
the system (or some function of the state) approach the origin
or remain bounded as time goes to infinity. More recent works
address synthesis of quantizers and/or performance limitations
under finite-rate and finite-capacity feedback control [13], [23],
[10], [16], [17].

In contrast, we allow for certain classes of inputs to excite
the system and study input-output (IO) stability under finite-rate
feedback. Our approach introduces a computational method-
ology for analysis and synthesis of quantizers and controllers
( , and ) to meet various control objectives.

0018-9286/$25.00 © 2008 IEEE
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Another important distinction between our work and previous
studies is that we only consider encoders that have memory
but do not have access to the plant input and cannot compute
this control signal. When encoders have access to the control
signal or can compute the control signal exactly, the plant output
signal that must be communicated down to the decoder can be
described by a finite number of parameters. More concretely,

. Therefore, the only quan-
tity unknown to and is , which is just a vector of num-
bers that belong to a bounded set in . Therefore, assuming
is observable, the encoder can compute after time steps and
start transmitting through the channel down to the decoder,
at a rate of bits per time step. Consider an encoder that allo-
cates bits to the th component of , such that ,
while the decoder continues to update its approximation of
and . The error vector then evolves as follows:

where is the estimate of at time . If we assume that is
diagonal,1 we get the following upper bound on the magnitude
of each error component:

where , for . It is easy to see that
if , for , which implies
that , then the system is asymp-
totically stable, because is assumed to be stabilizing.

On the other hand, when the encoder does not have access to
any signal in the loop except for the plant output, the unknown
quantities characterizing are and , which
are an infinite number of parameters. From the encoder and
decoder’s perspective, the output of the plant is suddenly
very “rich.” For any fixed , the decoder must approximate

. These approximations cannot converge to their
actual values, and the best strategy that and can employ
is to improve the approximations over time by allowing
to allocate more and more bits to them (this motivates our
construction of the quantizer presented in Section II-A). The
system boils down to a quantized feedback system, which is
difficult to analyze, and where the usual tradeoff of delay versus
accuracy holds.

We conclude this introduction with an overview of this
paper. In Section II, we describe our setup, introduce a new
parameterized class of encoders that have memory but no
access to the control signal, and formulate a stability problem.
In Section III, we derive sufficient conditions for finite-gain
stability for bounded and decaying classes of reference inputs.
In Section IV, we show that the set of stable bit-allocation
strategies implemented by our parameterized quantizers is
convex, enabling synthesis of such quantizers that achieve de-
sired objectives. In Sections V and VI, we design finite-memory
bit-allocation strategies and controllers that minimize the rate
required for stability and that track commands for different
plants. Finally, we conclude in Section VII.

1All results hold for general matrices as shown in [22].

II. PROBLEM FORMULATION

We study system (1), in which the channel encoder has
memory and no access to the control input. is a limited-rate
quantizer that has infinite memory and is time-varying in that
the strategy it follows in allocating a total of bits to all of
the inputs up to time is a function of (see Section II-A for
details). We assume that the channel can transmit bits in-
stantaneously with each use. The channel decoder computes
updates on the current and past values of and sends these
to the controller. is a causal linear time-varying system
described in Section II-B.

We define the closed-loop system to be IO stable if for all
, there exists a finite positive constant and a finite

constant such that . Here, we investigate
IO stability with respect to the following classes of reference
inputs .

1) Bounded Signals: , where is the class of
all signals that are bounded in magnitude by .

2) Decaying Signals: , where is the class of all
signals that are bounded by the positive decaying function

for all and , i.e., if , then
for all .

A. Limited-Rate Time-Varying -Quantizers

Before stating the problems that we are interested in
solving, we first define and model the parameterized class of
time-varying infinite-memory -quantizers.

We view the quantizer as a module that approximates its
input, which, in general, requires an infinite number of bits, with
a finite number of bits. Formally speaking, an -quantizer
with bit rate , is a sequence of causal time-varying operators,
parameterized by an infinite-dimensional rate matrix of the
form

...
...

...
. . .

. . .

where for all , and an infinite-di-
mensional positive-definite diagonal scale matrix

. The -quantizer saturates
to output , the th diagonal of , when its input

has magnitude greater than or equal to , i.e., when
. However, we denote the quantizer “valid” only

when for all , and define what the quantizer
does in this case below.

