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Feedback Control in the Presence of Noisy
Channels: “Bode-Like” Fundamental
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Abstract—This paper addresses fundamental limitations of feed-
back using information theoretic conservation laws and flux argu-
ments. The paper has two parts. In the first part, we derive a conser-
vation law dictating that causal feedback cannot reduce the differ-
ential entropy inserted in the loop by external sources. An interpre-
tation of this result is that the total randomness induced by distur-
bances, as measured by differential entropy, cannot be reduced by
causal feedback; it can only be re-allocated in time or in frequency
(if well defined). Under asymptotic stationarity assumptions, this
result has a spectral representation which constitutes an extension
of Bode’s inequality for arbitrary feedback. Our proofs make clear
the role of causality, as well as how stability assumptions impact the
final result. In the second part, we derive an inequality unveiling
that the feedback loop must be able to convey information origi-
nating from two independent sources: 1) initial states of the physical
plant; 2) exogenous disturbance signals. By using such principle, we
construct a variety of information rate (information flux) inequali-
ties. Furthermore, we derive a universal performance bound which
is parameterized solely by the feedback capacity and the parame-
ters of the plant. The latter is a new fundamental limitation, which
is different from Bode’s classical result, indicating that finite feed-
back capacity brings a new type of performance bound.

Index Terms—Differential entropy, feedback capacity.

I. INTRODUCTION

F UNDAMENTAL limitations play a pivotal role in most
branches of science. From an engineering perspective,

fundamental limits are used not only to discard impossible
specifications, but they are also important to prove the op-
timality of certain policies. A particular instance of such a
strategy is Shannon’s converse Theorem [3], which is used to
certify the quality of coding strategies.

Most converse theorems in Information Theory are derived in
great generality. Consequently, it is not surprising that Informa-
tion Theory is being used in other fields as a powerful concep-
tual aid for deriving fundamental limits [33]. The contribution
of this paper is to use Information Theory not only in extending
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existing fundamental limitations of feedback systems but also
in deriving new bounds and applications.

The interplay between Control and Information Theory is
happening along three main directions. One avenue is the study
of control under information constraints, which already has a
vast collection of insightful results in stabilization [9]–[21],
[39], [40]. The basic framework comprises a plant, a channel,
an encoder and a decoder, which implicitly embeds a controller.
Performance limits have also been addressed for specific chan-
nels, such as the deterministic bit-rate channel [14] and the
Gaussian channel [37], where, in both cases, the measure of
performance is of the expected (average) power type. Effective
coding paradigms for the control over noisy channels have been
pioneered by the authors of [44], [45] and further design issues
have been addressed in [28], [1], [27].

The second avenue in which Information Theory may help
Control Theory is in the derivation of fundamental limitations of
feedback in a general setting, i.e., not restricted to dealing with
information constraints. The article [23] was one of the first to
point in that direction, culminating with an extension of Bode’s
integral formula [2] for a class of differentiable non-linear sys-
tems. Prior to that, the authors of [48] have established a con-
servation principle for linear feedback systems in terms of Kol-
mogorov-Sinai entropy. The work by [26] gives an entropic in-
terpretation to optimal control, which is advantageous in adap-
tive control as well as in hierarchical control. More recently, the
authors of [36] were able to characterize the information flow in
the Kalman filter, which has lead to a new energy related inter-
pretation. Information theoretic techniques have also been used
in [12] to study the fundamental limits of disturbance attenua-
tion in feedback systems, assuming that a remote preview of the
disturbance is available.

Yet a third avenue of interaction is the use of Control Theory
in Information Theory, such as in the work of [5], [31], [32].

A. Contributions of the Paper

Understanding the fundamental limitations of performance
in a feedback system is critical for effective control design.
One of the most well known tradeoffs is the water-bed effect
for discrete-time, linear and time-invariant feedback systems,
which results from Bode’s integral formula [2]. In such a clas-
sical theory, the transfer function between the disturbance and

(see Fig. 1) is called the sensitivity [4] and is repre-
sented by . Bode’s result, for a strictly proper loop gain, is
expressed as [49]

(1)

0018-9286/$25.00 © 2008 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on December 2, 2008 at 14:43 from IEEE Xplore.  Restrictions apply.