Let be the quantized estimate of at time . Then,
determines that at time , 1 bit is used to denote the sign
of , and bits are used to quantize the magnitude of to
produce . At time , an additional bits are used
to quantize the magnitude of to produce ; 1 bit is used
to denote the sign of , and bits are used to quantize the
magnitude of to produce , and so on. The accuracy of

is within of for all .
For the sake of analysis, the quantizer, the channel, and the

decoder can be broken down into the five steps at any instant
as shown in Fig. 2 when for . First,
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Fig. 2. Quantizer–channel–decoder operator at time .

the th component of the vector is scaled by for
, to produce , where , and

. The scaling by ensures
that . Then, each element of is converted into
its binary representation, i.e., a string of “0s” and “1s” in the
decimal-to-binary (D2B) converter. Next, each binary string is
truncated according to the bit-allocation strategy induced by .
Specifically, the binary string representing
is truncated to contain only its first bits. Note that

this truncation induces an error of at most in
magnitude for , i.e., .

As shown in Fig. 2, the truncated binary string is converted
back into its decimal representation, via the binary-to-decimal
module (B2D), to produce . Finally, is scaled by to pro-
duce , where . An upper
bound on the error between each input component and its ap-
proximate output is

. Stated differently, if for , then
there exists a with and

, such that

for all . For analysis, we augment the output of the quan-
tizer at time to be the vector of all estimates of from time
0 to time . We denote the augmented vector as as shown
below

...

...

We can then model the quantizer in its “valid” region as the
following sequence of time-varying operators:

where

...

and

. . .

. . .

. . .

. . .

with for , and
.
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Also

...

...

where such that .

B. Plant and Controller

We represent the linear time-invariant (LTI) causal system
and the causal linear time-varying controller as the following
matrix multiplication operators at any time instance :

...
. . .

. . .

...
. . .

Note that, with matrix as defined above, satisfies
where represents a linear time invariant

system given by

...
. . .

. . .

Fig. 3 illustrates the closed-loop system at time when the
quantizer is modeled as an endogenous disturbance as described
in Section II-A, with

...
...

From here onwards, we refer to as and
for an easier read.

C. Problem Statement

We are interested in solving the following problems.
1) Given , and a rate matrix , determine whether

there exists a set of scale matrices that maintain IO
stability and quantizer validity.

Fig. 3. Control system at time .

2) Given , and , characterize the set of all rate matrices
, such that the system is IO-stable and the quantizer is

valid.
3) Within the set of stabilizing rate matrices, find the min-

imum transmission rate of the channel.
4) For a given and , design and to minimize the rate

required for stability and to track commands in .

III. STABILITY ANALYSIS

A. Bounded Signals

In this section, we derive sufficient conditions for IO stability
when . Let , then it is
straightforward to show that . The
following theorem then gives sufficient conditions for IO sta-
bility and quantizer validity.2 Note that for a matrix

.
Theorem 3.1: Consider system (1) with . Let

, for a given rate matrix , and let . If
1) ;
2) ;

then there exists a constant scale matrix , such that
• (IO stability) ;
• (quantizer validity) .

Proof: Choose , which
is possible given the norm bounds on , and . Then

The last inequality comes from our choice of .
The stability condition in Theorem 3.1 is sufficient as we have

not yet proven that , for any , renders the system
unstable. We note that memoryless, time-invariant quantizers
are represented by an identity rate matrix multiplied by the value
of the fixed rate , which leads to the following corollary.

Corollary 3.1: Consider system (1) with . Let
, for a diagonal rate matrix , and let
. If

1) ;
2) ;

2One can add an exogenous input at the input of the controller and derive
sufficient conditions for external stability by computing transfer functions from

and to and (output of the controller). We omit the details here as the
analysis is straightforward.
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then there exists a constant scale matrix such that
• (IO stability) ;
• (quantizer validity) .

B. Decaying Signals

We now consider the case where , and derive suffi-
cient conditions for IO stability. We show that if and are
finite-dimensional systems, the conditions can guarantee that
the output signal decays exponentially over time. In this sec-
tion, both and are assumed to be finite-dimensional sys-
tems.

We know that with perfect feedback and a stabilizing ,
exponentially decaying reference signals generate system out-
puts that exponentially decay over time. We would like to gen-
erate the same types of decaying responses with finite-rate feed-
back, and thus consider the quantizer scales to be a de-
caying function of , i.e., ,
where and . The matrix will have

th diagonal equal to for , and the
quantizer is valid only if for all . Below we
state a theorem that states sufficient conditions for IO stability.
The details that lead to the derivation of the theorem and proof
are shown in part A of the Appendix.

Theorem 3.2: Assume that and are finite-dimen-
sional stable LTI systems, whose corresponding matrices (of
state-space descriptions) have spectral radii and , respec-
tively (both and have magnitudes less than 1). Denote
and as the th components of the im-
pulse responses of and , respectively. Given system (1),

, and a rate matrix , if
1) for all ;
2) for all ;
3) ;

then there exists a decaying scale matrix such
that

• (IO stability) ;
• (quantizer validity) .

IV. CHARACTERIZATION OF STABLE RATE MATRICES

We have shown that if for , then the
system is IO-stable for bounded and decaying inputs. This in-
equality can be written as a set convex constraints on the rate
matrix parameters. The following theorem shows this result.

Theorem 4.1: Let
,3 then for any

infinite-dimensional matrix , the condition
is convex in for any .

Proof:

, where . We now show that
is convex in , and thus, any nonnegative combination

of is convex. First, we recall that is a convex

3The “vec” operator on a matrix simply concatenates all the column to form
one large column vector.

function in . Let , where is
an appropriate row vector for . Note that

If we let , then we get that the stability condition
is a set of convex constraints on the infinite-di-

mensional vector . This result enables the search for the
most efficient quantizer to be formulated as a convex optimiza-
tion problem.

V. SYNTHESIS: MINIMIZING CHANNEL RATE

In this section, we synthesize -quantizers and time-
varying controllers for different plants to minimize the rate re-
quired for IO stability for . In particular, we set out to
solve the following problem:

(2)

s.t. (3)

(4)

where and (3) and (4) are stability
conditions. We make a few comments regarding our approach
to solve (2).

1) The -quantizer is described by an infinite number
of parameters as it has infinite memory. To make
things easily computable and more practical, we restrict
ourselves to finite-memory -quantizers, defined in
Section V-A, each of which is described by a finite number
of parameters.

2) The optimization problem (2) has constraints that are
nonconvex in both and , and therefore, is not
efficiently solvable. We propose an iterative algorithm,
described in Section V-B, that alternates between com-
puting a controller and quantizer. In each computation,
we solve a convex optimization problem subject to convex
constraints. We show that our iterative algorithm has a
nonincreasing cost, and therefore, converges to a local
minimum. This iteration is reminiscent of the D-K iter-
ation used to compute when modeling systems with
structured uncertainty [2], [21]. Numerical examples are
given in Section V-C.

A. Finite-Memory -Quantizers

We consider a special class of practical quantizers that have
finite memory and are periodic. Specifically, each value of
gets approximated by the quantizer for at most consecutive
time steps. In fact, for any gets approximated
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Fig. 4. Lifted closed-loop system.

for time steps, for . Moreover, the
bit-allocation strategy repeats every time steps. We call this
class of quantizers, “repeated-block” (RB) quantizers because
the structure of the rate matrix is block diagonal as shown in the
following:

Each block is the following matrix:

...
...

. . .

It is useful to highlight that RB quantizers are time-invariant
operators in “lifted” coordinates, where each time step in the
lifted coordinates is equivalent to time steps in original coor-
dinates. We define the following lifted signals for :

...

...

...

The model for a repeated-block quantizer in the lifted
coordinates, denoted , is

where, written as a matrix multiplication operator,
and evaluated at . The

closed-loop system in lifted coordinates is shown in Fig. 4.

After lifting by a factor of , the plant is LTI with
inputs and outputs and the controller becomes LTI with

inputs and outputs. This enables us to use
existing control tools for LTI systems to synthesize .

We state sufficient conditions for IO stability for bounded
signals in the lifted coordinate space with arbitrary linear time-
varying controllers, but first state the following Lemma whose
proof is straightforward and left to the reader.

Lemma 5.1: Let be any causal LTI single-input–single-
output (SISO) system, and is a lifted version of with lift
factor . Then, for any .

Theorem 5.1: Consider system (1) with an arbitrary time-
varying controller lifted by a factor of , with . Let

, for a given repeated-block rate matrix ,
and let . If

1) ;
2) ;

then the original system is IO-stable.
Proof: If conditions (1) and (2) hold, then by invoking

Lemma 5.1, we get that , and
. From Theorem 3.1, we then get that

the original system (unlifted) is IO stable.

B. Iteration

The iteration algorithm proposed here efficiently com-
putes a locally optimal controller and finite-memory RB quan-
tizer that solves (2). The algorithm is described as follows. Note
that .

Iteration Algorithm

1) For a given plant , pick any stabilizing controller
. Pick a convergence threshold and set
.

2) Solve the following problem to construct :

s.t.

(5)

Note that the above problem has constraints that are
convex in all unknown parameters as shown in
Section IV and is, therefore, efficiently computable
using any standard convex optimization software.
If and if then STOP. Else
goto Step 3.