MARTINS AND DAHLEH: FEEDBACK CONTROL IN THE PRESENCE OF NOISY CHANNELS 1605

Fig. 1. Basic framework for control by causal feedback.

where are the unstable poles of the open loop system1 [4],
which is assumed to be rational and strictly proper. By using
feedback, one would expect that sensitivity can be decreased.
On the other hand, (1) quantifies a fundamental limitation which
indicates that sensitivity can be, at most, shaped in frequency.
Equivalently, cannot be made small at all frequencies.

In the first part of this paper, we show that causality is the
only requirement for deriving an inequality involving the differ-
ential entropy of and , which
holds regardless of the feedback and time horizon . In addi-
tion, we show that, under deterministic feedback, the aforemen-
tioned quantities are related via an equation that also involves
the mutual information between the initial state of the plant
and . An extension of these results, in the limit
when the time horizon goes to infinity, can be found in [12]. In
particular, we show that under asymptotic stationary assump-
tions, techniques already found in [12] can be used to obtain
an integral inequality that extends Bode’s result. We also show
that the constant in the right hand side of (1) has an informa-
tion theoretic origin. In the second part of the paper, we derive
an information rate separation principle for feedback systems
in the presence of an external disturbance . According to this
principle, the feedback loop must be able to convey information
originating from two independent sources: 1) initial states of the
physical plant; 2) exogenous disturbance signals. From such a
principle, we derive several information rate inequalities, which
we use in deriving a universal bound to performance attenuation
as a function of the feedback capacity.

In addition to their importance in the classical engineering
context, our results have also been used to explain the behavior
of certain biological feedback systems [38].

The following notation is adopted:
• Finite segments of sequences are indicated as

. We also adopt . If
then . Whenever it is clear from

the context, we refer to an infinite sequence of ele-
ments in as .

• Random variables are represented using boldface letters,
such as .

• If is a time sample of a stochastic process, then we
use to indicate a time sample of a specific realization.

1The poles of the open loop system comprise the poles of the plant and of the
controller.

Fig. 2. Section precedence diagram.

Similar to the convention used for deterministic sequences,
we may denote the whole stochastic process just as .
Finite segments of stochastic processes may also be indi-
cated as or as if the time index starts at .

• The probability density of a random variable , if it exists,
is denoted as . The joint probability density of and
is denoted by and the conditional probability density
of , given , is indicated as .

• The expectation operator over is written as .
• We write simply as and we adopt the con-

vention .
The paper is organized into seven sections, which can be read

in the order indicated by the diagram of Fig. 2. Section II pro-
vides the technical preliminaries, while Section III lays down
the technical framework. The extension of Bode’s result is de-
rived in Section IV and Section V develops an information
rate separation principle. The results of Section V are used in
Section VI to prove a universal performance bound parameter-
ized by feedback capacity. Section VII ends the paper with con-
clusions.

II. TECHNICAL PRELIMINARIES

We start this section by summarizing the main definitions of
Information Theory, which are used throughout the paper. We
adopt [16], as a primary reference, because it addresses general
probabilistic spaces in a unified framework. Most of the con-
cepts can also be found in [3].

Definition 2.1: Let and be given random variables taking
values in with a well defined joint probability density. The
mutual information, between and , specified by

, is given by

The definition of mutual information for arbitrary alphabets can
be found in [16, p.9]. The conditional mutual information be-
tween and , given , is indicated as . A rigorous def-
inition of conditional mutual information is given in [16, p. 37].
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The following gives a formula for computing , which
we could have used as an alternative definition:

Definition 2.2: If is a random variable, with alphabet ,
along with a probability density function then we define
the differential entropy of as

If is another random variable and then the
conditional differential entropy of given is defined by

(2)

Definition 2.3: (Information Rate) Let and be stochastic
processes. The following is the definition of (mutual) informa-
tion rate2

The use of the information rate is motivated by its universality
[3], i.e., it quantifies the rate at which information can be reliably
transmitted through an arbitrary communication medium.

Definition 2.4: (Entropy Rate) For a given stochastic
process, we also define entropy rate as

(3)

A. Basic Properties of Differential Entropy and Mutual
Information

The following is a list of properties used throughout the paper.
Whenever appropriate, e.g., in proofs, we will refer to these
properties by their numbers (P1)–(P5).

The proof of such properties may be found in [16] and, in
some cases, in [3]:

• (P1) Symmetry and positivity properties :
and

• (P2) Kolmogorov’s formula 3 (3.6.6 in [16]):

• (P3) Data Processing inequality : If and are measur-
able functions in the appropriate probability spaces then

.
• (P4) Iterated differential entropy : Using Kolmogorov’s

formula (P2) and (2) we arrive at .
• (P5) Injective transformation in differential entropy :

Using a change of variables in the integrals of Definition

2Throughout the paper, for simplicity, we refer to mutual information rate
simply as information rate.

3Notice that 3.6.3 in [16] has a typographic mistake. The left hand side of the
equality should be .

2.2, we have that if is any given function then
.

III. TECHNICAL FRAMEWORK

In this section, we introduce the performance measures used
in our analysis, while discussing some of their properties and
interpretations. In addition, we describe the basic feedback par-
adigm by means of a block diagram and three assumptions.

A. Performance Measures Under Asymptotic Stationarity:
Definition of a Sensitivity-Like Function

In order to ascribe a frequency domain interpretation to our
results, we adopt the following definition of asymptotic power
spectral density.

Definition 3.1: (Asymptotic Stationarity) A given zero
mean real stochastic process is asymptotically stationary if
the following limit exists for every :

(4)

We also use (4) to define the following asymptotic power
spectral density:

(5)

Definition 3.2: (A sensitivity-like function) Consider the
feedback loop shown in Fig. 1. If the stochastic processes
and are asymptotically stationary then we define the following
sensitivity-like function:

(6)

The following is a list of remarks regarding :
• If the feedback system is linear, time-invariant and is

identically equal to zero then is the absolute value
of the standard sensitivity function [4].

• In the general non-linear case, will depend on the sta-
tistical properties of . It has been suggested in previous
publications [25] that such a feature is intrinsic to feed-
back loops with general non-linear controllers. Limitations
in terms of the ratio represented by should be inter-
preted as follows: once we have a spectral model of the
disturbance, say , then limitations in translate im-
mediately to limitations in . Clearly, for each spectral
model of the disturbance, gives as much information
about as a classic sensitivity function would. As a con-
sequence, our results, which express restrictions on ,
show, for any given disturbance spectrum , that certain
spectra are not attainable.

• If either or is not asymptotically stationary then
is undefined. We have not tried to attribute a

frequency domain interpretation based on non-stationary
notions, such as wavelets or evolutionary power spectral
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densities. In the absence of stationarity, we resort directly
to entropy rates.

B. Performance Measures Using Entropy Rates

In the absence of asymptotic stationarity, we use entropy rates
to gage performance, not only because it is technically conve-
nient, but also because it is a fundamental quantity which can
be related to other, more common, measures of performance. In
standard texts, such as [24], [3], the entropy rate of a given sto-
chastic process is interpreted as a measure of randomness, en-
ergy or disorder. The following inequalities relate the entropy
rate with other performance measures4:

• for a general stochastic process , the following holds:

• if is asymptotically stationary with an integrable power
spectral density then the following holds:

C. Basic Feedback Paradigm and Assumptions

Throughout this article, we consider the general feedback
scheme of Fig. 1. The following assumptions regarding the plant

, the feedback block and the external excitation are made:
• Given , the plant is single input with state taking

values in , and satisfying the following state-space equa-
tion:

(7)

where the differential entropy of the initial state is
assumed finite.

• The channel noise , the plant’s initial condition and
the disturbance are mutually independent.