3) Fix and compute new controller by solving

s.t. stabilizing

Apply “Q-parameterization” or “Youla
parameterization” to parameterize all stabilizing
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controllers and convert the above problem to a convex
optimization problem of the form

s.t. LTI stable rational and proper (6)

where , and are derived from the system
to equate to . Note
that there is a one-to-one relationship with and

given by the parameterization. We omit details as
this is a common procedure and refer the reader to [6]
and [18] for details. Note that (6) is again efficiently
computable using any standard convex optimization
software.

4) Increment by 1 and goto Step 2.

We demonstrate how we use MATLAB’s “fmincon.m” func-
tion to solve (5) in part B of the Appendix.

The above algorithm continues to iterate between the two op-
timization problems until both costs fail to change more than a
given . This iteration will converge to a local minimum rate re-
quired for stability as described in Proposition 5.1.

Proposition 5.1: The iteration algorithm has a nonin-
creasing cost in the channel rate , and therefore, it converges
to a local minimum.

Proof: For a given plant and controller, suppose we have
just computed rate matrix with rate for some positive
integer . Given , the iteration algorithm then computes a
controller that minimizes the bias by
solving (6) and converting back to . Then, we get that

for all controllers
. Next, we compute a rate matrix that minimizes the

channel rate required for stability subject to the constraint that
. Note that is a feasible solution,

therefore .

C. Examples

We now execute one iteration of the iteration algo-
rithm for three different unstable plants with and
(memory size of quantizer). We summarize the results for each
plant in separate boxes. In each case, we give the initial con-
troller used to compute repeated-block quantizer , which
is entirely characterized by . We also compare the rate

to the minimum rate obtained if we restrict the quantizer
to be memoryless and time-invariant (a diagonal rate matrix).
Note that the minimum channel rate required for stability for
each corresponding closed-loop system is . We
then show the controller computed by fixing the quantizer
to be parameterized by and the corresponding quantizer bias
term . Finally, we fix the controller to and
compute to complete one iteration.

Example 1

• Step 1:

• Step 2:

• Step 3:

• Step 2:

Example 2

• Step 1:

• Step 2:

• Step 3:

• Step 2:

Example 3

• Step 1:
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• Step 2:

• Step 3:

• Step 2:

From Examples 1–3, we see that in all cases
indicating that allowing the quantizer to have memory and to
allocate bits to the past maintains stability for channels with
smaller rates than in the case where the quantizer is memoryless
and does not allocate to the past. In addition, the more unstable
the plant is, the more rate is required for closed-loop stability.
Finally, one iteration shows a marked improvement in rate re-
quired for stability as in all cases.4

VI. SYNTHESIS: TRACKING COMMANDS

In this section, we synthesize limited-rate finite-memory
-quantizers and time-varying controllers for a

given plant to track a family of bounded reference com-
mands such that the rate is limited by a
given . From Fig. 3, we get that the tracking error
is . Therefore,

, where
satisfying ensures quantizer
validity. We set up the following optimization problem:

(7)

s.t. (8)

(9)

where (8) and (9) are the IO stability conditions. Again, we re-
strict ourselves to repeated-block quantizers and apply an itera-
tion algorithm to minimize tracking cost. We outline the itera-
tion algorithm below.

4Note that third-order finite impulse response (FIR) controllers were designed
to simplify computation and are shown in Examples 1–3. Searching over such
FIR controllers is not optimal, yet we are still able to demonstrate the validity
of our synthesis algorithms. The same was done for the tracking examples.

We fix in Step 2 of the tracking iteration algorithm and
check to make sure that the quantizer remains valid for that
chosen value of in both (10) and (12). Keeping as a func-
tion of and would not enable convexity of the subproblems
(10) and (12). One can find the smallest over all and such
that the quantizer remains valid and minimizes the tracking cost
by applying the above iteration algorithm to different values of

, changing via a bisection algorithm.
It is straightforward to see that the tracking iteration algo-

rithm described above always results in a nonincreasing tracking
cost as both subproblems (10) and (12) minimize the same cost
function.

Iteration Tracking Algorithm

1) For a given plant and rate limit , pick any
stabilizing controller , such that .
If no such controller can be found, increase and
return to Step 1.

2) Pick an and a
convergence threshold . Set .

3) Solve the following problem to construct :

s.t.

(10)

Note that the above problem has cost and constraints
that are convex in all unknown parameters and is,
therefore, efficiently computable using any standard
convex optimization software. Denote the resulting
optimal tracking cost as .
If and if , then STOP. Else goto
Step 4.