• The map acts as , i.e., it determin-
istically maps past and present inputs to present outputs.
As such, if admits a state-space representation then the
initial state must be deterministic.

As the reader will have the opportunity to infer, most of our re-
sults hold for multi-input plants. We have adopted the assump-
tions above just to make the paper more readable.

IV. FUNDAMENTAL LIMITATIONS CREATED BY CAUSALITY

Due to its importance, Bode’s fundamental limitation has
been extended to frameworks more general than the linear and
time invariant one [29]. The multi-dimensional version was pro-
vided in [6], [7] while certain non-linear systems have been an-
alyzed in [22], [23], [30]. Fundamental limits on tracking per-
formance are addressed in [41], [42]. The authors of [46] have
used properties of polynomials to obtain an extension of Bode’s
formula, under certain convergence conditions.

4The first fact follows from standard results in [3]. Since the last fact does not
follow immediately from [3], a proof of this result can be found in ([12] Lemma
4.3)

Causality is the central assumption in obtaining a conser-
vation law, which, under asymptotic stationarity assumptions,
leads to an extension of Bode’s result. The main result of this
section is given in Theorem 4.2 and a frequency domain inter-
pretation is provided in Lemma 4.3. We consider the scheme de-
picted in Fig. 1, where the feedback block can be any causal
function of and , which includes maps that are non-linear,
time-varying and operating on hybrid alphabets.

The following Lemma is the critical piece throughout this
section:

Lemma 4.1: Consider the scheme of Fig. 1, where
and are mutually independent, for all . Causality of the feed-
back loop implies that the following holds:

(8)

Proof: We start by realizing that causality of the feedback
loop implies the following:

(9)

where the first equality follows by noticing that is a function
of and . The fact that the aforementioned mutual
information is equal to zero, follows from the mutual indepen-
dence between and . In order to arrive at (8) we apply
the data processing inequality (P3)

(10)

The fact that (8) holds is enough to derive the following:

(11)

which, from the positivity property of mutual information (P1),
implies the following:

(12)

The immediate implication of (12) is that causal feedback
cannot reduce differential entropy. The proof of (11) goes as
follows:

Proof of (11): Using (2) and Kolmogorov’s formula (P2),
we arrive at

(13)

Using Lemma 4.1 and (13), we find that

(14)
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Now notice that we can apply the change of variables
to (14) and use the injective transformation property of

differential entropy (P5), to obtain

(15)

which summing over and using the iterated dif-
ferential entropy property (P4), leads to

(16)

By repeated application of (2) and Kolmogorov’s formula
(P2), we get

(17)

which summing over and using (P4) and (P2),
once more, leads to

(18)

The final result follows from (18) and (16).
The limiting case of (11) is stated in the following Theorem:
Theorem 4.2: (Entropy inequality) Consider the feedback

system represented in Fig. 1. The following inequality holds:

(19)

where equality holds if is a function of alone, or equiva-
lently, if is absent. Taking limits and dividing by , we also
have

(20)

Proof: We obtain (19) by applying the positivity property
of mutual information (P1) to (11). It remains to prove that
equality in (19) is achieved if is a function of alone, or equiv-
alently, if is absent. We start by noticing that

(21)

In addition, notice that if is absent then is a function of
(plant strictly proper) and of , leading to

(22)

As such, we arrive at

(23)

which concludes the proof.
Notice that Theorem 4.2 did not assume stability or asymp-

totic stationarity. The subsequent Lemma specializes Theorem

4.2, under the assumption that the second moment of the state
of the plant is bounded. In addition, the Lemma provides
bounds under various stationarity assumptions and its proof fol-
lows from (19) by means of techniques analogous to the ones
used to prove Theorem 4.5 in [12].

Lemma 4.3: (Extensions of Bode’s Result) Consider the
feedback system depicted in Fig. 1, along with the following
condition:

(24)

where is the state of the plant . The following holds:
• Case 1 If (24) holds then

• Case 2 If (24) holds and is asymptotically stationary then
the following is satisfied:

(25)

• Case 3 Under the conditions of Case 2 and the additional
assumption that is Gaussian auto-regressive and asymp-
totically stationary, the following is satisfied:

(26)

Lemma 4.3, in Case 3, shows that if and are asymp-
totically stationary, with Gaussian auto-regressive, then (26)
holds. Notice that we require no assumptions on the proba-
bility density of and that the asymptotic stationarity assump-
tions, on and , are the weakest conditions under which power
spectral densities are meaningful. We stress that if we want to
establish a fundamental limitation based solely on the power
spectral densities of and , then we should allow to have
the worst-case probability distribution, which in this case is
Gaussian auto-regressive. In addition, it is well known that a
very large class of asymptotic power spectral densities can be
generated by Gaussian auto-regressive processes. In particular,
in [43] it is shown that the class of auto-regressive power spec-
tral densities is sufficiently rich to approximate, with arbitrary
accuracy, power spectral densities satisfying the Paley-Wiener
condition. Therefore, (26) represents an extension of Bode’s in-
tegral formula in a stochastic setting. The inequality in (26) indi-
cates that not all of the frequency components can be attenuated,
and that the sensitivity logarithmic integral is lower bounded by
a constant, which depends on the degree of instability of the
plant. This is a fundamental limit which cannot be breached by
any control, including non-linear feedback over arbitrary alpha-
bets. Another interesting aspect arises when the plant cannot be
stabilized by a stable, linear and time-invariant controller [34].
Therefore, one could think that Lemma 4.3 may be conservative
because the unstable poles of the controller should be present in
the Bode constant given by . How-
ever, the authors of [35] have shown that stable, linear and pe-
riodic controllers may be used in those cases. We should also
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mention that we are aware of an alternative Proof of Case 3 of
Lemma 4.3, other than our information theoretic approach5.

V. INFORMATION RATE INEQUALITIES

Consider the feedback loop represented in Fig. 3, which is
obtained by superimposing onto Fig. 1 an illustration of the
fluxes of information, originating from the independent sources

and . In this section, we prove that the flux of infor-
mation through must account for two independent sources:
the plant’s initial conditions and the external excitation .
Section VI is an example of the applicability of such informa-
tion rate inequalities, where we derive a new performance bound
relating disturbance attenuation to feedback capacity.

We start with the following Lemma, where we show that the
total information rate flowing in the loop is lower bounded by
the additive contribution of the following information rates: (1)
between the plant’s initial condition and the error signal ;
(2) between and .

Lemma 5.1: (Fundamental Information Rate Inequality)
If is the state of the plant represented in Fig. 3, or equiva-
lently Fig. 1, then the following holds:

(27)

Intuitively, one can imagine a cut through and that the left
side of (27) represents the total information flow through the cut,
which must be an upper bound to the individual fluxes quantified
on the right hand side of (27).

Proof of Lemma 5.1: We start by using Kolomogorov’s
formula (P2) to write

, which leads to the following inequality:

(28)

where we also used the transformation
and the data processing property (P3) to establish that

. On the other hand, using
Kolmogorov’s formula (P2) again, we get

(29)

Since is independent from , the second term, on the right-
hand side of (29), vanishes and by substituting (29) into (28) we
arrive at

(30)

The inequality (27) follows from (30) by the positivity of mu-
tual information property (P1).

5Prof. Alex Megretski (MIT) has recently suggested the only correct alter-
native proof (to the best of our knowledge) for Case 3 of Lemma 4.3, using
one-step linear prediction. We should stress that our proof technique, unlike the
one-step linear prediction method, can be adapted to prove the validity of Bode’s
integral in other configurations. In particular when the disturbance enters at the
output of the plant, in which case the input to the controller should be viewed
as the error signal.

Notice that Lemma 5.1 has no stability assumptions, but the
following Theorem incorporates the effect of requiring that the
plant is stabilized.

Theorem 5.2: If the state of the plant, represented in Fig. 3, or
equivalently Fig. 1, satisfies then
the following holds:

(31)

Proof: For convenience, we provide the following abridged
version of the statement in ([12], Lemma 4.1) 6.:

(32)

The proof follows immediately by substituting (32) into (27).