4) Fix and compute new controller by solving

s.t. stabilizing

(11)

Apply “Q-parameterization” or “Youla
parameterization” to parameterize all stabilizing
controllers and convert the above problem to a convex
optimization problem of the form

(12)

s.t. LTI stable, rational, proper

where , and are derived from the system
to equate to

and and are affine functions
in such that equals

. Note that (12) is again
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efficiently computable using any standard convex
optimization software.

5) Increment by 1 and goto Step 3.

A. Examples

We now execute one iteration of the iteration tracking
algorithm for one unstable plant and different pairs. We
set and summarize the results for each example. In each
case, we give the initial controller used to compute RB
quantizer , which is entirely characterized by and
its tracking cost. We then show the controller computed by
fixing the quantizer to be parameterized by , and the corre-
sponding bound on the 1-norm of the tracking error. Finally, we
fix the controller to and compute to complete one itera-
tion.

Tracking Example 1

• Steps 1-2:

• Step 3:

• Step 4:

• Step 3:

Tracking Example 2

• Steps 1-2:

• Step 3:

• Step 4:

• Step 3:

Tracking Example 3

• Steps 1-2:

• Step 3:

• Step 4:

• Step 3:

From Examples 1–3, we make a few observations.
• If we fix and increase , the tracking error cost im-

proves. This makes sense as the channel becomes less re-
strictive as increases. Fig. 5 below plots each of the two
terms in the tracking cost versus the rate limit for a fixed
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Fig. 5. (a) decays rapidly as increases and settles to the ideal tracking cost when (b) is so small in comparison to
that we plot as a function of to see its rapid decay to 0 as .

large enough to be feasible for all s plotted for
a given plant .

• If we fix and increase , the tracking error cost in-
creases. This also makes sense because as increases, the
cost also increases (for a
fixed controller and quantizer).

• The tracking cost in just one iteration is decreasing as
is positive for all examples.

• Although we do not show results for memoryless quan-
tizers, we observed that quantizers with finite memory per-
form better than memoryless quantizers in tracking.

VII. CONCLUSION

In summary, we consider a plant and feedback controller sep-
arated by a finite-rate noiseless channel and we study a new class
of encoders that have memory but do not have access to the con-
trol input to the plant. If the encoder is not local to the plant and
if it does not know what controller will receive the signal it sends
through the channel, then it can be modeled as belonging to this
class. We have constructed a parameterization of time-varying
quantizers that belong to this encoder class, and that leads to a
convex characterization of bit-allocation strategies that maintain
finite-gain stability. For finite memory quantizers, the convex
characterization of stabilizing quantizers allows for efficient and
nontrivial bit-allocation strategies and controllers to be synthe-
sized for a given plant to meet various performance objectives.

In the future, we would like to obtain necessary conditions
that maintain IO stability.

APPENDIX

A. Proof of Theorem 3.2

Below, we make some observations that lead to Theorem 3.2
and its proof. We assume the following norm conditions:

1) ;
2) , and break down as follows:

Under the first assumption, we show that there exists a pos-
itive finite constant and an , such that

, for all .
Assuming that , there exists a , with ,

and a positive finite constant , such that , for
all . is the th value of the impulse response of .
In fact, can be chosen to be the spectral radius of the stable

matrix of a state-space description for . Because is LTI,
, therefore
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where the last equality holds if . Similarly,
, if . Putting

both cases together, we get that

for all , where

Under the second assumption , we show that
there exists a positive finite constant and a constant

, such that , for all .
Because , there exists a constant , with

, and a positive constant , such that ,
for all . We now look at the magnitude of the response due
to the exogenous disturbance induced by the quantizer

where the last equality holds if . If , then it
is easy to show that . We then
get that

for all , where

Recall that is a parameter we are looking for to ensure that
. Therefore, , which gives us

Putting everything together, we get that for all

For the quantizer to be valid, we require , for all
. The above observations lead us to the following proof.

Proof: Define
, as computed in Section III-B. Then, choose

and .
It is straightforward to show that is finite and positive due to
condition (3). To show IO stability, we have

where the last inequality comes from the fact that . To
show quantizer validity, we computed in Section III-B that for

(13)

where the last inequality comes from our choices of and .

B. Using Matlab’s “fmincon.m” to Synthesize Quantizers

In this section, we show how we use Matlab to solve the fol-
lowing optimization problem:

s.t. (14)

(15)

(16)

For a given and , we lift the original system by a factor of
and denote the state-space description of

by . Let and rewrite the above
optimization problem as

s.t.

where captures the equality constraints (2),
captures constraints (3), and are equivalent

to constraints (4). For example, if , then the equation
shown at the top of the next page holds, with

and
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and

where

Note that we approximate the 1-norm of
to guarantee that we can nu-

merically compute the solution to the constrained minimization
problem.5
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