A. Feedback in the Presence of a Communication Channel

Throughout this paper, we will adopt the following definition
of channel:

Definition 5.1: (Channel) Let be a given channel input
alphabet, along with a stochastic process which is assumed
mutually independent of and . In addition, consider a
map acting as , where and represent
the channel output and input processes, respectively. The pair

defines a channel, which may be either memory-less or
with memory [3].

Remark 5.1: (Feedback Capacity) Consider a communica-
tion channel . Given a set of stochastic processes spec-
ifying the allowable channel inputs, the channel has a well de-
fined quantity denoted as and named feedback capacity (for
a definition see, for instance, ([8], page 1)). For any choice of
an external stochastic process independent of , the following
inequality holds7

(33)

where is the channel output, while the input
to the channel is given by and is
the set of maps for which the input of the channel is in the set .
Notice that should be viewed as an encoder which
has access to the past outputs of the channel. Notice that the right
side of (33) may not equal feedback capacity. The definition of
feedback capacity presupposes that the encoder has non-causal
access to the entire codeword ( in this case), as opposed to the
causal restriction that we impose on .

For the remainder of this section, we will adopt the feedback
interconnection depicted in Fig. 3, where is taken as the output

6Similar necessary conditions for stability can be found in the work by the
authors of [19], [39], [47], [14]

7Notice that this inequality holds under information stability of the pair of
sequences . Indeed, from [16], we know that, under information sta-
bility conditions, the reliable information rate that is achievable between two
stochastic processes is quantified by the information rate
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Fig. 3. Basic Feedback Paradigm, with an illustration of the fluxes of informa-
tion generated by and .

Fig. 4. Scheme representing a feedback system in the presence of a channel.
The block in Figs. 1 and 3 is represented above by the dotted box.

of a communication channel. It follows by inspection that the
scheme in Fig. 4 is a particular case of Fig. 3, where the feedback
block consists of the dotted box. The encoder/controller is
a causal operator acting as , while the
decoder controller operates as . Also, notice
that has access to past channel outputs, and it may, or may not,
choose to use such extra information. Still regarding the scheme
of Fig. 4, it is important to notice that one can always construct
a map such that the following holds:

(34)

Remark 5.2: By substituting (34) into
, we can always construct a map leading to

the following dynamic model for the channel input process
(see Fig. 4):

(35)

Consider that represents the feedback capacity of the
channel in the scheme of Fig. 4. For the purposes of this paper,
we only need to note that the following inequality holds:

(36)

for all valid choices of and , in the sense that any
valid choice must guarantee that belongs to the set of allowed
channel input processes . In other words, feedback capacity is
an upper-bound to the information rate between and

, under the channel input constraint set . In order to see that
(36) holds, we view the pair as the external process

(see Remark 5.1). The desired conclusion follows by noticing
that in (35) belongs to the set .

The computation of the feedback capacity is not easy in gen-
eral. An exception is when the channel is memoryless, in which
case is identical to the standard Shannon capacity [3] that
can be efficiently computed in most cases.

The following are examples of memory-less channels:
• Additive white Gaussian channel: is

an i.i.d. white Gaussian sequence with variance and
. If the set is specified by an input

power constraint then the feedback ca-
pacity is given by [3]:

• Binary symmetric channel: is an i.i.d
sequence satisfying and

. In this case the capacity is given by [3]:

• Symmetric Quantizer [3]: (not needed)
and is a symmetric quantizer with quantization interval
and input amplitude constraint . This channel has capacity
given by [3]

In view of Definition 5.1, the inequality in Theorem 5.2 can
specialized according to the following Corollary:

Corollary 5.3: If the state of the plant, represented in Fig. 4,
satisfies then the following holds:

(37)

where is the feedback capacity of Definition 5.1.
Proof: Using the fact that and the data

processing inequality (P3), we get

(38)

which leads to the desired result by direct substitution into (36)
and (31).

Equation (37) suggests that feedback capacity can be used
to establish a universal upper-bound on . As the
feedback capacity approaches (the
critical rate for the stabilization of ), the information rate

decreases to zero. Furthermore, (37) also leads to a
universal bound of performance for feedback systems, which is
described in Section VI.
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VI. UNIVERSAL PERFORMANCE BOUND

IN THE FREQUENCY DOMAIN

In Section V, we have proved an information rate separation
principle which also leads to several upper-bounds on .
Subsequently, we investigate how may limit distur-
bance attenuation in the frequency domain. Throughout this sec-
tion, we consider that and are asymptotically stationary. We
also assume that is Gaussian auto-regressive, but there are no
assumptions on the probability density of .

From the upcoming Theorem 6.2, we conclude that if
is bounded then there is a universal limit on distur-

bance attenuation which cannot be predicted by existing results.
In spite of having a similar form, the bound in Theorem 6.2
is unrelated to Bode’s integral, in the sense that one does not
imply the other. In Section IV, we have shown that causality
is the main assumption behind our generalization of Bode’s
formula, while Theorem 6.2 relies on finite capacity feedback.

We start with the following Lemma, where we relate
with the ability to reject disturbances. In particular,

we prove that as approaches zero will converge
to , and that implies that disturbance attenuation is
impossible over the whole frequency range. The definition
below introduces a necessary concept for the statement of the
aforementioned Lemma:

Definition 6.1: (Joint Asymptotic Stationarity) Let and
be asymptotically stationary processes. We qualify and as
jointly asymptotically stationary if the following limit exists for
every :

(39)

We also use (39) to define the following asymptotic joint
power spectral density:

(40)

Lemma 6.1: Consider the scheme of Fig. 1, where and
are assumed jointly asymptotically stationary, and is also

Gaussian auto-regressive. If is bounded then (41),
shown at the bottom of the page, holds.

Proof: In this proof, we will make use of the following
non-causal, linear and time-invariant Wiener filter:

(42)

which provides the optimal estimate of given , in the ex-
pected mean-square sense. In addition, given an integer , we

define the following auxiliary stochastic processes and
as:

(43)

(44)

We start by using the injective transformation of differential
entropy property (P5) to establish the following:

(45)

where .
Now, notice that from (2), we know that

, which, from the posi-
tivity of mutual information property (P1), implies that

. Therefore, (45) leads to

(46)

From (2), we know that so
that (46) implies

(47)

Because is a linear and time-invariant filter, even if non-
causal, and since is bounded, we conclude that
has a square integrable impulse response. The aforementioned
properties, and the facts that and are assumed asymptoti-
cally stationary, allow the use of an argument similar to the one
used to prove ([12], Lemma 4.3) to conclude that the following
inequality holds:

(48)

where is the asymptotic power
spectral density associated with the residual of
the non-causal Wiener filter.

Accordingly, (47)–(48) and ([12], Lemma 4.3) can be used to
infer the following:

(49)

(41)
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Fig. 5. Scheme representing a feedback system, in the presence of an AWGN
channel and an asymptotically stationary Gaussian auto-regressive disturbance.

The proof follows by recognizing that
, which can be used to infer the fol-

lowing:

The following Theorem provides a bound, which follows
from (41) and does not depend on .

Theorem 6.2: Consider the scheme of Fig. 1, where and
are assumed jointly asymptotically stationary, and is also

Gaussian auto-regressive. The following holds:

(50)

where comes from Definition 3.2, i.e.,

.
Proof: The proof follows by infimizing the right-hand-side

of (41), with respect to restricted to .
An alternative proof of this Lemma for the non-asymptotically-
stationary case may be found in [13].

A. Numerical Example

For the remainder of this subsection, consider the diagram
of Fig. 5 with , where is a strictly proper plant and

is a linear and time invariant system (controller) with zero
initial conditions. In particular, assume that is a single-input
single-output, strictly proper and minimum phase system of the
form

(51)

where is an outer transfer function, is the number of
unstable poles of and represent such unstable poles satis-
fying . In addition, consider the following stabilizing
dead-beat controller:

(52)

We don’t know how conservative Theorem 6.2 is in general,
but we will construct examples that illustrate that the bound can
be arbitrarily tight. An example of application of such a The-
orem is given in [38].

Fig. 6. Plot of the upper-bound and lower-bound, computed as a function of
.

Fig. 7. Plot of the relative difference between the upper-bound and lower-
bound, computed as a function of .

Under the assumption that the feedback loop is stable, we
can use Lemma A 1, of the Appendix, to perform the following
computation:

(53)

From (53) we infer that inequality (50) will be tight if the
following lower-bound and upper-bound are close:

(54)

(55)

where
.

In Fig. 6, we depict the numerical results for the following :

(56)

By inspection, one can argue that the bounds get more accu-
rate for increasing values of (see Fig. 7). Moreover, we have
verified empirically that such relative accuracy can be made ar-
bitrarily small by considering ,
with arbitrarily large. We emphasize that the choice of the
multiple pole of was arbitrary. We have tried other values
and the bounds behaved in a similar way (see Fig. 8).
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Fig. 8. Pictorial comparison between Bode’s inequality and the new bound on
disturbance attenuation, where and represent areas under the graph, while

is the area above the graph.

B. Finite Feedback Capacity: A Universal Bound on
Disturbance Attenuation

Going back to the scheme of Fig. 4, the following Theorem
characterizes a universal bound on disturbance attenuation in
the presence of communication constraints.

Theorem 6.3: Consider the scheme of Fig. 4, where
and are assumed jointly asymptotically stationary, with
Gaussian auto-regressive. If the state of the plant satisfies

then the following holds:

(57)

where is the feedback capacity and is the dynamic matrix
of the plant.

Proof: The proof follows from Corollary 5.3 along with
Theorem 6.2.

We stress that the bound in (57) is valid for any channel and
it depends only on the feedback capacity and on the unstable
eigenvalues of . This inequality could not be predicted from
Bode’s result nor from previous results.

We should also mention that there is a good intuitive reason
why the positive part of the log-sensitivity integral is not present
in (57). For a given , assume that , where
is some exogenous stochastic process, which is independent of

. Clearly, increasing does not increase and, on the
other hand, for each frequency , the power spectral density

is an increasing function of , with derivative given by
.

VII. CONCLUSION

By using notions, from Information Theory, such as mutual
information and (differential) entropy, we have characterized
conservation laws that hold under causality, which is a basic at-
tribute of physical systems. In particular, we show that the dif-
ferential entropy, induced by external excitation, cannot be re-
duced by causal feedback. This principle is related to the Bode
integral formula, originally derived for linear and time-invariant
feedback systems. The aforementioned analysis extends Bode’s
ideas to arbitrary feedback. In addition, we deduce information
flow inequalities that can be used for establishing a universal
bound of performance, in the frequency domain.

Fig. 9. Linear and time-invariant feedback scheme for the computation of in-
formation rates.

APPENDIX I
AUXILIARY RESULTS

Lemma A.1: Let and be white Gaussian sequences with
positive variances and . Consider the feedback loop of
Fig. 9, where and represent linear and time-invariant sys-
tems, where is assumed stable. If the feedback loop is stable
then the following holds:

(58)

Proof: We leave to the reader the detailed proof of the fol-
lowing equality:

(59)

where is the stationary information rate, i.e., the
information rate which we would get if the probability
of the overall initial state, of the feedback loop in Fig. 9,
was the stationary solution. The proof of (59) follows by
using the fact that the elements of the covariance matrix
of converge uniformly and with exponential
rate to the stationary solution. The convergence is expo-
nential in because the feedback loop is stable, linear and
time-invariant. Indeed, (59) follows by noticing that, for
the Gaussian case, the mutual information between and

is given by ,
where and are the covariance matrices of

and , respectively. The convergence of the
determinants follows by Gershgorin’s Circle Theorem.

On the other hand, from Theorem 10.2.1 [16], we know that:

(60)

Similar computations of the information rate for the Gaussian
case can be found in [5].
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